PHYSICAL REVIEW E, VOLUME 64, 036620
Lorentz-invariant superluminal tunneling
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It is shown that superluminal optical signaling is possible without violating Lorentz invariance and causality
via tunneling through photonic band gaps in inhomogeneous dielectrics of a special kind.
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[. INTRODUCTION Schralinger evolution used is characteristically nonrelativis-
tic whereas the optical processes in question are intrinsically
A number of recent experiments have reported the obserelativistic, and(b) the Helmholtz function for the electric
vation of electromagnetic waves propagating with velocitiesfield is real whereas the Sclinger wave function is com-
larger thanc (the velocity of light in vacuumin dispersive ~ Plex. It would therefore be preferable to use a reliable and
media[1], waveguide$2], electronic circuit§3], and in tun- ~ consistent quantum mechanical formalism for photons.
neling [4]. The experimenters have been quick to point out Fortunately, such a formalism exidig], and is based on
that these observations do not necessarily contradict the spée classic works of Kemmé®] and Harish-Chandrgl0].
cial theory of relativity and causality. These claims haveln this formalism, the wave function for the photon, which
naturally generated a controversy in the literature. obeys a first-order equation similar to the Dirac equation, is a
In the case of dispersive propagation the claim is in apien'component column whose first six E|emdm electric
parent Contradiction With the pioneering Work of Sommer_and magnetic field Strengt}]al’e real functions and the last
feld and Brillouin[5] who clearly showed the difference be- four are zero, and there is a conserved four_—vector current
tween group Veiocity, phase Veiocity' and Signai frontaSSOC|ated with energy f|OW|0t Charge flow as in the famil-
velocity, and established the result that no physical signal cal@’ case of charged particles with a complex wave fungtion
travel faster thare in dispersive media. However, it has re- Whose time component is positive definite and can be inter-
cently been argued that for physical signals that are of finitdreted as a probability density. The phase of such a wave
duration the causality principle “cause precedes effect” isfunction is obviously not expressible as a multiplicative ex-
preserved despite superluminal motion. This is because a s@onential factor but is rather given in the same way as in
perluminal signal traveling backward in time can never ar-classical electrodynamics through an additive term in the
rive before the primary Signai is generated, thus preventinéinUSOidal function for the fields. The Signal VE|OCity can be
the original user changing the transmitted sigig! calculated in this formalism unambiguously from the energy
In the case of frustrated total internal reflecti@TIR)  flux vector that turns out to be proportional to the Poynting
and tunneling, the situation is quite different. It has beerVector, as one would expect. . _
argued that in such cases the wave number is imaginary, the It is the purpose of this paper to show, using this formal-
phase is a constant, and the concept of a signal front is mealfM, that Einstein causal electromagnetic sigrais indeed
ingless[6]. Further, it has been pointed out that if the signaltravel faster thar while tunneling through a photonic band
is narrow-band limited, there is no distortion of the signal9ap provided that the dielectric in the gap is inhomogeneous
envelope and its delay is the same as that of its center gind (practically nondispersive. The same result will be
gravity [7]. Since the evanesceriexponentially damped Shown to hold for classical light.
component of a wave does not oscillate with distance, it does
not accumulate any phase and can therefore propagaﬁe
through the evanescent region with z¢pbase delay. It has '
been argued that there is empirical evidence of this in, for et us consider the usual tunneling problem with a thin
example, symmetrical FTIR in which there is no time lag nonmagnetic, practically non-absorptive material with a band
between the reflected and tunneled sigh@]sHowever, it is gap around the frequenay, extending fromx=0 to x=d
not quite clear how a zero phase delay necessarily implies gnd the signal incident normally on it so that there is no
zero signal delay. dispersion. It is essentially a two-dimensional problém
One source of confusion in the literature, in our OpiniOI’l,the X-y p|ane expressib|e in terms of a Sing|e component of
is the popular use of an analogy between the Helmholtz anghe electric or magnetic fieldL2]. We will consider the case
Schralinger equations. Since Maxwell’s equations in an in-of electric polarization withtH,=H,=0E,= E,=0, andu
homogeneous but isotropic medium reduce to the Helmholtz= 0 ¢= ¢(x), e,=1. The same result will hold for magnetic
equation for a monochromatic wave in the scalar approximapolarization also. Then Maxwell's equations can be written
tion, and the Helmholtz and theonrelativistic Schralinger i the rest frame of the dielectric material in the form
equations are formally identical, the one-dimensional process
of nonrelativistic quantum mechanical tunneling has been
used to model the optical process of transmission through a O E.=0. 0.E :E& H )
barrier[6]. This is obviously unsatisfactory, because the ymze s Xz o Ty
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€(X) of the nonrelativistic Schidinger equation such solutions are
dHy=0,  dhHy=——dE,, (2)  obtained when the function correspondingeix), namely,
[E—V(X)], becomes negative. This is not possible in elec-
trodynamics because(x) is never negative. However, it is
5 e(x) , T . . .
P2E,— —=9°E,=0, (3)  significant that a general tunneling solution can still be

