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Parametric autoresonance

Evgeniy Khain and Baruch Meerson
Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel

~Received 30 January 2001; published 30 August 2001!

We investigate parametric autoresonance: a persisting phase locking that occurs when the driving frequency
of a parametrically excited nonlinear oscillator slowly varies with time. In this regime, the resonant excitation
is continuous and unarrested by the oscillator nonlinearity. The system has three characteristic time scales, the
fastest one corresponding to the natural frequency of the oscillator. We perform averaging over the fastest time
scale and analyze the reduced set of equations analytically and numerically. Analytical results are obtained by
exploiting the scale separation between the two remaining time scales that enables one to use the adiabatic
invariant of the perturbed nonlinear motion.
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I. INTRODUCTION

This work addresses a combined action of two mec
nisms of resonant excitation of~classical! nonlinear oscillat-
ing systems. The first isparametric resonance. The second is
autoresonance.

There are numerous oscillatory systems whose interac
with the external world amounts only to a periodic time d
pendence of their parameters. The corresponding reson
is calledparametric @1,2#. A textbook example is a simple
pendulum with a vertically oscillating point of suspensi
@1#. The main resonance occurs when the excitation
quencyv is nearly twice the natural frequency of the osc
lator v0 @1,2#. Applications of this basic phenomenon
physics and technology are ubiquitous.

Autoresonanceoccurs in nonlinear oscillators driven by
small external force, almost periodic in time. If the sma
force is exactly periodic, the slow growth of the oscillato
amplitude with time is arrested by the oscillator nonlinear
and the amplitude changes with time periodically becaus
phase locking@3,4#. If instead the driving frequency is
slowly varying in time~in the right direction determined b
the nonlinearity sign!, the oscillator can stay phase locke
but, on an average, increase its amplitude with time. T
leads to a continuous resonant excitation. Autoresonance
found many applications. It was extensively studied in
context of relativistic particle acceleration: in the 1940s
McMillan @5#, Veksler @6# and Bohm and Foldy@7,8#, and
more recently@9–12#. Additional applications include a qua
siclassical scheme of excitation of atoms@13# and molecules
@14#, excitation of nonlinear waves@15,16#, solitons@17,18#,
vortices@19,20# and other collective modes@21# in fluids and
plasmas, an autoresonant mechanism of transition to cha
Hamiltonian systems@22,23#, etc.

Until now autoresonance was considered only in syste
executingexternallydriven oscillations. In this work we in-
vestigate autoresonance in aparametricallydriven oscillator.

Our presentation will be as follows. In Sec. II we briefl
review the parametric resonance in nonlinear oscillating s
tems. Sec. III deals, analytically and numerically, with pa
metric autoresonance. The conclusions are presented in
IV. Some details of derivation are given in Appendices A
and B.
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II. PARAMETRIC RESONANCE
WITH A CONSTANT DRIVING FREQUENCY

The parametric resonance in a weakly nonlinear oscilla
with finite dissipation and detuning is describable by the f
lowing equation of motion@2,24,25#:

ẍ12g ẋ1@11e cos$~21d!t%#x2bx350, ~1!

where the units of time are chosen in such a way that
scaled natural frequency of the oscillator in the sma
amplitude limit is equal to 1. In Eq.~1! e is the amplitude of
the driving force, which is assumed to be small: 0,e!1,
d!1 is the detuning parameter,g is the ~scaled! damping
coefficient (0,g!1) andb is the nonlinearity coefficient.
For concreteness we assumeb.0 ~for a simple pendulum
b51/6).

Working in the limit of weak nonlinearity, dissipation an
driving, we can employ the method of averaging@2,3,26,27#,
valid for most of the initial conditions@3,4#. The unperturbed
oscillation period is the fast time. Puttingx5a(t)cosu(t) and
ẋ52a(t)sinu(t) and performing averaging over the fa
time, we arrive at the averaged equations

ȧ52ga1
ea

4
sin 2c,

ċ52
d

2
2

3ba2

8
1

e

4
cos 2c, ~2!

where a new phasec5u2@(21d)/2#t has been introduced
The averaged system~2! is an autonomous dynamical syste
with two degrees of freedom and therefore integrable. In
conservative caseg50 Eqs.~2! become

ȧ5
ea

4
sin 2c,

ċ52
d

2
2

3ba2

8
1

e

4
cos 2c. ~3!

