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Parametric autoresonance

Evgeniy Khain and Baruch Meerson
Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel
(Received 30 January 2001; published 30 August 2001

We investigate parametric autoresonance: a persisting phase locking that occurs when the driving frequency
of a parametrically excited nonlinear oscillator slowly varies with time. In this regime, the resonant excitation
is continuous and unarrested by the oscillator nonlinearity. The system has three characteristic time scales, the
fastest one corresponding to the natural frequency of the oscillator. We perform averaging over the fastest time
scale and analyze the reduced set of equations analytically and numerically. Analytical results are obtained by
exploiting the scale separation between the two remaining time scales that enables one to use the adiabatic
invariant of the perturbed nonlinear motion.
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I. INTRODUCTION II. PARAMETRIC RESONANCE

. . . WITH A CONSTANT DRIVING FREQUENCY
This work addresses a combined action of two mecha-

nisms of resonant excitation ¢€lassical nonlinear oscillat- _The parametric resonance in a weakly nonlinear oscillator
ing systems. The first isarametric resonancé he second is  With finite dissipation and detuning is describable by the fol-
autoresonance lowing equation of motiorj2,24,23:
There are numerous oscillatory systems whose interaction . . 3
with the external world amounts only to a periodic time de- X+2yx+[1+ecoq(2+d)t}]x— Bx>=0, @
nden f their parameters. Th rr nding resonan : : .
be dence of the _para eters. The correspo d g resona \(/:v%ere the units of time are chosen in such a way that the
is called parametric[1,2]. A textbook example is a simple

pendulum with a vertically oscillating point of suspension scaled natural frequency of the oscillator in the small-
[1]. The main resonance occurs when the excitation frearanItUde limitis equal to 1. In Ed1) e is the amplitude of

. . .~ the driving force, which is assumed to be smalk <1,
guencyw is nearly twice the natural frequency of the oscil- 5<1 is the detuning parametey, is the (scaled damping
lator wqy [1,2]. Applications of this basic phenomenon in

coefficient (0<y<1) andp is the nonlinearity coefficient.

physics and technology are ubiquitous. _ For concreteness we assurde-0 (for a simple pendulum
Autoresonanceccurs in nonlinear oscillators driven by a B=1/6).
small external force, almost periodic in time. If the small Working in the limit of weak nonlinearity, dissipation and

force is exactly periodic, the slow growth of the oscillator qjving, we can employ the method of averag|ag3,26,27,
amplitude with time is arrested by the oscillator nonlinearity,yajid for most of the initial condition§3,4]. The unperturbed
and the amplitude changes with time periodically because dbscillation period is the fast time. Putting-a(t)cosé(t) and
phase locking[3,4]. If instead the driving frequency is X=—a(t)siné(t) and performing averaging over the fast

slowly varying in 'glme(ln the r_|ght direction determined by time, we arrive at the averaged equations
the nonlinearity sigp the oscillator can stay phase locked

but, on an average, increase its amplitude with time. This

leads to a continuous resonant excitation. Autoresonance has a=—ya+ %asin 24,

found many applications. It was extensively studied in the

context of relativistic particle acceleration: in the 1940s by 9

McMillan [5], Veksler[6] and Bohm and Foldy7,8], and Y=— é_ ?"‘iJr Ecosng )
more recentlyf9—12]. Additional applications include a qua- 2 8 4 '

siclassical scheme of excitation of atofd§] and molecules ]

[14], excitation of nonlinear waved 5,16, solitons[17,1g, ~ Where a new phasg= 6—[(2+ 6)/2]t has been introduced.
vortices[19,20 and other collective modég1] in fluids and ~ The averaged syste(®) is an autonomous dynamical system
plasmas, an autoresonant mechanism of transition to chaos YWth two degrees of freedom and therefore integrable. In the

