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Stochastic model related to the Klein-Gordon equation
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In this note, a one-dimensional system composed of an assembly of interacting particles, is considered. Each
particle in the assembly moves in a well-defined trajectory on a line with a velocity of fixed magnitude, which
randomly reverses direction. The intrinsic forces in the system are assumed to induce stochastic transitions
between velocity states in such a way that the average dynamics of the assembly is Newtonian. It is shown that
there is a close analogy between collective oscillations in the model system and the propagation of a free
qguantum particle in one dimension.
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In his book on path integrals, Feynmfh] considered a The same phase transformation applied directly to @4.
one-dimensional, two-state stochastic process in which a paleads to the Klein-Gordon equation for each component of
ticle is constrained to move on a line with a velocity of fixed the vectorV.
value c whose direction of motion occasionally changes by The checkerboard model allows one to think about some
180°. Because of its zig-zagging path in two-dimensionalaspects of quantum behavior in terms of an essentially clas
space time, the process is sometimes referred to as the chedieal stochastic model with an unphysical imaginary transi-
erboard model. Feynman found that the properly weightedion rate[4]. Furthermore, McKeon and Of&] have shown
summation of all such paths leads to the exact propagator fahat an analytic continuation of the transition rate is not re-
the one-dimensional Dirac equation. The underlying differ-quired to obtain the Dirac equation if the particle is allowed
ential equations of the checkerboard process have been cotm move stochastically both forward and backward in time to
sidered by Gaveaat al. [2]. Assuming that the reversals of mimic virtual pair creation and annihilation events. This ap-
direction are random and Poisson distributed, the probabilitproach has been further generaliZeg] to incorporate an
densitiesg . (x,t) and ¢_(x,t) for a particle at positiox at  external field into Eq(5).
time t and moving to the right and to the left, respectively, The aim of this paper is to draw attention to a two-

satisfy velocity-state model of another kild], which immediately
leads to the potential-free Klein-Gordon equation without re-
dp+ _ 5¢+ —W(¢> b)) 1) course to analytic continuation or backward-time motion. Let
ot * e us extend the assumption that velocity reversals are Poisson
distributed to the general case, when transitions between two
dg_ dp_ velocity states are described by the arbitrary “fielg(x,t),
i TG TW(e— o), 2
dp(X,t) _ ¢9¢+(X t)
wherew is the rate of transitions between two velocity states. a X X, ®
Equations(1) and(2) are the continuous version of a persis-
tent random walK 3] leading to the telegrapher’s equation &q&,(x,t) (M (x t)
) ) g —E(x1). v
d ¢i 20-' ¢i a¢i
5 —C 5 =—-2w ek (3
dt 28 Addition and subtraction of Eq$6) and(7) yields
In matrix form, one can express Ed4) and(2) as
p d4) and(2) 6 aAxY)
A P, . ot CTax ®
ot W = CO'3 IX W(Tl y ( )
_ dA )
where ® is the two-component column vectot( ,¢_)" = 28 9

and o,03 are the Pauli matrices. Using the transformation
=V exp(—wt), one can see that E¢}) is equivalent to the

one-dimensional Dirac equation in the Weyl representation where we have defined

A 2 oV P(X )= (X,1) +d_(X1),
|h7=—|cﬁ03&—x+mc201\1’, (5)

A(X,t) = ¢+(X!t) - ¢7(X!t)'
provided c is identified with the speed of light and is
analytically continued?2] to the imaginary value-imc*#%.  Taking the time derivative of Eq$8) and (9) gives
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P P o0& transitions are ind_uced by the intrinsic fidﬂx,t). resulting _

—2=c2—2—20—, (100  from local fluctuations of the net charge density around its

ot X X equilibrium value of zero. If the particles interact through a
Coloumb-like long-ranged force, the fielit{x,t) satisfies the

PN PN o Poisson equation

=c +2—. (1)
2 2 ot
! ” < =47q(d—-d 16
If the field &(x,t) satisfies the equation ax md( o), (16
E(x,t) i 12 where®, is the constant density of the compensating back-
IX =ag(x.1) 12 ground charge and(x,t)=®_+®, is the total particle
density.
with the constanta chosen to bea=m?c®/(242), then it Since the particles in the assembly interact through the
follows from Eq.(10) that the functiong(x,t) satisfies the force F(x,t)=qE(x,t), but can only assume discrete veloci-
Klein-Gordon equation ties c and —c, a rule specifying how the force determines
velocity reversal in the assembly must be postulated. It is
PP ¢ mict possible to choose rules for the velocity reversal in such a
Prial vl (13 hat densities of th beh di icu-
P P Y way that densities of the system behave according to particu
lar dynamical laws. Let us define the transition terms so that
Similarly, if the field £(x,t) obeys the condition the momentum densityP(x,t)=md @ (x,t) —P_(x,))]
evolves according to classical Newtonian dynamics, i.e., its
1 9&(Xx,t) force-induced variation satisfies
- =—aA(x,t) (14)
c ot b
with the same constart as above, the Klein-Gordon equa- (E =qED. (17)

tion for the functionA(x,t) follows immediately from Eq. f

(11). When £(x,t) satisfies both condition§l2) and (14)  The connection between the force and the transition terms
simultaneously, the Klein-Gordon equation holds for both,, . can be made by noting that the variation of the momen-

functions ¢(x,t) and A(x,t), which could be considered as tym density is a result of the velocity reversal, and hence
components of a two-component vector field. Note that Eq.

