PHYSICAL REVIEW E, VOLUME 64, 036704

Multibox strategy for constructing highly accurate bound-state wave functions
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Variational, multibox approach is proposed to construct extremely accurate, bound-state wave functions for
arbitrary three-body systems. The high efficiency of our present approach is based on an optimal choice of
nonlinear parameters in the exponential basis functions. The proposed method is very flexible, since the final
wave function can also include a large number of separately optimized cluster fragments. The wave functions
obtained are very compact and highly accurate. Such wave functions can be used to compute various bound
state properties for different three-body systems. The proposed approach has been successfully tested on a large
number of actual systems. It is shown that the present approach can be used to solve various three-body
problems with, in principle, arbitrary precision. In particular, the long-standing problem of highly accurate
determination of the weakly bour(d,1) states in theddu anddtu muonic molecular ions has finally been
solved. The determined binding energies arel.974988088@5%x1071° eV and —0.66033874 1
X108 eV, respectively.
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In this study an advanced and variational approach is proand m,;,=min(m;,m,,ms)] are used. In this equation
posed and discussed. This approach can be used to determige g, ,q5 are the particle charges, white,,m,,m; are their
to high accuracy, the bound-state spectra for various thregnasses. The main goal of the present study is to determine
body systems. In fact, the proposed approach is found to b&yith high accuracythe bound states of the corresponding
very effective and quite simple in solving a large number OfSchr"cdinger equation i — E)W =0, whereH is the Hamil-
ggﬂzgzzgg’ dgt‘(ra?ri-i?lgg)cgnF;;Ot?:;mashpl)gihailgcﬁésgﬁy cr)l';grt]z nian andE< 0. Another goal is to perform highly accurate
Eomputations of various bound-state properties. To determine

than in other competing methods, and more important, thgwe bound-state energies and corresponding wave functions

accuracy can easily be increased. It should be mentionewe apply an improved version of the exponential variational
however, that highly accurate calculations are of great impor- PPy an impro ) P
Xpansion in relative coordinates,, rs;, andr,; (where

tance for many Coulomb three-body systems. For instancé s
to compute the hyperfine splitting in the helium-muonic at-fij=r;=|ri—r;|, for more details see, e.46]). Note, how-

oms one needs to determine the electron-nucleus argver, that the three relative coordinatgs, rs;, andr,; are
electron-muonic delta functions with a maximal absolute ernot really independent, since .4 —rjx/<rj=<ry+ri.,

ror less than X108 a.u.[1]. The total bound-state ener- where {,j,k)=(1,2,3). In general, this produces a few ad-
gies for such systems are400 a.u. It can be estimated ditional restrictions on possible values of nonlinear param-
from this that the required wave function must reproduce the&ters that can be used in actual variational wave functions
ground state energy with an absolute error less than  [1]. In fact, such relations between the nonlinear parameters
% 10 *® a.u. Only for such highly accurate wave functions, are needed to guarantee convergence of the corresponding
eight significant figures as required for the two mentionedntegrals in all matrix element6]. Obviously, in this case
delta functions, are stable. Also, the electron-positron andhe optimization of these nonlinear parameters in the expo-
nucleus-nucleus delta functions are very important for prehential variational expansion cannot be very effective.

dicting the corresponding annihilation rates in the Rsn To avoid this problem and increase the total efficiency of
and fusion rates in the muonic molecular ions, respectivelyhe exponential variational expansion in this study, the so-
(see, e.g[2—4]). Moreover, highly accurate nonrelativistic called mixed form of the basis functions is udédl In such
wave functions can be used to compute relativistic andt form the three perimetric coordinateg, u,, andus are
Q.E.D. corrections for some actual atoms and ions. In factised to represent the exponential part of each basis function.
this is the only way to compute these corrections, since thdhe angular, and other parts, of each basis function can be
alternative approach based on the Dirac equations cannot witten either in the relative coordinates or in perimetric Cco-

used directly for three-body systerteee, e.g.[5]). ordinates. The perimetric coordinates are simply related to
The nonrelativistic Hamiltonian for an arbitrary Coulomb the three relative coordinatess; = 3(ri +ri—rj), and
three-body system can be written in the form thereforey;; =u;+u;, where (,j,k)=(1,2,3). The perimet-
ric coordinates are truly independent, and each of them var-
He — 1 v2_ 1 v2_ 1 V2, 030> N Q3Q1+ 0201 ies from O to+ oo,
To2mp Y 2m, 2 2mg 3t ra1 o ' Thus, in the general case, the trial wave function for the

(L,M) bound state in an arbitrary three-body system is rep-
where the so-called quasiatomic units=1,e=1m,;,=1, resented in the form

1063-651X/2001/648)/0367046)/$20.00 64 036704-1 ©2001 The American Physical Society



ALEXEI M. FROLOV PHYSICAL REVIEW E 64 036704

1 R andq;g,>0 (for more details see, e.d6]). Note that, for
‘I’LMIE(1+ kP21) such systems our method, based on @g, does not make
use of the Born-Oppenheimer approximat{@n.