Hamiltonian system§22,23, etc. conservative caseg=0 EQs.(2) become
Until now autoresonance was considered only in systems
executingexternallydriven oscillations. In this work we in- a= E_asin 2y
vestigate autoresonance irparametricallydriven oscillator. 4 ’
Our presentation will be as follows. In Sec. Il we briefly
review the parametric resonance in nonlinear oscillating sys- . 5 3pa’ e
tems. Sec. |l deals, analytically and numerically, with para- ¥=- 2 8 + 4008 2. )

metric autoresonance. The conclusions are presented in Sec.
IV. Some details of derivation are given in Appendices A As sin 2/ and cos 2 are periodic functions ofs with a pe-
and B. riod 7, it is sufficient to consider the intervat w/2<ys
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8
Al ] T=—K(m), 7
€

whereK(m) is the complete elliptic integral of the first kind
[28], and m=1—248H,/€>. We will use this result later
when formulating the criterion for the parametric autoreso-
nance to occur.
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Ill. PARAMETRIC RESONANCE
WITH A TIME-DEPENDENT DRIVING FREQUENCY:
PARAMETRIC AUTORESONANCE

0.2- \__/ 1 Now let the driving frequency vary with time. This time

dependence introduces an additiofthlird) time scale into
the problem. The governing equation becomes

0 . 1 . .
PHASE X+ 2yx+(1+ ecosp)x— Bx3=0, )
FIG. 1. Parametric resonance with a constant driving frequency. . .

Shown is the phase portrait of the system éo¥0.04, 5= —0.04, yvheredﬁ v(t). We \_N|llllassume/.(t) to be aslowlydgcreas-

B=1/6, andy=0. The motion around a closed orbit is periodic INd function whose initial value is(t=0)=2+ 4. Using the

with period T. For a time-dependent driving frequeneyt), the ~ Scale separation, we obtain the averaged equations. The av-

“loose” autoresonance excitation will occur if the characteristic €raging procgdure of Se.c. Il can be_ repeated by replacmg

time for variation ofy(t) is much greater tha, see criterio(11).  (2+ 6)t by ¢ in all equations. There is one new point that
should be treated more accurately. The averaging procedure

<7/2. For small enough detuning< €/2, there is an ellip- is applicable(again, for most of the initial conditionsif

tic fixed point with a nonzero amplitude, there is a separation of time scales. It requires, in particular,

a strong inequality 2+ v(t)>26— v(t). This inequality can

- 2e( 28\ o limit the time of validity of the method of averaging. Let us
* 7|38 € =0 assume, for concreteness, a linear frequency “chirp”:
We need to calculate the period of motion in the phase plane v(t)=2+6-2put, ()
along a closed orbit around this fixed poifdr an example ) ) ) )
of such an orbit see Fig.)1 whereu <1 is the chirp rate. In this case the averaging pro-
This calculation was performed by Strublg4]. For a  cedure is valid as long gst<1. _
zero detuningg=0, Hamilton’s function(we will call it the Introducing a new phasg= 6— ¢/2, we obtain a reduced
Hamiltonian of the systen(3) is the following: set of equationfcompare to Eqs2)]:
€l 3812 : €a
H(1,1)= —cos 2)— 'BT=HO=const, (4 a=—yat rsin2y,

where we have introduced the action variabtea?/2. Solv- .0 3pa’ e
ing Eq. (4) for | and substituting the result into the Hamil- Y=-5tuts g 14008 2. (10

ton’s equation fori// we obtain ] ) ] )
The first of Eqs(10) is typical for parametricresonance: to

24,8H0) 172 get excitation one should start from a nonzero oscillation
2 i

(5 amplitude. As we will see, that term in the second of Egs.
(10) (when small enough and of the right sjgprovides a

_ ) continuous phase locking, similar to the externally driven
where the minugplus) sign corresponds to the uppdower  zutoresonance.

part of the closed orbit. The period of the amplitude and Consider a numerical example. Figure 2 shows the time
phase oscillations is therefore dependence(t) found by solving Eqs(10) numerically.
One can see that the system remains phase locked that allows
8 (v dys the amplitude of oscillations to increase, on an average, with
L _Jw 248H 2 ®  time in spite of the nonlinearity. The time dependence of the
( cos 24— 0)

