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Lorentz-invariant superluminal tunneling
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It is shown that superluminal optical signaling is possible without violating Lorentz invariance and causality
via tunneling through photonic band gaps in inhomogeneous dielectrics of a special kind.

DOI: 10.1103/PhysRevE.64.036620 PACS number~s!: 42.70.Qs, 42.65.2k
se
ie

u
sp
ve

ap
er
-
n
ca
e-
nit

is
s

ar
tin

e
, t
ea
a
a
r

oe
g

fo
ag

es

n
an
in
ol

a

e
e
h

is-
ally

nd

h
is a

t
rent
-
on
ter-
ave
x-
in

the
be
gy
ng

al-

d
ous
e

in
nd

no

of

c
en
I. INTRODUCTION

A number of recent experiments have reported the ob
vation of electromagnetic waves propagating with velocit
larger thanc ~the velocity of light in vacuum! in dispersive
media@1#, waveguides@2#, electronic circuits@3#, and in tun-
neling @4#. The experimenters have been quick to point o
that these observations do not necessarily contradict the
cial theory of relativity and causality. These claims ha
naturally generated a controversy in the literature.

In the case of dispersive propagation the claim is in
parent contradiction with the pioneering work of Somm
feld and Brillouin@5# who clearly showed the difference be
tween group velocity, phase velocity, and signal fro
velocity, and established the result that no physical signal
travel faster thanc in dispersive media. However, it has r
cently been argued that for physical signals that are of fi
duration the causality principle ‘‘cause precedes effect’’
preserved despite superluminal motion. This is because a
perluminal signal traveling backward in time can never
rive before the primary signal is generated, thus preven
the original user changing the transmitted signal@6#.

In the case of frustrated total internal reflection~FTIR!
and tunneling, the situation is quite different. It has be
argued that in such cases the wave number is imaginary
phase is a constant, and the concept of a signal front is m
ingless@6#. Further, it has been pointed out that if the sign
is narrow-band limited, there is no distortion of the sign
envelope and its delay is the same as that of its cente
gravity @7#. Since the evanescent~exponentially damped!
component of a wave does not oscillate with distance, it d
not accumulate any phase and can therefore propa
through the evanescent region with zero~phase! delay. It has
been argued that there is empirical evidence of this in,
example, symmetrical FTIR in which there is no time l
between the reflected and tunneled signals@6#. However, it is
not quite clear how a zero phase delay necessarily impli
zero signal delay.

One source of confusion in the literature, in our opinio
is the popular use of an analogy between the Helmholtz
Schrödinger equations. Since Maxwell’s equations in an
homogeneous but isotropic medium reduce to the Helmh
equation for a monochromatic wave in the scalar approxim
tion, and the Helmholtz and thenonrelativisticSchrödinger
equations are formally identical, the one-dimensional proc
of nonrelativistic quantum mechanical tunneling has be
used to model the optical process of transmission throug
barrier @6#. This is obviously unsatisfactory, because~a! the
1063-651X/2001/64~3!/036620~7!/$20.00 64 0366
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Schrödinger evolution used is characteristically nonrelativ
tic whereas the optical processes in question are intrinsic
relativistic, and~b! the Helmholtz function for the electric
field is real whereas the Schro¨dinger wave function is com-
plex. It would therefore be preferable to use a reliable a
consistent quantum mechanical formalism for photons.

Fortunately, such a formalism exists@8#, and is based on
the classic works of Kemmer@9# and Harish-Chandra@10#.
In this formalism, the wave function for the photon, whic
obeys a first-order equation similar to the Dirac equation,
ten-component column whose first six elements~the electric
and magnetic field strengths! are real functions and the las
four are zero, and there is a conserved four-vector cur
associated with energy flow~not charge flow as in the famil
iar case of charged particles with a complex wave functi!
whose time component is positive definite and can be in
preted as a probability density. The phase of such a w
function is obviously not expressible as a multiplicative e
ponential factor but is rather given in the same way as
classical electrodynamics through an additive term in
sinusoidal function for the fields. The signal velocity can
calculated in this formalism unambiguously from the ener
flux vector that turns out to be proportional to the Poynti
vector, as one would expect.