N L In general, the expansion E¢l) can be obtained by a
O Ciyf,f,l’/z(rgl,r32)¢i(r32,r31,r21) discretization of the Fouriefor Laplace-Fourief10]) inte-
=1 /=€ gral transform for the unknown wave function. Then, the
X exXp(— a;Uy — BiUs— ¥;Us) unknown values of the exact wave function at some quadra-
ture points(or lattice point$ are replaced by the linear varia-
X exp(18;uy+1eju,+1fug), (1) tional coefficientsC;, which do not depend upon the nonlin-

ear parameters in Eq(l). The general approach for
where C, are the linear (or variational parameters, 9generating variational expansion_s by using discretization of
ai, Bi, v, &, e, andf; are the nonlinear parameters, the different integral transformations can be fou_nc_{lﬂ.—
andi is the imaginary unit. The funCtiOnyf,%A’/z(rgl,rgz) 13] (se(_a also references t_her)enn general, the optimization
are the so-called SchwarfZ] or bipolar harmonicsl. is the of the linear parameteS; in Eq. @ cannot produce highly
) i ~ accurate wave functions unless the nonlinear parameters are
total angular momentum, arid is the eigenvalue of the,  \areq. In fact, only methods based on the optimization of
operator. An additional family of polynomlall-type functions e nonlinear parameters in E€L) can produce extremely
$i(ra2,r31,r21) can also be used in calculations to representccyrate wave functions. In particular, our present consider-
some interparticle correlations. The operagy is the per-  ation deals with such an optimization.
mutation of the identical particles in symmetric three-body |t should be mentioned that initially the so-called regular
systems, where= * 1, otherwisex=0. In the present study [14] and quasirandom choic¢$2] of the nonlinear param-
k=—1 for the triplet state of the helium atore=(—1)" eters in the exponential variational expansion were proposed
for the ppu andddu symmetric systems, and=0 for the  and used. Later, the quasirandom choice was applied to com-
dtu ion. Furthermore, in all present calculations it is as-pute the bound-state spectra in muonic molecular jdb%
sumed thatp;(rs,,rs1,ro) =1 fori=1,... N. This simple approach allows one to compute various bound
In general, by using the variational expansion Eg.one  states relatively quickly, but the final accuracy is not suffi-
can determine energy levels and variational wave functionsient for solving many actual problems. For our present pur-
for such systems with very high accuracy. Obviously, theposes, it is important to note that if the regular or quasi-
main problem is the optimal choice of the nonlinear param+andom choices of nonlinear parameters are used, then the
eters in Eq.1). To perform such an optimization in a very nonlinear parameters in E(l) are not real parameters in the
effective manner, presently we have developed a variationaimethod. They are usually called either the lattice points, or
multibox approach. This approach is essentially based on aguadrature points. In fact, in these cases a few nonlinear
optimal (or smar} choice of the nonlinear parameters in the parameters can be introduced for improving the overall effi-
exponential part basis functions E@.) [8]. Note that, the ciency of the method. For instance, if the nonlinear param-
use of perimetric coordinates in the exponents of 89, eters are chosen quasirandomly from ane 8—y box in
instead of the relative coordinates, significantly simplifies thethree-dimensional spader six-dimensional space for Eq.
partial (or complet¢ optimization of the nonlinear param- (1)], then by using some effective algorithms for optimiza-
eters. Indeed, the parameters,B;, andy; (i=1,... N) tion of the box parameters, one can accelerate the conver-
in Eq. (1) can be arbitrary positive numbers, while the pa-gence of the results. However, the final accuracy of this im-
rameterss; ,e;, and f;(i=1,... N) can be arbitrary real proved method is still not sufficient for some Coulomb three-
numbers. The simple conditiong;>0, 8;>0, and ;>0 body problems.
(i=1,... N) must be obeyed to guarantee convergence of To improve the final accuracy of Eql) significantly in
all integrals needed in computations. In fact, such a choice abur earlier work[6] another approach was proposed. To
nonlinear parameters, i.e., without any restriction, means thathoose the nonlinear parameters in Eb. we used a two-
one can now use very effective optimization procedures, andtage procedur¢6]. In fact, the first &y (or 3Ny) such
therefore significantly better optimize these parameters thaparameters have been optimized carefully by using some
was possible in our previous worksee, e.g.[6]). If the  very effective algorithms. Here and beloi, is the total
exponential variational expansion is written in relative coor-number of terms in the short-term or booster function, which
dinates, then some of the nonlinear parameters can be nega-significantly less than the total numbirof basis func-
tive. In earlier works(see, e.g.[6]), however, we could not tions used in calculations. In general, the first stage of our
use negative values for some of the nonlinear parametersethod[6] generates very compact and accurate booster
since their optimization can generate infinite expressions fowave functions. However, later it was found that the ap-
matrix elements. The negative nonlinear parameters are critproach in[6] has the two following disadvantaged) the
cally important in some cases for representing interparticlasecond stage of the method is not effective; &)cthe con-
correlations. In particular, negative nonlinear parameters arstruction of the highly accurate booster functions requires
really needed in highly accurate calculations of weaklyextensive computational resources. Inefficiency of the sec-
bound, excited and cluster states. Complex values for somend stage devaluates, in fact, the whole method. Indeed, it
of the nonlinear parameters in E@) are used to provide was observed that a better booster function does not always
high accuracy for adiabatic systems, where min(,)>m;  mean higher final accuracy. The reason is obvious, since the
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second stage function essentially repeats the corresponding o= (3] +l)\/§>>(A(k)_A(k))+A(k) )
booster function. In other words, the quasirandom choice of ' 2 ! Lo
the lattice pointsy;,B;,vi,6;,€;, andf;(i=1,... N) used