. _€
1//=+Z(co§21p—

€

€

amplitude includes a slow trend and relatively fast, decaying
oscillations. These are the two time scales remaining after
- . averaging over the fastest time scale.
where —¢ and ¢ are the roots of the equation éag There are two possible schemes of autoresonance excita-
=24BH,/€2. Calculating the integral, we obtain tion [17]. In the first, “rigid” scheme one demands that the

€

036619-2



PARAMETRIC AUTORESONANCE PHYSICAL REVIEW B4 036619

18 ; ; ' ' In the main part of this section we neglect the dissipation
. and use a Hamiltonian formalism. First we will consider ex-
' citation in the vicinity of the quasifixed point. Then excita-
14 tion from arbitrary initial conditions will be investigated. Fi-
nally, the role of dissipation will be briefly analyzed.
w2 For a time-dependeni(t), the Hamiltonian becomes
o
E . [compare to Eq(4)]
gm HOL o= S La(t)+ 3p1” 12
q.. (1L t)=7la(t)+cos 2] - ——, (12
0.4 where «a(t)=(4/e)[1—v(t)/2]. The Hamilton’s equations
are
0.2
00 5(;0 10I00 15'00 2()'00 2500 i_ EI H 2
TIME = 5sin2y,

FIG. 2. An example of parametric autoresonance. Shown is the
oscillation amplitude versus time, computed numerically from the . € 381
averaged equationd0). The system remains phase locked that al- = Z(a"' COS 2)) — 2 (13
lows the amplitude to increase, on an average, with time. The pa-
rameters areu=6.5X 107°,e=0.04, §=-0.01, B=1/6, and

¥=0.001. Let us find the quasifixed point of Eq&ld), i.e., the special

autoresonance trajectory (t), ¢, (t) corresponding to the

system stays iexactresonance atll times. This implies a 'd€al” phase locking(a pure trend without oscillations

specific formula for the time dependence of the frequency Assuming a slow time dependence, we pyt=0, that is
and special initial conditions(oscillator amplitude and

phase. The excitation in this case can be faster than in the € 381,
second schemgso there is no need to satisfy the strong Z(a+005 2, )~ 4
inequality (11)]. However, the “rigid” scheme works only

for a relatively small group of initial conditions around the pitferentiating it with respect to time and using E¢s3), we
special ong17]. We will concentrate on the more generic gpiain an algebraic equation fgr, (t):

“loose” excitation scheme. In this case the parametric au-

toresonance is insensitive to the exact form ugt). To

achieve this, the characteristic time of variation efft) 2a(t)sin 2y, +sin 4,/,*:@_ (15)
should be much greater than the “nonlinear” peribdsee 2

Eq. (7)] of oscillations of the amplitude:

0. (14)

At this point we should demand the4, (t), evaluated on the
ST (11) solution of Eq.(15), is indeed negligible compared to the rest

v(t)
(1) of terms in the equatiofil3) for (t). It is easy to see that

) ) o this requires 16/€?<1. In this case the sines in E(L5)

For a given set of parameters, the optimal chirping rate:an pe replaced by their arguments, and we obtain the fol-

can be found: too low a chirping rate means an inefficienjowing simple expressions for the quasifixed point:
excitation, while too high a rate leads to phase unlocking and

termination of the excitation.

In the remainder of the paper we will develop an analyti- |, = 3i(a+ 1),
cal theory of the parametric autoresonance. The first objec- B
tive of this theory is a description of the slow trend in the
amplitude (and phasge dynamics. When the driving fre- k
qguencyv is constant, there is an elliptic fixed poiaf (see Vo= a+1’ (16

Sec. I). Whenv varies with time, the fixed point ceases to

exist. However, for aslowly varying »(t) one can define a \wherek=4u/é€.
“quasifixed” point a, (t) that is a slowly varying function of
time. It is this quasifixed point that represents the slow trend
seen in Fig. 2 and corresponds to an “ideal” phase-locking
regime. The fast, decaying oscillations seen in Fig. 2 corre- Let us make the canonical transformation from variables