It is the purpose of this paper to show, using this form
ism, that Einstein causal electromagnetic signalscan indeed
travel faster thanc while tunneling through a photonic ban
gap provided that the dielectric in the gap is inhomogene
and ~practically! nondispersive. The same result will b
shown to hold for classical light.

II. THE TUNNELING SOLUTION IN ELECTRODYNAMICS

Let us consider the usual tunneling problem with a th
nonmagnetic, practically non-absorptive material with a ba
gap around the frequencyv, extending fromx50 to x5d
and the signal incident normally on it so that there is
dispersion. It is essentially a two-dimensional problem~in
thex-y plane! expressible in terms of a single component
the electric or magnetic field@12#. We will consider the case
of electric polarization withHx5Hz50,Ex5Ey50, andm
50,e5e(x), e051. The same result will hold for magneti
polarization also. Then Maxwell’s equations can be writt
in the rest frame of the dielectric material in the form

]yEz50, ]xEz5
1

c
] tHy , ~1!
©2001 The American Physical Society20-1
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]zHy50, ]xHy5
e~x!

c
] tEz , ~2!

]x
2Ez2

e~x!

c2
] t

2Ez50, ~3!

]x
2Hy1]y

2Hy1@]x ln e~x!#]xHy2
e~x!

c2
] t

2Hy50. ~4!

Let us first assume that the time variation of the electric a
magnetic fields is given by exp(6ivt), and use the ansat
Ez(x,y)5Y(x)U(y). Then it is easy to show that

U~y!5be6 i ~v/c!ay, ~5!

whereb and a are constants. It follows from Eq.~1! that
a50, and so we have

Ez5bY~x!e6 ivt, ~6!

Hy5
7 icb

v

dY~x!

dx
e6 ivt. ~7!

This shows that the magnetic fieldHy is completely deter-
mined by the electric fieldEz . It also follows from Eqs.~1!
and ~2! that

dY~x!

dx
52

v2

c2 E e~x!Y~x!dx, ~8!

or,

d2Y~x!

dx2
1

v2

c2
e~x!Y~x!50. ~9!

An approximate solution to this Eq.~9! is given by

Y~x!'@k~x!#21/2H c1 expF2 i E
0

x

k~x!dxG
1c2 expF i E k~x!dxG J , ~10!

wherek5Ae(x)v/c, c1 andc2 are arbitrary constants, an
we have assumed that the change ine(x) over one wave-
length (2p/k) is sufficiently small compared toue(x)u
~WKB approximation!. This gives the usual oscillating solu
tion of Ez(x,t),

Ez~x,t !'@k~x!#21/2H c1 expF2 i S E
0

x

k~x!dx2vt D G
1c2 expF i S E

0

x

k~x!dx2vt D G J . ~11!

Since the dielectric has a band gap around the frequencv,
these oscillating solutions cannot propagate through it. O
has to look for exponential or tunneling solutions. In the ca
03662
d

e
e

of the nonrelativistic Schro¨dinger equation such solutions a
obtained when the function corresponding toe(x), namely,
@E2V(x)#, becomes negative. This is not possible in ele
trodynamics becausee(x) is never negative. However, it i
significant that a general tunneling solution can still
found, and is given by

Ez
d~x,t !'@k~x!#21/2H c1 expF2E

0

x

k~x!dx1vtG
1c2 expF E

0

x

k~x!dx2vtG J , ~12!

with k(x)5vAe(2 ix)/c a real, positive function@13#. This
is clearly a solution of the wave equation

]x
2Ez

d2
e~2 ix !

c2
] t

2Ez
d50, ~13!

which is Lorentz invariant as long ase(2 ix) is a real, posi-
tive Lorentz scalar function. That is guaranteed ife(x,t) is a
real, positive definite function of the Lorentz invariant va
able (x22c2t2) in an arbitrary inertial frame. We will there
fore restrict our discussions to such cases only.

Notice that the tunneling solution~12! is a mapping of the
oscillating solution~11! by

x→2 ix, t→2 i t . ~14!