X c? found, and is given by
) ) ex) , iy 1y ~172 |
GPHy+ IZHy+[ 9 In e(x)]oHy——d2H,=0.  (4) E,(x,)=[x(x)]" "4 crex Kk(X)dx+ wt
c 0
Let us first assume that the time variation of the electric and +Cyex fo(X)dX_ wt|}, (12)
magnetic fields is given by expiwt), and use the ansatz

E,(x,y)=Y(X)U(y). Then it is easy to show that
with k(x) = w+e(—ix)/c a real, positive functiof13]. This

U(y)=pBe"(?/0, (5) s clearly a solution of the wave equation
where 8 and a are constants. It follows from Ed1) that —ix)
a=0, and so we have P2EI- e(_atZEg:o (13
2 L
E,=BY(x)e ', (6)

i which is Lorentz invariant as long ag—ix) is a real, posi-
_Ficg dY(x) ptiot (77  live Lorentz scalar function. That is guaranteed(, 1) is a
Y 0} dx ’ real, positive definite function of the Lorentz invariant vari-
able x*—c?t?) in an arbitrary inertial frame. We will there-
This shows that the magnetic field, is completely deter-  fore restrict our discussions to such cases only.

mined by the electric fiel&,. It also follows from Eqs(1) Notice that the tunneling solutiafl2) is a mapping of the
and(2) that oscillating solution(11) by
dY(x) X——iX, t——it. 14)
i ?J e(X)Y(x)dx, (8) (
Maxwell's equations in vacuo are invariant under this map-
or, ping. Maxwell's equations in an inhomogeneous dielectric
[Egs. (1)—(4)] are also invariant provided(—ix)= e(x).
d2Y(x) w? But that is certainly not the most general case. Assuming that
WﬂL gf(X)Y(X)=0- (9)  €(x) is an analytic function, one can express it as a Taylor

series arounck=0,
An approximate solution to this Eq9) is given by

§ e(X)=€p+ > apx", (15

Y(x)w[k(x)]l’z{ Cy exp[—i fo k(x)dx "

with the sum positive definitgs]. Thuse(—ix) will be com-
plex in general. But, since Ixe(—ix) will give rise to
’ (10 oscillating terms in Eq(12), and since the material is as-
sumed to have a band gap aroundit must vanish. Max-
wherek=\e(x)w/c, ¢, andc, are arbitrary constants, and Well's equations then get mapped on to equations, such as
we have assumed that the Changee(p() over one wave- EQ. (13), that are still Lorentz invariant and therefore accept-
length (2m/k) is sufficiently small compared tde(x)|  able. It is clear from Eq(13) that the propagation will
(WKB approximation. This gives the usual oscillating solu- be superluminal provided(—ix)<eg(=1). This is pos-

+cCy exp{i J' k(x)dx

tion of E,(x,t), sible, for example, if the dielectric functiore(—ix)
=(1+2,a,x")<1 with n such that Iy/e(—ix)=0 and