A. Excitation in the vicinity of the quasifixed point

spond to oscillations around the quasifixed point in the phasand ¢ to 6l =1 —1, and §¢y= ¢— ¢, . Assumingdl and ¢
plane[this phase plane is actually projection of the extendedo be small and keeping terms up to the second ordel in
phase spacea(,t) on the @, ) pland. and 8¢, we obtain the new Hamiltonian:
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H(s8l,6 - B (1) -
(81,64, a(t))=— ———= 61 5= —=(4l)
180
€ 2
—@(a+1)(5¢)2. (17) '2_160-
3
Here and in the following small terms of order kf are 5140-

neglected. Let us start with the calculation of the local &
maxima of 51 (t) and dy(t), which will be calleddl ,(t) . 120}
and Symax(t), respectively. Asa(t) is a slow function of g
time [so that the strong inequalityll) is satisfied, we can 100}
exploit the approximate constancy of the adiabatic invariantE

OF O

[1,29]: 8o
1 60 . v . ’
J= > old(d¢)=const. (18 ° 500 1000 1500 2000 2500
™ TIME
|J| is the area of the ellipse defined by Efj7) with the time FIG. 3. Excitation in the vicinity of the quasifixed point: the
dependencies “frozen.” Therefore, time dependence of the periddof the action and phase oscilla-
tions. The solid line is the theoretical curve, EB3), the asterisks
2 H are points obtained numerically. The parameters are6.5
J=— ———7=const. (19 X105, €=0.04, 5=—0.01, and3=1/6.
€ (a+1)¥?
2
This expression can be rewritten in terms&fand 5y 5= 6—(a+1)51,//+ ek s,
38 a+l
2k 38
= ——— 68l 8+ — ————(1)? 3 K
(a+1)3/2 4E(a+1)l/2 . =__B B €
oy 2 ol 71 oY (24
+ oz (a+ 1) Y 52 (20
38 ' Differentiating the second equation with respect to time

and substituting the first one, we obtain a linear differential
If k=4ule®<1, the term withol 8y in Eq. (20) can be  equation forsy(t),
neglected(in this approximation one hag, =0). ThenJ
becomes a sum of two non-negative terms, one of them hav- - 2
. . ! ) + =0,
ing the maximum value when the other one vanishes. There- Oyt 0 (1) 5y=0 @9

fore, where w(t) = (e/2)[ a(t) + 1]Y2. For the linearv(t) depen-

12 dence[Eq. (9)] we havea(t)=4ut/e—26/ e, therefore for
5'ma>&t)=2(@) (a+1)", (21) k<1 the criterionw/ w?<1 is satisfied, and Eq25) can be
solved by the WKB methodsee, e.g.[4]).
and The WKB solution takes the fornfdetails are given in
Appendix A
5¢ x(t) ( SBJ) ” ! (22) 1/2 3/2
max\t) = - 38J 1 (a+1)
€ +1 1/4 _
(at+1) Si(t) ( - ) (a+1)1/4cos( do+ —3 ) (26)

Now we calculate the period of oscillations of the action and
phase. Using the well-known relatidd] T=2x(4J/dH),  where the phaseg, is determined by the initial conditions.

we obtain from Eq(19), The full solution for the phase ig= ¢+, and Fig. 4
compares it with a numerical solution of Egd3). Also
Aar 1 shown are the minimum and maximum phase deviations pre-
T= e (a+—1)1/2 23 dicted by Eqs(22) and(16). One can see that the agreement
is excellent.

The period of oscillations versus time is shown in Fig. 3. The _ The solution forél (t) can be obtained by substituting Eq.
theoretical curveEq. (23)] shows an excellent agreement (26) into the second equation of the syste?d). In the same
with the numerical solution. order of accuracysee Appendix A

Now we obtain the complete solutiofl (t) and dy(t).
The Hamilton’s equations corresponding to the Hamiltonian
(17) are

(a+1)%?