Maxwell’s equations in vacuo are invariant under this ma
ping. Maxwell’s equations in an inhomogeneous dielect
@Eqs. ~1!–~4!# are also invariant providede(2 ix)5e(x).
But that is certainly not the most general case. Assuming
e(x) is an analytic function, one can express it as a Tay
series aroundx50,

e~x!5e01(
n

anxn, ~15!

with the sum positive definite@5#. Thuse(2 ix) will be com-
plex in general. But, since ImAe(2 ix) will give rise to
oscillating terms in Eq.~12!, and since the material is as
sumed to have a band gap aroundv, it must vanish. Max-
well’s equations then get mapped on to equations, such
Eq. ~13!, that are still Lorentz invariant and therefore acce
able. It is clear from Eq.~13! that the propagation will
be superluminal providede(2 ix),e0(51). This is pos-
sible, for example, if the dielectric functione(2 ix)
5(11(nanxn),1 with n such that ImAe(2 ix)50 and
(nanxn,0.

An immediate consequence of the mapping~14! is that
timelike intervals are mapped on to spacelike interv
(c2t22x2)→(x22c2t2). Consequently, ife(2 ix),1, all
causally related events get connected by superluminal
nals. Conversely, it is straightforward to see that superlum
nal signals (v.c) imply the mapping~14!, because

x85~x2vt !/A12v2/c252 i ~x2vt !/Av2/c221,
0-2
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LORENTZ-INVARIANT SUPERLUMINAL TUNNELING PHYSICAL REVIEW E 64 036620
t85~ t2vx/c2!/A12v2/c252 i ~ t2vx/c2!/Av2/c221.
~16!

This is remarkable and important for the interpretation of
experiments showing superluminal tunneling—they do
contradict Lorentz invariance and causality.

It is instructive to look at the difference between super
minal optical tunneling and tunneling of massive particl
While tunneling, the energy and momentum of massive re
tivistic particles are imaginary, as one can easily verify
applying the energy and momentum operators on their w
function. Thus, the relativistic relationE25p2c21m0

2c4 gets
mapped on toE25p2c22m0

2c4, implying tachyons. This
does not happen for massless bosons. Nevertheless, a
have seen above, tunneling solutions in electrodynamics
also superluminal.

It is often asserted that according to the special princ
of relativity the maximum velocity that a physical signal c
have is the velocity of lightc in vacuum. If that is correct
then the special relativity principle would rule out the pos
bility of dielectric materials of the kind discussed abov
That would imply that somehow only dielectrics with th
propertye(2 ix)5e(x) can exist physically. Whereas that
not impossible, we find it hard to believe that such a dem
stration can indeed be given. On the other hand, if one
stricts oneself to the assumptions actually made by Einst
namely the postulate of relativity of uniform motion couple
with the postulate that the velocity of light is independent
the motion of the light source, one need to only insist
Lorentz invariance as a necessary condition for a phys
law @14#. That would leave open the possibility of dielectri
of the kind that would make superluminal yet causal sign
possible in tunneling modes.

Interestingly, the dielectrics chosen in the tunneling e
periments@4# all had variable layers of dielectrics and we
practically dispersion-free. Now, it is well known that ca
sality and dispersion relations are intimately related@11#. It
follows from these dispersion relations that the real part
the refractive indexn must vanish for a purely nondispersiv
material. Hence the velocity of propagationc/n of light
through such a material has no upper limit. The problem i
produce such materials. The trick is to prepare a medium
such a way that it is inhomogeneous with alternative t
layers of high and low refractive indicesni that are all
greater than unity (ni.1) so that it acquires a photonic ban
gap. Then the evanescent wave sees a refractive index,1,
as we have seen, and so propagates superluminally wit
changing shape.

III. QUANTUM MECHANICAL FORMULATION OF
OPTICAL TUNNELING

We will now show how to give a purely quantum m
chanical formulation of this superluminal tunneling behavi
For this we need to use a consistent quantum mechan
formulation of massless electrodynamics using
Kemmer–Harish-Chandra formalism@8#, outlined in the Ap-
pendices. It is clear from this formalism that the classi
Maxwell fields are components of a ten-component quan
03662
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mechanical wave function with constraints that reduce
degrees of freedom to two. For the tunneling problem,
number of degrees of freedom is further reduced to one
we have already seen. Let the incident finite duration sig
be represented by the electric fields@components of the ten
dimensional~2D! unnormalized photon wave functiongc,
vide Appendix A#

Ez
i 5E dk A~k!cos~kx2vt2f!2ARE dk A~k!