E,(x t)~[k(x)]-1/2{c exp[—i(ka(x)dx—wtﬂ Znanx"<0. o
2 1 0 An immediate consequence of the mappiig) is that

tin’zlezlikezintervéells 2a;e mapped on to spacelike intervals
[ (cte—x%)—(x—c“t?). Consequently, ife(—ix)<1, all
tC2 exr{l( fo k() dx— wt) ] (1D causally related events get connected by superluminal sig-
nals Conversely, it is straightforward to see that superlumi-
Since the dielectric has a band gap around the frequency nal signals ¢ >c) imply the mapping(14), because
these oscillating solutions cannot propagate through it. One
has to look for exponential or tunneling solutions. In the case  x'= (x—vt)/J1—v%c?= —i(x—vt)/Jv2c?—1,
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t'=(t—ovx/c?)/1—vZ/c?= —i(t—vx/c?)/\Jv2c?—1. mechanical wave function with constraints that reduce the
(16) degrees of freedom to two. For the tunneling problem, the

number of degrees of freedom is further reduced to one, as
This is remarkable and important for the interpretation of thewe have already seen. Let the incident finite duration signal
experiments showing superluminal tunneling—they do nobe represented by the electric fiel@@mponents of the ten-
contradict Lorentz invariance and causality. dimensional(2D) unnormalized photon wave functiop,

It is instructive to look at the difference between superlu-vide Appendix A
minal optical tunneling and tunneling of massive particles.

While tunneling, the energy and momentum of massive rela- El :j dk A(k)cog kx— wt— ¢) — \/ﬁf dk A(k)

tivistic particles are imaginary, as one can easily verify by z

applying the energy and momentum operators on their wave
function. Thus, the relativistic relatids?= p?c?+ mac* gets
mapped on toE?=p2c?—mjc*, implying tachyons. This 1 .
does not happen for massless bosons. Nevertheless, as we Ed=6(t)—=C ex;{—J k(X)dX+ wgt
have seen above, tunneling solutions in electrodynamics are VK(X 0

also superluminal.

It is often asserted that according to the special principle for  O<x=<d, (18
of relativity the maximum velocity that a physical signal can
have is the velocity of light in vacuum. If that is correct, Ef=6(t—7) \/ff dk A(k)cog k(x—d)— w(t—7)+ x]
then the special relativity principle would rule out the possi-
bility of dielectric materials of the kind discussed above. for x=d, (19
That would imply that somehow only dielectrics with the
propertye(—ix) = e(x) can exist physically. Whereas that is where A(k)=(1/\2mo?)exd —(k—ky)%25?] is real and
not impossible, we find it hard to believe that such a demony* A(k)dk=1, [*_kA(k)dk=k,, R andT are the reflec-
stration can indeed be given. On the other hand, if one retion and transmission coefficients,k=w/c, (x)

stricts oneself to the assumptions actually made by Einstein. koe(—ix), 7 is the tunneling or dwell time, ané(t) is
namely the postulate of relativity of uniform motion coupled the step function(Note that there is no term representing a
with the postulate that the velocity of light is independent ofeflected wave function within the tunneling region because
the motion of the light source, one need to only insist onye are not considering a steady state situation or times
Lorentz invariance as a necessary condition for a physicak - ) Accordingly, the dielectric medium is at reéin the
law [14]. That would leave open the possibility of dielectrics sense of being free of any disturbanbeforet=0 and there

of the kind that would make superluminal yet causal signal§s no emerging signal at=d beforet=r. By matching the

X cogkx+wt+¢) for x=<0, (17

possible in tunneling modes. _ _ wave functions smoothly at the boundary: 0, t=0, we get
Interestingly, the dielectrics chosen in the tunneling ex-

perimentg 4] all had variable layers of dielectrics and were C=k(0)(1— \/ﬁ)cosqg, (20)

practically dispersion-free. Now, it is well known that cau-

sality and dispersion relations are intimately relaféd)]. It x(0) (1— \/ﬁ)

follows from these dispersion relations that the real part of tang= - (22)

the refractive index must vanish for a purely nondispersive Ko (1+ \/ﬁ)

material. Hence the velocity of propagatiarin of light

through such a material has no upper limit. The problem is tdience,

produce such materials. The trick is to prepare a medium in

such a way that it is inhomogeneous with alternative thin _ Vk(0)(1-VR)cos¢ X
layers of high and low refractive indices, that are all ~ Ez— (D) TR0 ex _fo K(X)dX+ wot
greater than unityr(;>1) so that it acquires a photonic band (22)
gap. Then the evanescent wave sees a refractive irdex

as we have seen, and so propagates superluminally witholthe magnetic field in the tunneling region is determined by
changing shape. the analog of Eq(7) for the tunneling case and is given by