/L k k k
in the second stage of the procedure is far from an optimal Bi=((zi( +1)\/§>>(B(2 )_B(l ))+B(1)* 3
choice. An optimal choice must produce, in the general case,

the lowest finalvariationa) energy for a given booster func- yi={(3i(i+1) BN GY -G+ G, (4)

tion. The second disadvantage means that it takes a quite

long time for some systems to produce sufficiently accurat¢jere the symbol(- - -)) designates the fractional part of a
booster wave functions, but main point is that without suchreal number. Such a choice of the, B;, andy, parameters
an accurate booster function the whole two-stage metho the first(main) stage of the procedure. The total number of
cannot work successfully. actual nonlinear parameters used in this stage equals 18 (2
Initially, our goal was to improve the second stage of thex3x 3 for the considered three-box versjorin fact, for
method[6]. Also, we wanted to develop an independent pro-many Coulomb three-body systems the first stage already
cedure, which could be used independently and effectivelproduces very accurate results and the second stage is not
even in those cases when the highly accurate booster waveeded.
function is unknown. The initial improvement has been The second stage is essentially a scaling of the lattice
achieved by using the computerized version of the box optiPoints chosen in the first step. The scaling itself is performed
mization, and by applying the perimetric coordinates in theas follows. The families of the paramete#s, B;, andy,
exponents of Eq(1) [1]. Then it became clear that the use of (Which correspond to the sarkg are multiplied by the posi-
two, three, five, etc. different boxes, for choosing the latticeliVe factorsiy i, Ay, andAy s, respectively. Then, these
pointsa;, Bi, v, &, €, andf, in Eq.(1), produces sig- three parameters, ;, A¢,, and\ 3 are also varied. The

nificantly better variational energies. Finally, the approacHot@ number of such additional parameters equals nine (3

has been developed to perform high precision, variational* 3)- AlS0, one additional variational parameter is used to
erform a scaling for all lattice points in E(L). Finally, this

bound-state calculations for arbitrary three-body systemd’ -
y y sy ethod produces a properly balanced wave function that rep-