3cos~kx1vt1f! for x<0, ~17!

Ez
d5u~ t !

1

Ak~x!
C expF2E

0

x

k~x!dx1v0tG
for 0<x<d, ~18!

Ez
f5u~ t2t!ATE dk A~k!cos@k~x2d!2v~ t2t!1x#

for x>d, ~19!

where A(k)5(1/A2ps2)exp@2(k2k0)
2/2s2# is real and

*2`
` A(k)dk51, *2`

` kA(k)dk5k0 , R and T are the reflec-
tion and transmission coefficients,k5v/c, k(x)
5k0Ae(2 ix), t is the tunneling or dwell time, andu(t) is
the step function.~Note that there is no term representing
reflected wave function within the tunneling region becau
we are not considering a steady state situation or timet
.t.! Accordingly, the dielectric medium is at rest~in the
sense of being free of any disturbance! beforet50 and there
is no emerging signal atx5d beforet5t. By matching the
wave functions smoothly at the boundaryx50, t50, we get

C5Ak~0!~12AR!cosf, ~20!

tanf5
k~0!

k0

~12AR!

~11AR!
. ~21!

Hence,

Ez
d5u~ t !

Ak~0!~12AR!cosf

Ak~x!
expF2E

0

x

k~x!dx1v0tG .
~22!

The magnetic field in the tunneling region is determined
the analog of Eq.~7! for the tunneling case and is given b

Hy
d5u~ t !

c

v0
]xEz

d . ~23!

Therefore, we have~in the WKB approximation!

Hy
d52u~ t !Ak~0!~12AR!Ak~x!cosf

c

v0

3expF2E
0

x

k~x!dx1v0tG . ~24!
0-3
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Matching the wave functions at the other boundaryx5d,t
5t gives

AT5
Ak~0!~12AR!cosf

Ak~d!
secx expF2E

0

d

k~x!dx1v0tG .
~25!

Further, matching the derivatives of the wave functions
this boundary, one has

tanx5
k~d!

k0
. ~26!

The velocity operator in this formalism is the 10310 ma-
trix vb̃x5@c/Ae(2 ix)#(b0bx2bxb0). Thus the Poynting
vector can now be calculated, and is given by~see Appendix
A!

Sx
d5m0c3cTgb x̃gc

52cEz
dHy

d

5u~ t !k~0!~12AR!2 cos2f
c2

2v0

3expF22S E
0

x

k~x!dx2v0t D G . ~27!

The energy density is given by~see Appendix A!

E d5
1

2
cTgc

5
1

2
@e~2 ix !Ez

d21Hy
d2#

5u~ t !k~0!~12AR!2 cos2f
c2

2v0
2
k~x!

3expF22S E
0

x

k~x!dx2v0t D G . ~28!

One can therefore calculate the velocity of energy transp

vx
d5

Sx

E d
5

c

Ae~2 ix !
. ~29!

It follows from this that the tunneling time is given by

t5E
0

ddx

vx
d

, ~30!

which implies

E
0

d

k~x!dx2v0t50. ~31!

In a hypothetical model in whichAe(2 ix)512ax2,
03662
t

rt

t5
d

c
2

ad3

3c
, ~32!

which is always less than the time for passage throu
vacuum. This superluminal effect will be further accentua
if one includes higher order terms inx in the expansion of
Ae(2 ix) because of the condition(nanxn,0 stated above.

If one uses the de Broglie-Bohm guidance conditionvx
d

5dx/dt, one again obtains the same result fort. These re-
sults confirm that the energy and so the physical signal
deed propagates superluminally while tunneling.

IV. CONCLUSIONS

In conclusion we would like to emphasize precisely t
significant result that we have obtained. Since there has b
much discussion and some controversy in the literature
garding superluminal effects and their causality, let us su
marize the situation as we see it.

The materials used for observing superluminal effe
have been generally termed ‘‘ultrarefractive’’@15#. Near the
edges of a transmission gap the effective permittivity c
become close to zero. Consequently, surprising effects ca
observed on light transmitted and reflected by such mater
such as superluminal velocities as well as enlargement
splitting of the transmitted beam.