Cc
IIl. QUANTUM MECHANICAL FORMULATION OF HS: o(t) —aXEg. (23
OPTICAL TUNNELING ®o

We will now show how to give a purely quantum me- Therefore, we havéin the WKB approximation
chanical formulation of this superluminal tunneling behavior.
For this we need to use a consistent quantum mechanical d_ _ 7oN (1 Iy <
formulation of massless electrodynamics using the Hy OV (0)(1 \/ﬁ) x(x)cosé o
Kemmer—Harish-Chandra formaligr@], outlined in the Ap- .
pendices. It is clear from this formalism that the classical XeXF{—j Kk(X)dX+ wqt

. 24
Maxwell fields are components of a ten-component quantum 0 24
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Matching the wave functions at the other boundaryd,t

=7 gives
~ Vk(0)(1—-JR)cos¢ d
JT= NP secy ex;{—fo Kk(X)dX+ wgT

(29

PHYSICAL REVIEW E64 036620

d ad®
=t 3 82

which is always less than the time for passage through
vacuum. This superluminal effect will be further accentuated
if one includes higher order terms inin the expansion of
JVe(—ix) because of the conditiol,a,x"<0 stated above.

Further, matching the derivatives of the wave functions at |f one uses the de Broglie-Bohm guidance conditigh

this boundary, one has

k(d)
ko

tany=

The velocity operator in this formalism is the XQ0 ma-

trix vBy=[c/Ve(—ix)]1(BoByx— BxBo). Thus the Poynting

vector can now be calculated, and is given(bge Appendix

A)

St=moc®y By

= —CEJHY

2
— 0(t) k(0)(1— Jﬁ)zcos%zc—%

Xex;{ —2( fo(x)dx— wot)
0

The energy density is given Hgee Appendix A

1
5d=§l//T7¢
1 ; d2 d2
=§[e(—|x)EZ +Hy7]
CZ
= 6(t)k(0)(1— VR)? cog ¢ — «(X)
2wg

Xex;{ —2( fxx(x)dx— wot)
0

(26)

(27)

(28)

=dx/dt, one again obtains the same result forThese re-
sults confirm that the energy and so the physical signal in-
deed propagates superluminally while tunneling.

IV. CONCLUSIONS

In conclusion we would like to emphasize precisely the
significant result that we have obtained. Since there has been
much discussion and some controversy in the literature re-
garding superluminal effects and their causality, let us sum-
marize the situation as we see it.

The materials used for observing superluminal effects
have been generally termed “ultrarefractivgl’s]. Near the
edges of a transmission gap the effective permittivity can
become close to zero. Consequently, surprising effects can be
observed on light transmitted and reflected by such materials,
such as superluminal velocities as well as enlargement and
splitting of the transmitted beam.

In one type of process the effects are results of anomalous
dispersion, i.e., anomalous variation of the permittivity with
wavelength. Although the 1914 analysis of Sommerfeld and
Brillouin clearly established that superluminality in such
cases cannot be Einstein causal and is only apparent, it has
recently been argued that this need not be the case for physi-
cal signals that are of finite duration and extent because a
responsive signal traveling backward in time in such a case
cannot arrive before the primary signal is generated, thus
preserving the causality principlg]. Our paper does not
deal with this type of phenomena.

The second type of process involves tunneling in @re
two) dimensions through a narrow band gap, and it is only
this type of phenomena (1D tunnelinthat we have ad-
dressed. The theoretical discussions of such phenomena have
so far been based purely on an analogy between the nonrel-

One can therefore calculate the velocity of energy transporgtivistic Schralinger equation and the Helmholtz equation

pao>x__ ¢
“ed Je(—ix)