(8) connecting the componentg and A in the two- JP
component field has the form of the Lorentz gauge. (E) =mc(y;—vy-). (18
It is difficult to interpret Eqgs.(12) and (14) within the f

framework of the single-particle model. Clearly the function _, B for th loci del
#(x,t) cannot be interpreted as a probability density for a>Nc€Y+=—v- for the two-velocity-state model, Eqel7)

single-particle stochastic process since, in general, the sol@"d (18) imply that the transition terms are determined by
tions of the Klein-Gordon equation are not positive definite.
On the other hand, the fact thai(x,t) satisfies Eq.(8), 7+(X't):iw (19)
which is of the form of a continuity equation, suggests the - 2mc
interpretation of the functiong . (x,t) as perturbations of
charge densities in a many-body system. Below we outlind hese rules can be implemented on the level of a single
one possible many-particle model in which E¢$2) and  particle by stipulating that the velocity reversal occur with a
(14) have a clear physical meaning. probability determined by the transition tergn. when the
Consider a hypothetical plasmalike substance, which corforce F(x,t) and the particle velocity are in opposite direc-
sists of an ensemble of identical particles of chaggand tions and do not change when the force and velocity are in
massm moving in a uniform compensating background of the same direction.
the opposite charge. We assume that particles can move only The model formulated above is dynamical in the sense
along thex axis and their velocities can only take two values:that the transition rates between the two velocity states is
c and — c. Suppose the dynamics of local densities (x,t) completely specified by the intrinsic field(x,t). On the
and® _(x,t) of particles traveling in the positive and nega- other hand, the motion of individual particles in the assembly
tive directions, respectively, are determined by the equation stochastic since only the probability of finding a particle in
a particular velocity state is determined. Although the field
P (xt) 9D L(X1) E(x,t) governs the transition terms at a given point, it does
gt ST +ty=(XD), 19 ot depend on the particle index and hence any particle at the
point has an equal probability to reverse its direction.
where the term% . andy_ describe transitions at position In equilibrium® , (x,t)=® _(x,t) =Dy/2, the plasma has
and timet between the two velocity states. In contrast to theno net charge or current, and the fiédx,t) is zero. Local
original checkerboard model, where the velocity reversal is dluctuations of the charge density from neutrality gives rise
Poisson-distributed stochastic process, we assume that the excitations
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B (X, 1) =D (x,1) — D2, (20) me | )
)\D:( ) c (26)

———| <Ac=—.
. .. . 2
which can be represented as a superposition of waves with 47 Pg mc

frequencies close to Thus, we see that there is a correspondence between coherent

AP\ 12 oscillations (plasma wavesof the assembly of interacting
® :(M> (22) particles with two velocity states and the propagation of a
P m free quantum particle in one dimension. The existence of

such a correspondence is not surprising, since the approxi-

These waves correspond to electrostatic waves in a classicalate dispersion relation for electrostatic waves in a hot clas-
plasma, and, to linear order in the fluctuations, satisfy sical plasma has the same form as that for a relativistic quan-
tum particle. The distinctive feature of a plasma composed of

dd dp+ N qd, particles with fixed absolute velocities is that for this system

T T Tomel (22 the quadratic dispersion law?(k) = w2+ c?k?, and conse-
quently the Klein-Gordon equation, exactly holds. Another
which are just Eqs(6) and(7) with important property of the two-state plasma model is that the
velocity of particles is less than the phase velocity of waves
qd, vph%c+(1/2c)(wp/k)2, so Landau damping is absent and
Ex, 1) =5 EX.1). (23)  excitations do not decay.

Since the Debye length is the smallest length scale for the
With ¢ given by Eq.(23), condition(12) is equivalent to the collective behavior in plasma, the above considerations are

Poisson equation restricted to the case of long-wavelength excitations of the
plasma withA\>\p . For shorter wavelengths, the coherent

JE response of particles is suppressed and the plasma behaves
X Amas, (24 like a system of individual particles. On the other hand, the

Compton wavelength\ . is the length scale on which the
single-particle quantum equations becomes meaningless be-
cause of particle-antiparticle creation. In both cases, the
length scaled p and\ ¢ give lower bounds for the validity of

1 oE the equations, and their correspondence is remarkable and
— —=—(CA(X,t), (25 perhaps physically reasonable.

4m ot Relation(26) can be also written in the form of a condi-
gion for equilibrium density of the plasma

provided thata=2mq?¢,/mc. Furthermore, the second
condition (14) takes the form

which implies that the displacement current exactly cancel
the drift currentj =qcA associated with particle oscillation. 13
This cancellation reflects the fact that electrostatic waves do Co 7% Ac™, (27)

not involve a magnetic field.

Equations(22), (24), and (25) lead to the Klein-Gordon where a=q?/4c¢ is the fine-structure constant. The density
equation for the charge fluctuatiop(x,t) and the current &, should be high enough so that the condition of collective
density A(x,t) provided the Debye screening lengiy behavior of the plasmé@ \3>1 is satisfied. From relations
=c/w, of the plasma is taken to be the Compton wavelength{26) and(27), one can see that this condition is equivalent to

\c of plasma patrticles, a<l.
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