In one type of process the effects are results of anoma
dispersion, i.e., anomalous variation of the permittivity w
wavelength. Although the 1914 analysis of Sommerfeld a
Brillouin clearly established that superluminality in suc
cases cannot be Einstein causal and is only apparent, it
recently been argued that this need not be the case for ph
cal signals that are of finite duration and extent becaus
responsive signal traveling backward in time in such a c
cannot arrive before the primary signal is generated, t
preserving the causality principle@6#. Our paper does no
deal with this type of phenomena.

The second type of process involves tunneling in one~or
two! dimensions through a narrow band gap, and it is o
this type of phenomena (1D tunneling! that we have ad-
dressed. The theoretical discussions of such phenomena
so far been based purely on an analogy between the no
ativistic Schro¨dinger equation and the Helmholtz equatio
leading to an effective refractive indexn(x,y,z)5$2m@E
2V(x,y,z)#%1/2c/\v, which is imaginary in any region
whereE,V @4,16#. This mechanism is, in reality, not appl
cable to photons, as we have mentioned earlier and as C
and Steinberg admit in their review article@16#. To take a
definite stand on an issue such as superluminal propaga
and causality, analogies are not reliable in our opinion, a
one must use a proper theory, namely a consistent relativ
quantum mechanical formalism for photons@8#. We have
used this formalism to carry out explicit calculations for t
tunneling of a finite width photon wave packet incident no
mally on a 1D photonic barrier.~Note that in this sense als
our result is different because total internal reflection in o
tics occurs only fornonzerocritical angles of incidence.! Our
analysis clearly shows that genuine Einstein causal supe
minal propagation can occur only if the tunneling mediu
0-4
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is inhomogeneous on the scale of the wavelength
Im e(2 ix)50. This follows simply and very generally from
the fact that points on the light cone remain on the light co
under the mapping~14! that takes propagating solutions
tunneling solutions. Therefore, the only way to get genu
superluminal signals is to have an inhomogeneous diele
function e(x).1 that is mapped toe(2 ix),1 with
Im e(2 ix)50 to ensure Lorentz invariance of the wa
equation~13!. This argument obviously holds for both cla
sical and quantum light, and is consistent with dispers
relations and causality@11#.

Such materials have been used in actual experim
@16,17#. They involve tunneling at near normal inciden
through band gaps excited in periodic dielectric structur
These band gaps arise from Bragg reflections, from the
riodic structure, leading to an evanescent decay of the w
amplitude when the frequency is within the forbidden ba
gap at the first Brillouin zone. It should be noted that su
periodic structures arenondispersiveso that the tunneling
wave packets that are tuned to midgap remain essent
undistorted upon transmission through the barrier, tho
much attenuated in amplitude@16#.
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APPENDIX A

Until recently, no consistent quantum mechanical form
ism existed for relativistic bosons below the threshold
pair production and annihilation. Relativistic quantum m
chanics can only be consistently formulated provided th
exists a conserved four-vector current whose time com
nent, to be identified with the probability density, is positi
definite. Unfortunately, the conserved charge vector cur
for relativistic spin zero and spin one bosons does not h
this property. Moreover, the charge current vanishes for n
tral particles like the photon. However, it has now be
shown@8# that a conserved four-vector current with a po
tive definite time component does exist for relativis
bosons, and is associated, not with the charge current
with the flow of energy. This formulation is based on t
first-order Kemmer equation@9#

~ i\bm]m1m0c!c50, ~A1!

where the matricesb satisfy the algebra

bmbnbl1blbnbm5bmgnl1blgnm . ~A2!

The (535)-dimensional representation of these matrices
scribes spin zero bosons and the (10310)-dimensional rep-
resentation describes spin one bosons. Multiplying Eq.~A1!
by b0, one obtains the Schro¨dinger form of the equation

i\
]c

dt
5@2 i\cb̃ i] i2m0c2b0#c, ~A3!
03662
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whereb̃ i[b0b i2b ib0. Multiplying Eq. ~A1! by 12b0
2, one

obtains the first class constraint

i\b ib0
2] ic52m0c~12b0

2!c. ~A4!