(29

It follows from this that the tunneling time is given by

which implies

d
f k(X)dX— wer=0.
0

In a hypothetical model in whick'e(—ix)=1—ax?,

(30

(31)

leading to an effective refractive index(x,y,z)={2m[E
—V(x,y,2) [}¥%c/hw, which is imaginary in any region
whereE<V [4,16]. This mechanism is, in reality, not appli-
cable to photons, as we have mentioned earlier and as Chiao
and Steinberg admit in their review articf&6]. To take a
definite stand on an issue such as superluminal propagation
and causality, analogies are not reliable in our opinion, and
one must use a proper theory, namely a consistent relativistic
guantum mechanical formalism for photof8]. We have
used this formalism to carry out explicit calculations for the
tunneling of a finite width photon wave packet incident nor-
mally on a 1D photonic barriefNote that in this sense also
our result is different because total internal reflection in op-
tics occurs only fononzerocritical angles of incidencgOur
analysis clearly shows that genuine Einstein causal superlu-
minal propagation can occur only if the tunneling medium
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is inho_mogeneogs on the_scale of the wavelength angyhere,=g,B8,— B:8o. Multiplying Eq. (A1) by 1— 83, one
Im e(—ix)=0. This follows simply and very generally from gptains the first class constraint

the fact that points on the light cone remain on the light cone
under the mapping14) that takes propagating solutions to
tunneling solutions. Therefore, the only way to get genuine
superluminal signals is to have an inhomogeneous dielectric . . - 2 -
function e(x)>1 that is mapped toe(—ix)<1 with It |mpJ|es the conditions divB —(mgc/h)A, and B
Ime(—ix)=0 to ensure Lorentz invariance of the wave =curl A if one takes

equation(13). This argument obviously holds for both clas-

sical and quantum light, and is consistent with dispersion yT=(1/\ymyc?)(—Dy,—D,,—D,,By,By,B,,—MpA,,
relations and causalityl1].

Such materials have been used in actual experiments —MoAy, —MpA; . MAg). (AS)
[16,17]. They involve tunneling at near normal incidence ) ) )
through band gaps excited in periodic dielectric structuresTne reader is referred to R¢8] for further discussions re-
These band gaps arise from Bragg reflections, from the pedarding the significance of this constraint. = .
riodic structure, leading to an evanescent decay of the wave !f one multiplies Eq.(A3) by ¢ from the left, its Hermit-
amplitude when the frequency is within the forbidden band@n conjugate byy from the right and adds the resultant
gap at the first Brillouin zone. It should be noted that suchequations, one obtains the continuity equation
periodic structures areondispersiveso that the tunneling

i3 850 = —moC(1— B3) . (A4)

wave packets that are tuned to midgap remain essentially J( zp*w) -
undistorted upon transmission through the barrier, though Jt iPi
much attenuated in amplitudé&s6].
This can be written in the form
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support to carry out this work. where

APPENDIX A B o

®,uv_ —MeC w(ﬁuﬂv—}_ﬁuﬂ;;_g,uv)wv (A8)
Until recently, no consistent quantum mechanical formal-

ism existed for relativistic bosons below the threshold for(with E: W’?oﬂ?o=2,33—1,773= 1) is the symmetric

pair prOdUCtion and annihilation. Relativistic quantum mE'energy_momentum tensor, and

chanics can only be consistently formulated provided there

exists a conserved four-vector current whose time compo- _ 2.1

nent, to be identified with the probability density, is positi\lloe Bo0= ~Moc™y/ §=0. (A9)

definite. Unfortunately, the conserved charge vector curren{-hus' it is possible to define a wave functios

for relativistic spin zero and spin one bosons does not have : _ T
. : = \/moC%/Ey (with E=— [@4,dV) such thate'¢ is non-
this property. Moreover, the charge current vanishes for neuﬁegat(i)ve anwd normalized ag& c?;)n be interpreted as a prob-

tral particles like the photon. However, it has now been_, . ; i L
’ . ~ability density. The conserved probability current density is
shown[8] that a conserved four-vector current with a posi- y Y P y y

__ (T 1T
tive definite time component does exist for relativistic S»= @#O/E_(‘f’ ¢'_ b'Bid). . .
bosons, and is associated, not with the charge current but, NOtice that according to the equation of motics), the
with the flow of energy. This formulation is based on the velocity operator for massive bosonscis; .

first-order Kemmer equatiof®] The theory of massless spin zero and spin one bosons
cannot be obtained simply by taking the linmit, going to
(i B,0"+meCc) =0, (A1) zero because of the\iﬁo factor in . One has to start with

the equatiorj10]
where the matriceg satisfy the algebra
ihB,0" g+ meCcyy=0, (A10)