As sin 2c and cos 2c are periodic functions ofc with a pe-
riod p, it is sufficient to consider the interval2p/2,c
©2001 The American Physical Society19-1
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<p/2. For small enough detuning,d,e/2, there is an ellip-
tic fixed point with a nonzero amplitude,

a* 56F 2e

3b S 12
2d

e D G1/2

; c* 50.

We need to calculate the period of motion in the phase pl
along a closed orbit around this fixed point~for an example
of such an orbit see Fig. 1!.

This calculation was performed by Struble@24#. For a
zero detuning,d50, Hamilton’s function~we will call it the
Hamiltonian! of the system~3! is the following:

H~ I ,c!5
eI

4
cos 2c2

3bI 2

8
5H05const, ~4!

where we have introduced the action variableI 5a2/2. Solv-
ing Eq. ~4! for I and substituting the result into the Ham
ton’s equation forċ we obtain

ċ57
e

4 S cos2 2c2
24bH0

e2 D 1/2

, ~5!

where the minus~plus! sign corresponds to the upper~lower!
part of the closed orbit. The period of the amplitude a
phase oscillations is therefore

T5
8

eE2c̄

c̄ dc

S cos2 2c2
24bH0

e2 D 1/2, ~6!

where 2c̄ and c̄ are the roots of the equation cos22c
524bH0 /e2. Calculating the integral, we obtain

FIG. 1. Parametric resonance with a constant driving freque
Shown is the phase portrait of the system fore50.04, d520.04,
b51/6, andg50. The motion around a closed orbit is period
with period T. For a time-dependent driving frequencyn(t), the
‘‘loose’’ autoresonance excitation will occur if the characteris
time for variation ofn(t) is much greater thanT, see criterion~11!.
03661
e

d

T5
8

e
K~m!, ~7!

whereK(m) is the complete elliptic integral of the first kin
@28#, and m51224bH0 /e2. We will use this result later
when formulating the criterion for the parametric autores
nance to occur.

III. PARAMETRIC RESONANCE
WITH A TIME-DEPENDENT DRIVING FREQUENCY:

PARAMETRIC AUTORESONANCE

Now let the driving frequency vary with time. This tim
dependence introduces an additional~third! time scale into
the problem. The governing equation becomes

ẍ12g ẋ1~11e cosf!x2bx350, ~8!

whereḟ5n(t). We will assumen(t) to be aslowlydecreas-
ing function whose initial value isn(t50)521d. Using the
scale separation, we obtain the averaged equations. The
eraging procedure of Sec. II can be repeated by replac
(21d)t by f in all equations. There is one new point th
should be treated more accurately. The averaging proce
is applicable~again, for most of the initial conditions! if
there is a separation of time scales. It requires, in particu
a strong inequality 2u̇1n(t)@2u̇2n(t). This inequality can
limit the time of validity of the method of averaging. Let u
assume, for concreteness, a linear frequency ‘‘chirp’’:

n~ t !521d22mt, ~9!

wherem!1 is the chirp rate. In this case the averaging p
cedure is valid as long asmt!1.

Introducing a new phasec5u2f/2, we obtain a reduced
set of equations@compare to Eqs.~2!#:

ȧ52ga1
ea

4
sin 2c,

ċ52
d

2
1mt2

3ba2

8
1

e

4
cos 2c. ~10!

The first of Eqs.~10! is typical for parametricresonance: to
get excitation one should start from a nonzero oscillat
amplitude. As we will see, themt term in the second of Eqs
~10! ~when small enough and of the right sign! provides a
continuous phase locking, similar to the externally driv
autoresonance.

Consider a numerical example. Figure 2 shows the ti
dependencea(t) found by solving Eqs.~10! numerically.
One can see that the system remains phase locked that a
the amplitude of oscillations to increase, on an average, w
time in spite of the nonlinearity. The time dependence of
amplitude includes a slow trend and relatively fast, decay
oscillations. These are the two time scales remaining a
averaging over the fastest time scale.