It implies the conditions div DW 52(m0
2c/\)A0 and BW

5curl AW if one takes

cT5~1/Am0c2!~2Dx ,2Dy ,2Dz ,Bx ,By ,Bz ,2m0Ax ,

2m0Ay ,2m0Az ,mA0!. ~A5!

The reader is referred to Ref.@8# for further discussions re
garding the significance of this constraint.

If one multiplies Eq.~A3! by c† from the left, its Hermit-
ian conjugate byc from the right and adds the resulta
equations, one obtains the continuity equation

]~c†c!

]t
1] ic

†b̃ ic50. ~A6!

This can be written in the form

]mQm050, ~A7!

where

Qmn52m0c2c̄~bmbn1bnbm2gmn!c, ~A8!

~with c̄5c†h0 ,h052b0
221,h0

251) is the symmetric
energy-momentum tensor, and

Q0052m0c2c†c,0. ~A9!

Thus, it is possible to define a wave functionf
5Am0c2/Ec ~with E52*Q00 dV) such thatf†f is non-
negative and normalized and can be interpreted as a p
ability density. The conserved probability current density
sm52Qm0 /E5(f†f,2f†b̃ if).

Notice that according to the equation of motion~A3!, the
velocity operator for massive bosons iscb̃ i .

The theory of massless spin zero and spin one bos
cannot be obtained simply by taking the limitm0 going to
zero because of the 1/Am0 factor inc. One has to start with
the equation@10#

i\bm]mc1m0cgc50, ~A10!

whereg is a matrix that satisfies the following conditions:

g25g, ~A11!

gbm1bmg5bm . ~A12!

This equation can be derived from the gauge invariant
grangian density
0-5
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L52
i\

2
@]mc̄gbmc2c̄bmg]mc#1

m0c

2
c̄gc.

~A13!

Multiplying Eq. ~A10! from the left by 12g, one obtains

bm]m~gc!50. ~A14!

Multiplying Eq. ~A10! from the left by ]lblbn, one also
obtains

]lblbn~gc!5]n~gc!. ~A15!

It follows from Eqs.~A14! and ~A15! that

l~gc!50 ~A16!

which shows thatgc describes massless bosons.
The Schro¨dinger form of the equation

i\
]~gc!

dt
52 i\cb̃ i] i~gc! ~A17!

and the associated first class constraint

i\b ib0
2] ic1m0c~12b0

2!gc50 ~A18!

follow by multiplying ~A10! by b0 and 12b0
2, respectively.

Equation ~A17! implies the Maxwell equations curl EW5

2(m/c)] tHW and curl HW 5(e/c)] tEW if

gcT5~1/Am0c2!~2Dx ,2Dy ,2Dz ,Bx ,By ,Bz ,0,0,0,0!.
~A19!

The constraint~A18! implies the relations div EW50 and BW

5curl AW . The symmetrical energy-momentum tensor is

Qmn52
m0c2

2
c̄~bmbn1bnbm2gmn!gc ~A20!

and so the energy density

E52Q005
m0c2

2
c†gc5

1

2
@EW .EW1BW .BW # ~A21!

is positive definite. The rest of the arguments are analog
to the massive case.

The Bohmian three velocityv i for massless bosons can b
defined by

v i5c
cTgb̃ igc

cTgc
. ~A22!

Notice that in relativistic quantum mechanics the Bohm
velocity is not defined through the gradient of the phase a
nonrelativistic quantum mechanics but in terms of the ene
flux current.
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Neutral massless vector bosons are very special in qu
tum mechanics. Their wave function is real, and so th
charge currentj m5cTbmgc vanishes. However, their prob
ability current densitysm does not vanish. Furthermore, th
Poynting vector turns out to be given by

Si5m0c3cTgb̃ igc5c@EW3HW # i . ~A23!

One might wonder about the significance of the mass
rameterm0 for massless electrodynamics. It is necessary
a consistent quantum mechanical formalism for dimensio
reasons and drops out of all physical results because of
operatorg. It can be altogether eliminated in favor of th
intrinsic parameters in the theory, namelyc, \, the frequency
v, and the spin multiplicitys.

The representations of the Kemmer-Duffin-Petiaub ma-
trices used in this paper are given in Appendix B.
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