IB,U,BVB)\+B)\BVB/'L:B,U,9V)\+B)\9VM' (AZ) X . Lo . .
wherey is a matrix that satisfies the following conditions:
The (5% 5)-dimensional representation of these matrices de-
scribes spin zero bosons and the X1I®)-dimensional rep- Y=, (A11)
resentation describes spin one bosons. Multiplying (B4,

b , one obtains the Schdinger form of the equation
Y Fo 9 a VBt Buy=PB,- (A12)

L0 - 2 This equation can be derived from the gauge invariant La-
g =L 1ACBig—moC"Bol, (A3) grangian density
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ih — _ MoC—
L= = [P UyB = UB YY1+ — iy
(A13)

Multiplying Eq. (A10) from the left by 1- v, one obtains

Bud*(y¥)=0. (A14)

Multiplying Eq. (A10) from the left by g, 83", one also
obtains

BB ) =3, (vih). (A15)
It follows from Egs.(A14) and (A15) that
H(yy)=0 (A16)
which shows thatys describes massless bosons.
The Schrdinger form of the equation
J ~
i1 22— incBayw) (A17)
and the associated first class constraint
1718 B -+ Moc(1— BG) yih=0 (A18)

follow by multiplying (A10) by By and 1— ,83, respectively.
Equation (A17) implies the Maxwell equations curkE
—(ulc)dH and curlH= (e/c) 4,E if

y¢"=(1\myc?)(—D,,—Dy,—D,,B,By,B, ,o,o,((),AQl.g)

The constrainA18) implies the relations divEO and B
=curlA. The symmetrical energy-momentum tensor is

MoC?—
®MV:_T¢(BMBV+BVﬁM_gMV)7¢ (AZO)

and so the energy density

E= _®00:

mec® . 1 .. ..
5 lyp=5[EE+BE] (A2

is positive definite. The rest of the arguments are analogous

to the massive case.

The Bohmian three velocity; for massless bosons can be

defined by

V=

Y yBiyy
C———.

A22
Py (A2

Notice that in relativistic quantum mechanics the Bohmian
velocity is not defined through the gradient of the phase as in
nonrelativistic quantum mechanics but in terms of the energy

flux current.

PHYSICAL REVIEW E64 036620

Neutral massless vector bosons are very special in quan-
tum mechanics. Their wave function is real, and so their
charge current , = l,bTB#yl,// vanishes. However, their prob-
ability current densitys,, does not vanish. Furthermore, the
Poynting vector turns out to be given by

S=moc®yTyBiyp=c[EXH];. (A23)

One might wonder about the significance of the mass pa-
rameterm, for massless electrodynamics. It is necessary for
a consistent quantum mechanical formalism for dimensional
reasons and drops out of all physical results because of the
operatory. It can be altogether eliminated in favor of the
intrinsic parameters in the theory, namely:, the frequency
, and the spin multiplicitys.

The representations of the Kemmer-Duffin-Petfauna-
trices used in this paper are given in Appendix B.

APPENDIX B

000.000.000 .-1
000.00 0.000 . O
000.000.000 . O
000.000 00O . O
0 00.00 0.00-1. 0

igj=| 0 0o0.00 0.010 . 0 [,
000.000.000 . O
000.00 1.000 . O
000.0-10.000 . O

-100.0 O O.0O0 O . O

000.000.000. O
000.000 .0 00.-1
000.000 .000. O
000.000 .001. O
000.000.000. O

ig,=|0o 0o o.00 0 .-100. 0 |,
000.00-1.000.0
000.000.000. O
000.100.000. 0
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00 O 0 00.0 O O. O
00 o . 0 00.0 O O. O
oo o . 0 00.0 O O.-1
oo o . 0 00.0-120. 0
00 O . O 0.1 0 0. O
iBg=[00 O . 0 0O0.0 0O O. O ,
00 O 0 10.0 0 O. O
00 O -100.0 O 0. O
00 O 0 00.0 O O. O
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.—i 0 0 . O
-i 0 .0

o
o
o
o
o
o
o
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