E_”efg’ |n. Og_r p;resae:cti f.aigpéoarzlr; a?gr:;lrl]r:)iaern ps;z?aertfr resents the considered bound state very accurately.
i Pis Yi» O Si : 9 N Note that, the high efficiency of our present strategy for

domly as in the older procedutsee, e.g.[15,16)), but now . > S .
. ) . choosing of the lattice points in E€L) is based on the fact
we are using a fewup to 10 different boxes. In fact, this that in Egs. (2—(4) any additional condition for the

means that we propose to use a multibound integration do: oy . (k K . . ) :
main for the original Fourier integral transform wave func- ﬁilk;f‘;z\()k’) o ‘G(ZA)(k)pf'XEE) S .Pr?t used. In. partlculafr, e|tr1]er
tion (see, e.g.[12]). The geometrical sizes and positions of 73 *=/12 ,(k())r W2 e same Is true for the
these boxes are optimized, i.e., they are the actual nonline&1 »B2”,G1”,G2” points. Furthermore, for anly the rela-
parameters of the method. Furthermore, there are also sorfie position of the interva A, A%Y] with respect to the
scaling parameters, which are optimized for each gtep intervals[A{™ 1 A%~ D] and[AfKT D, A%+ D] can be arbi-
each pagsof the procedure. These parameters are used tg@ary. This is also true for theB(lk),B(zk)] and[G(lk) ,G(zk)]
find a proper balance between different parts of the triaintervals. The results of calculations for different systems
function. Briefly, our present approach is a synthesis of thendicate clearly that such a freedom in choosing the lattice
quasirandom choice of the nonlinear parameters from ongoints is one of the main advantages of our present approach.
box (see, e.g.[16]) and multiscaling optimization of such |n fact, this allows the generation of extremely accurate
parameter$6]. variational wave functions for different systerteee results

Let us present the following simplified version of the pro- pelow).
cedure. The simplification means the use of the three-box Our present procedure can be modified eas”y to the case
version and restriction to a few scaling parameters. Furthefyhen the short ternfor boostey wave function is known. In
more, we shall assume that all exponents in @gare real.  this case the indekin Egs.(2)—(4) changes fronNy+1 to
In other words, all parametess, €, andf; in Eq.(1) equal N, HereN, is the number of basis functions in the booster
zero identically fori =1, ... N. In fact, these parameters are fynction, whileN is the total number of basis functions used.
really needed only for highly accurate calculations of theThe cases when three-, four- and many-cluster functions are
adiabatic(or close to themthree-body systems. Finally, the included in calculations can be considered in analogous man-
total number of nonlinear parameters in this version equalﬁer_ In any case, our presenﬂy devek)ped multibox approach
28. This version of the procedure has been used extensiveptoduces a variationally optimal, orthogonal complement to
in our present calculationésee below. The choice of the the original cluster wave function. In other words, by using
nonlinear parameters in E@l) proceeds as follows. Létbe  our present procedure one can obtain the kiesthe varia-
the number(or indexy of the basis function in Eq(l) (1  tional sensg correction to the wave function known from
<i=<N) and k=mod(,3)+1, where modi,3) designates separate computations. This is an obvious advantage of our
the modular divisior(i.e., an integer remainder after division present approach in comparison with the original method
of i by 3). Now, the parametera;, B;, andy; are chosen uysed in[6]. Indeed, now the use of a more accurate booster
from the three positive intervalpA¥,A%], [B,BY],  wave function does mean better final accuracy for the total
and[G{Y,G¥7: wave function.
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TABLE I. The total energie$E) of the “He atom[ 23S(L = 0)-statd in atomic units ,=1/=1,e=1) and for somel(, ) states in the
ppu, ddu, anddtu muonic molecular ions in muon-atomic unitsi(=1/4=1e=1).

N E[ “He; 2°S(L=0) statd E[ppu;(0,0) statg E[ddu;(0,0) staté

600 —2.175229 378 236 791 301 785 2 —0.494 368 202 488 828 302 7 —0.5311111354022815440
800 —2.175229 378 236 791 305 644 1 —0.494 368 202 489 242 294 2 —0.531 111135402 375706 6
1000 —2.175229 378 236 791 305 712 5 —0.494 368 202 489 311 905 9 —0.531111 135402384 1355
2000 —2.175229 378 236 791 305 737 7 —0.494 368 202 489 343 263 3 —0.531111 135402 386 302 8
2250 —2.175229 378 236 791 305 738 1 —0.494 368 202 489 344 591 5 —0.531111135402 386 3451
2500 —2.175 229 378 236 791 305 738 4 —0.494 368 202 489 345 469 4 —0.531111 135402 386 374 5