1/2
o~ 14 o
3,3) (a+1)~""sin

Sl(t)=2
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"up”
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0 0.1 - g
; j= 0.8 _
a Q

< ) N\
ol "right"
"loft”
0.7 i
0.1 L L L L "down"
0 500 1 OOOTI ME 1500 2000 2500 o-'06.35 -0.25 0.15 -0.05 0.05 0.15 0.25 0.35
PHASE

FIG. 4. Parametric autoresonance excitation in the vicinity of
the quasifixed point. Shown is the phagét) found analytically
[Egs.(16) and(26)] and by solving Eq(13) numerically. The ana-
lytical and numerical curves are indistinguishable. Also shown ar
the minimum and maximum phase deviations predicted by(E).
and(16). The parameters are the same as in Fig. 3.

FIG. 6. A part of the autoresonant orbit in the phase plane.
Knowing the Hamiltonian at the four points, we can calculate the
maximum and minimum deviations of the action and phase. The
eparameters are the same as in Fig. 3.

Let us first express the maximum and minim@ction

Figure 5 shows the dependence of the action variable witdleviations in terms of the Hamiltoniad and driving fre-
the trendl, (t) subtractedsl(t), on time predicted by Eq. quencyr(t). Solving Eq.(12) as a quadratic equation foy
(27), and found from the numerical solution. It also showswe obtain,
the minimum and maximum action deviatiof&l). Again, a

1/2
very good agreement is obtained.

2

E—( +cos Zﬁ)Z—S—
9p2

a+CoSs 2) = 35

€
|1,22@(

B. Excitation from arbitrary initial conditions

In this section we go beyond the close vicinity of the The time derivative of vanishes wheh =1, or | =1 pis.
quasifixed point and calculate the maximum deviations off herefore, from the first equation of the systét) =0 so
the action! and phasey for arbitrary initial conditions. that
Again, these calculations are made possible by employing

1/2
the adiabatic invariant for the general case. Correspondingly, | € +1)+ 72 +1)2— Hup,down
the period of the action and phase oscillations will be also ma*m'”_glg(a - 9ﬁ2(a 38 ’
calculated. (28)
0.045 . : .
- WhereHup,down:H(Imaxmin!‘/lzo)-

Now we express the maximum and minimyhasede-
= viations through the Hamiltoniakl and driving frequency
3 p(t). The time derivativey vanishes if = iax OF
':E =) = min, then the second equation of the syst&f) yields
E a | =(e/3B)(a+cos2p). In this case the Hamiltoniafi2) be-
~Zo comesHyignt jert= (€2/24B) (@ + COS Ymaxmin)>- Finally, the
z & expression forymaxmin IS
o =
- 1/2
= j 1 248H,;

2 ¢ i ‘ﬁmaxmin: izarcco% B ;lzght,left) - (29)
0.045 . . . , Figure 6 shows a part of a typical autoresonant orbit in the
o 500 1000 1500 2000 2500 phase plane. For(t) = const this orbit is determined by the

TIME equationH(l,#,v)=const, and it is closed. As in our case

FIG. 5. Parametric autoresonance excitation in the vicinity of?(t) changes with time, the trajectory is not closed. To cal-
the quasifixed point. Shown is the action variablgt) from Eq.  culate the maximum and minimum deviations of action and
(27) and from the numerical solution. Also shown are the minimumphase we should know the values of the Hamiltonian at four
and maximum action deviations predicted by E2{1). The param-  points of the orbit that we will call “up,” “down,” “left,”
eters are the same as in Fig. 3. and “right” in the following.
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1.6 ' ' : ' Using Eq.(12), we can findy= ¢(H,1,a(t)):
14 1 8H+38I
=*+_—arcco$————«a|, (31
1.2 2 2€l
1 so that Eq.(30) becomes
2
(]
e 1 Imax 8H +3,8|
=08 _ _
2 J= Zw'ﬁmin arcco%—zeI a)dl, (32
0.6

wherel 2 andl ,,;, are given by Eq(28). Notice thatH (t)

and «(t) should be treated as constants under the integral
(32, see Refs[1,3,29. This integral can be expressed in
terms of elliptic integralgsee Appendix B for details For