—2.175 229 378 236 791 301 74 —0.494 386 820 248 931 69 —0.531 111 135402 385 75

N E[dtu;(1,0) staté E[dduw;(1,1) staté E[dtu;(1,1) staté

600 —0.523 191 455 489 821 946 —0.473 686 7333490490 —0.48199 152 778 643 2
1000 —0.523 191 456 282 037 570 —0.473 686 733 827 595 5 —0.48 199 152 962 856 7
1700 —0.523 191 456 315 607 405 —0.473 686 7338422295 —0.48 199 152 995 582 9
1900 —0.523 191 456 315 772 556 —0.473 686 7338424475 —0.48 199 152 996 358 7
2100 —0.523 191 456 315 858 429 —0.473 686 733 842 550 7 —0.48 199 152 996 694 7
2300 —0.523 191 456 315 906 521 —0.473 686 733 842 606 2 —0.48 199 152 996 960 1
2500 —0.523 191 456 315927 175 —0.473 686 7338426371 —0.48 199 152 997 083 4
2700 —0.523 191 456 315937 144 —0.473 686 733 8426535 —0.48199 152997 1713

—0.5231914563027 —0.4736867338415 —0.481991528744

&The best variational results known from earlier calculations.

In the present study, the proposed method is applied to théeveloped inf6]. For the symmetric muonic ionspu and
helium atom with infinitely heavy nucleusr the “He atom,  ddu our presently used booster functions coincide exactly
for shory in its 23S state and to th@pu, ddu, anddty  with those functions used iii]. To illustrate the advantages
muonic molecular ions. To designate the bound states iaf our present approach we decided not to use any booster
muonic molecular ions, it is very convenient to use rotationakunction for all other considered systems, i.e., for thtS2
(L) and vibrational ¢) quantum numbers. Such d4.,0) state of the”He atom, for theddu ion in its excited(1,1)
classmcatlor_l scheme is _ based on _the adiabait  gtate and fodtu ion in its both(1,0) and(1,1) states.
moleculay picture for muonic molecular ions. However, all  The results of our present calculations are presented in
three particle masses in muonic molecular ONSt4p1as | and 1. Table | contains highly accurate energies for
PPu, pdu, ptu, ddu, diu, andtiy are quite compa- o g giate of théHe atom. The total number of basis

rable with each other, and therefore, the so-called ad'abatlffmctlons used in calculations varies from 600 up to 2700. In
approximation[9] cannot be applied successfully to these . . L
general the total energies presented in Table | are signifi-

ms. Neverthel h roxim lassification
systems. Nevertheless, the approximaie] classificatio cantly more accurate than analogous results known from pre-

scheme is very convenient for muonic molecular ions. In the”, ous calculations. A larae number of other bound-state pro
present study, we consider the symmetric muonic molecula\‘I u uiatl genu u prop

ions ppu andddy in their ground(0,0) states and the non- erties for the 3S state of the*He atom have been computed
symmetric iondtx in its (1,0) and (1,1) states, respectively. ea'rhe.r [1]. For most of thgse properties our pre;ent values
For theddy ion we also discuss th,1) state. Note that the Ccoincide almost exactly with the values determined I
(1,1 states are weakly bound states in bt and dtu Note only that our computed value for the electron-nucleus
ions (see, e.g.[16]). Highly accurate determination of such Cusp[19,20 (—1.99999999999681 a.u., fbr=2500) co-
states is very complicated, since it includes a large number dicides with the exact value{2.0 a.u.) in 12 significant
principal difficulties(see, e.g.[15]). In fact, the known en- figures. The corresponding value for the electron-nucleus
ergies of the(1,1) states for bothddu and dtu ions are  delta functions is 1.320 3550829303 a.u.
significantly less accurate than appropriate values obtained Variational energies for the muonic molecular ions
for other bound states in muonic molecular igag]. How-  ppw, dtw, and ddu can also be found in Table I. All
ever, such weakly bound states are of interest in some applenergies for these systems are presented in muon-atomic
cations(see, e.g.[18]). units (h=1e=1m,=1). The particle masses used in
For the ground states in thepu andddu ions, highly —our present calculations arem,=1836.152 70,
accurate calculations have been recently perforried  my=3670.483 01, m;=5496.921 58, and m,
Comparison of our present results with analogous results 206.768 268, [21]. In all cases optimization of the non-
from [1] seems to be very interesting. Note that the methodinear parameters has been performedNer600 basis func-
used in[1] is essentially a version of the two-stage strategytions. Note that the results obtained witl= 600 basis func-
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TABLE Il. The expectation valuegX;;) in muon atomic unitst, =1/ =1,e=1) of some properties for
the ground (0,0) states in thEpu and ddu muonic molecular ions. The notations 1 and 2 designate the
hydrogen nuclei, while 3 stands for the mugn ().

(Xij) PP ddu

(831) 0.131 500 862 0.158 738 97

(821 0.393 700 x 104 0.243 87X 10 °

(S320) 0.554 30104 0.4274x10°°

Vg —0.898 787 919 95 —0.946 671 449 2

2 —0.898 787 928 781 951 609 94 —0.946 671 431 052 228 77
Vo1 4.440 106 25 8.875 716

W, 4.440 122 200 669 269 058 32 8.875 837 564 471 088 95
g® (ev) —253.150 192 338 596 952 1 —325.070 689 006 603 665

&The exact values from Eq6).
®The binding energy. The conversion factor is 27.211 396, 1/(m,).

tions for such systems have comparable and even betterg., the nuclear-nuclear and three-particle delta functions
accuracy than our previous results frdi6,22 computed and two-particle cuspgl9]. The results for some of these
with N=1000 and 1200 basis functions. However, it may beexpectation values for thepu andddu ions[ground(0,0)
more important to note that in contrast with the original two- state$ are presented in Table Il. They include expectation
stage approacl6], the presently performed optimization sig- values for the delta functions’¢;, &,;, andéds,;) and cusps
nificantly improves the overall accuracy of the wave func-(v3; and v,;). Here and in Table Il the notations 1 and 2
tions with total number of basis functiomé= 600. designate the hydrogen nucley or d), while 3 means the
Table | also includes the best variational results known fomegatively charged muonu("). A large number of other ex-
the corresponding systems from earlier calculatidsse pectation values for these systems can be fourj@2h The
[1,16]). In fact, the results of our present calculatideser-  two-body cusp is determined in a traditional manfid]:
gies and bound-state propenidsr all considered muonic

molecular systems have significantly better accuracy than re- d

sults known from earlier calculatio®3]. In general, the <5(rii)'?>

accuracy of our present variational calculations for muonic vij :W 5)
molecular ions is quite comparable to the accuracy of the g

best atomic computations. In particulgr, by using our Presy here 5.=5(r;)) is the appropriate Dirad function and
ently developed approach we can finally solve the long- . ! ! _

standing problem of highly accurate determination of the(i})=(32), (31), and (21). The exacor predicted value
weakly bound(1,1) states in theldu anddtu muonic mo-  of the two-body cuspy;; equals[20]

lecular ions. Indeed, by using the results presented in Table |

one can easily evaluate the binding energies for the weakly — m;m;

bound (1,1) states in theddu and dtu muonic molecular Vij = did; m+m;’ ©)
ions as follows:

where g; and g; are the charges andy and m; are the

e(ddu)=—1.97498808865x10 1© eV, masses of thé andj particles {#j=1,2,3). Obviously, for
the considged _symmetric systemig(ray) ) =(8(rs») ), va1
e(dtu)=-0.660338741x107° eV, =vs3,, and v3;=v3,. In general, the coincidence between

the predicted and computed two-particle cusp values indi-
where the conversion factor 27.211 396, (/m,) has been cates the quality of the wave functions. For the systems pre-
used. In other words, these weakly bound states are nogented in Table Il such a coincidence is very good.
known with the absolute error less thank@0 ® K and Thus, in the present study, the advanced, multibox varia-
3.7X10°° K, respectively. Here, the conversion factor is tional approach has been proposed to perform highly-
11604.448 K(eV) 1. Finally, these energy levels have accurate, variational, bound-state calculations for three-body
been determined with accuracy that is obviously sufficientsystems. The proposed approach is found to be very flexible,
for future experiments. The comparison of energies fronsince the final variational wave function can also include a
Table | with the results obtained ifil5] shows amazing large number of separately optimized cluster fragments. This
progress relative to the 1985 level of computationalversion of the method can be called the improved two-stage
technology. strategy| 6]. The very high efficiency of our present approach
The highly accurate wave functions can be used to deteiis based on an optimal and simple choice of nonlinear pa-
mine the expectation values of many bound-state propertiesameters in the trial wave functions. The nonlinear param-
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eters are chosen quasirandomly from th¢akso from five, that our present universal approach can be used to solve vari-
seven, ten, etcdifferent and optimized boxes. The approachous three-body problems with, in principle, arbitrary preci-
has been tested for a large number of quite complicatedion.

three-body systems. It was found that this approach works

very effectively and surprisingly well for all such systems. In

fact, we can say briefly that this method for highly accurate It is a pleasure to thank Mark M. Cassar for valuable help
three-body calculations has been developed and successfuliynd the Natural Sciences and Engineering Research Council
tested for a large number of three-body systems. Note alsof Canada for financial support.
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