0 ' . s : definiteness, we used the values ft) and «(t) in the

o 800 19 e 2000 2809 “up” points, see Fig. 6. We checked numerically that the

adiabatic invarianfi(H(t),«(t)) is constant in our example
FIG. 7. The maximum and minimum deviations of the action, within 0.12%.

e
kS

0.2

callcullated from Eq(28) (thick line) and from.nurr.lerical solution Now we calculate the period of action and phase oscilla-
(thin line). The parameters are the same as in Fig. 3. tions. From the first equation of syste(hd) we have

Knowing the values of the Hamiltonian at these four T flmax dl 33
points, we calculatd y,xmin from Eq. (28) and ¥/maxmin Lin (€1/2)SIN 247

from Eq. (29). Figures 7 and 8 show these deviations for

action and phase correspondingly, and the valudsaoflys,  wherel ., andl ,;, are given by Eq(28), while y= (1) is
found from numerical solution. The theoretical and numeri-gefined by Eq(31).

Cal I’eSU|tS ShOW an exce”ent agreement. Using Eq(lZ)’ we obtain after some algebra’
Now we are prepared to calculate the adiabatic invariant
J(H,»(t)). Its (approximate constancy in time allows one, 8 (lmax dl
in principle, to find the Hamiltoniatd(t) at any timet, in T= —f —_—, (34)
particular at the points of the maximum and minimum action 3BJimin G(1)*2

and phase deviatior(see Fig. 6. . . . .
It is convenient to rewrite the adiabatic invariant in the Where G(1) is given in Appendix B, Eq(B2). Again, we

following form: treatH(t) and«(t) as constants under the integfa#), and
take their values in the “right” points, see Fig. 6. The final
result is
1
=2 §£ vl. 0 T=C2K(Cy), (35
0.6 . , , . whereC,=4(2/38H¢€%)Y* and
0.5 E 2 2
1 C5(3BH €
=———|—+-—=(1-a?)|.
o 1 Ca=3 16| 2 T1617¢)
0.3 4
Figure 9 shows the periodl of the phase and action oscilla-
w %2 ] tions versus time obtained analytically and from numerical
2 04 solution. This completes our consideration of the parametric
E autoresonance without dissipation.
ok
0.1 C. Role of dissipation
0.2} Now we very briefly consider the role of dissipation in the
o3l | parametric autoresonance. Consider the averaged equations
(10) and assume that the detuning is zero. The nontrivial
04 500 1000 1500 2000 2500 quasifixed point exists when the dissipation is not too strong:
TIME v<el4, and it is given by
FIG. 8. The maximum and minimum deviations of the phase, /2] o\ 1/211/2
2e 16y
calculated from Eq(29) (thick line) and from numerical solution a, == at)+| 1— —— ,
(thin line). The parameters are the same as in Fig. 3. 3B €
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200 - - - - - merical solution of the averaged equations. A good agree-

* ment between these two curves is observed at small ampli-

1801 1 tudes. At larger amplitudes, a systematic disagreement
appears.

160} 1 Therefore, a small amount of dissipation enhances the sta-

bility of the parametric autoresonance excitation scheme. A
similar result for the externally driven autoresonance was
previously known 30].

PERIOD
E 3

IV. CONCLUSIONS
100~

We have investigated, analytically and numerically, a
sol | combined action of two mechanisms of resonant excitation
of nonlinear oscillating systems: parametric resonance and
60 ) ) ) ) ) autoresonance. We have shown _that parametric aut_ore_so-
o 500 1000 1_1|5|3|°E 2000 2500 3000 nance represents a_robust and efficient method of excitation
of nonlinear oscillating systems. The concept of parametric
FIG. 9. The periodr of the phaséaction oscillations obtained —autoresonance can be extended to the excitation of nonlinear
from Eq. (35) (solid line), and from numerical solutiofasterisks waves For example, it would be very interesting to apply

The parameters are the same as in Fig. 3. this scheme to the Faraday wavigl], where amplitude
measurements can be perforn{@2]. We expect that para-
1 r(4y 2k metric autoresonance will find applications in different fields
=_—arcsin — + . (36 of physics.
"2 € a(t)+(1-16y%/ )12

Again, we assum&<1. This quasifixed point describes the ACKNOWLEDGMENT
slow trend in the dissipative case. As we see numerically, fast This research was supported by the Israel Science Foun-

oscillations around the trenda=a—a, and 6y=¢— ¢ gation, founded by the Israel Academy of Sciences and
decay with time. Therefore, one can expect thata{t® will Humanities.

approach, at sufficiently large times, the tremdt). Figure

10 shows the time dependence of the amplitude, found by

solving numerically the system of averaged equaticirGs, APPENDIX A: CALCULATION OF PHASE AND ACTION
and the amplitude trend from E36). We can see that in- DEVIATIONS BY THE WKB METHOD

deed the amplitude(t) approaches the trera (t) at large Changing the variables from tirteto a, we can rewrite
times. Figure 10 also compares a numerical solution of thgq (25) in the following form:

full (unreduced equation of motiof Eq. (8)] with the nu-

st ( a(t)+1

e ) Sy=0, (A1)

1.2

where ” denotes the second derivative with respectato
Solving this equation by the WKB meth¢d], we obtain for

o,

o
)

09

AMPLITUDE

(2kC)/2 [a(t)+1]%°-1

where () and C are constants to be found later. Now we
obtain the solution forsl. Substituting Eq.(A2) into the
second equation of the systet®4), we obtain in the same
order of accuracy,

e
o

04

0'20 500 TIME 1000 1500 ) Ca(t) 1]3/2 L
€ a(t)+ —
8l (t)= == (2kC) Y a+ 1)1’4sin( Qo+t ———|.
FIG. 10. Parametric autoresonance with dissipation. Shown are 3B 3k
a numerical solution of the fullunreduceglequation of motior(8) (A3)

(the curve including rapid oscillationsthe time dependence of the

amplitude of oscillations, obtained from Eq40), and the ampli- The constanC can be expressed through the adiabatic in-
tude trenda, (t), predicted by Eq.(36). The parameters arg  variantJ, given by Eq.(20). From Eqgs.(A2) and (A3) we
=6.5x10°%, €=0.04, 6=0, y=0.002, andg=1/6. have
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_(38)?
ch_(z) (a+1)12

Comparing it with Eq(20) we find: C=38J/2ke. Substitut-
ing this value into Eqs(A2) and (A3) we obtain the final
expressiong26) and (27) for sy(t) and 5l(t).

(81)%+ (a+ 1)V 54)2.

APPENDIX B: CALCULATION OF THE ADIABATIC
INVARIANT

After integration by parts and some algebra, using Egs.
(12) and (28), we obtain the following expression for the

adiabatic invariant:

. 8H
1 (wa{ 38
7 2m i \ e .
where
G =l a1 =1 ) |+E(1_a))2—16D
()_( max )( min 3B 9ﬁ2’
(B2

and we assumé® = (€2/16)(1— a)?—3BH/2<0. Calcula-
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{ 1+mm' ( m \kz)— 1 K(K?)
CTa-m2a+my \m-1 1-m
m+m’
+—
(1-m)(1+m’)

E(k?) |, (B3)

where

(el3B)(1+a)— (8H/3,3)1/2>
m=
(el3B)(1+ @)+ (8H/3B)Y?

(e/3B)(1—a) +(8H/3B)?
—(el3B)(1—a)+ (8H/3B)?

5 m 64H
ke= Ci=c——mmM—,
3B(m+m’)?

and

1 € 8H 1/21-1/2
o= zmaa+ o+ 5] |
gH | 1212
=N

——(1—a)+( (B4)

tion of this integral employs several changes of variable

shown in the best way by Fikhtengo[3]. Using the reduc-
tion formulas[28], we arrive at

HereK, E, andIl are the complete elliptic integrals of the
first, second, and third kind, respectively.
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