There are two possible schemes of autoresonance ex
tion @17#. In the first, ‘‘rigid’’ scheme one demands that th

y.
9-2
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PARAMETRIC AUTORESONANCE PHYSICAL REVIEW E64 036619
system stays inexactresonance atall times. This implies a
specific formula for the time dependence of the freque
and special initial conditions~oscillator amplitude and
phase!. The excitation in this case can be faster than in
second scheme@so there is no need to satisfy the stro
inequality ~11!#. However, the ‘‘rigid’’ scheme works only
for a relatively small group of initial conditions around th
special one@17#. We will concentrate on the more gener
‘‘loose’’ excitation scheme. In this case the parametric a
toresonance is insensitive to the exact form ofn(t). To
achieve this, the characteristic time of variation ofn(t)
should be much greater than the ‘‘nonlinear’’ periodT @see
Eq. ~7!# of oscillations of the amplitude:

Un~ t !

ṅ~ t !
U@T. ~11!

For a given set of parameters, the optimal chirping r
can be found: too low a chirping rate means an ineffici
excitation, while too high a rate leads to phase unlocking
termination of the excitation.

In the remainder of the paper we will develop an analy
cal theory of the parametric autoresonance. The first ob
tive of this theory is a description of the slow trend in t
amplitude ~and phase! dynamics. When the driving fre
quencyn is constant, there is an elliptic fixed pointa* ~see
Sec. II!. Whenn varies with time, the fixed point ceases
exist. However, for aslowly varying n(t) one can define a
‘‘quasifixed’’ point a* (t) that is a slowly varying function of
time. It is this quasifixed point that represents the slow tre
seen in Fig. 2 and corresponds to an ‘‘ideal’’ phase-lock
regime. The fast, decaying oscillations seen in Fig. 2 co
spond to oscillations around the quasifixed point in the ph
plane@this phase plane is actually projection of the extend
phase space (a,c,t) on the (a,c) plane#.

FIG. 2. An example of parametric autoresonance. Shown is
oscillation amplitude versus time, computed numerically from
averaged equations~10!. The system remains phase locked that
lows the amplitude to increase, on an average, with time. The
rameters arem56.531025,e50.04, d520.01, b51/6, and
g50.001.
03661
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In the main part of this section we neglect the dissipat
and use a Hamiltonian formalism. First we will consider e
citation in the vicinity of the quasifixed point. Then excita
tion from arbitrary initial conditions will be investigated. F
nally, the role of dissipation will be briefly analyzed.

For a time-dependentn(t), the Hamiltonian becomes
@compare to Eq.~4!#

H~ I ,c,t !5
eI

4
@a~ t !1cos 2c#2

3bI 2

8
, ~12!

where a(t)5(4/e)@12n(t)/2#. The Hamilton’s equations
are

İ 5
eI

2
sin 2c,

ċ5
e

4
~a1cos 2c!2

3bI

4
. ~13!

Let us find the quasifixed point of Eqs.~13!, i.e., the special
autoresonance trajectoryI * (t), c* (t) corresponding to the
‘‘ideal’’ phase locking~a pure trend without oscillations!.

Assuming a slow time dependence, we putċ* 50, that is

e

4
~a1cos 2c* !2

3bI *
4

50. ~14!

Differentiating it with respect to time and using Eqs.~13!, we
obtain an algebraic equation forc* (t):

2a~ t !sin 2c* 1sin 4c* 5
16m

e2
. ~15!

At this point we should demand thatċ* (t), evaluated on the
solution of Eq.~15!, is indeed negligible compared to the re
of terms in the equation~13! for ċ(t). It is easy to see tha
this requires 16m/e2!1. In this case the sines in Eq.~15!
can be replaced by their arguments, and we obtain the
lowing simple expressions for the quasifixed point:

I * .
e

3b
~a11!,

c* .
k

a11
, ~16!

wherek54m/e2.

A. Excitation in the vicinity of the quasifixed point

Let us make the canonical transformation from variableI
andc to dI 5I 2I * anddc5c2c* . AssumingdI anddc
to be small and keeping terms up to the second order indI
anddc, we obtain the new Hamiltonian:

e
e
-
a-
9-3
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EVGENIY KHAIN AND BARUCH MEERSON PHYSICAL REVIEW E64 036619
H„dI ,dc,a~ t !…52
ek

a11
dIdc2

3b

8
~dI !2

2
e2

6b
~a11!~dc!2. ~17!

Here and in the following small terms of order ofk2 are
neglected. Let us start with the calculation of the loc
maxima ofdI (t) and dc(t), which will be calleddI max(t)
and dcmax(t), respectively. Asa(t) is a slow function of
time @so that the strong inequality~11! is satisfied#, we can
exploit the approximate constancy of the adiabatic invari
@1,29#:

J5
1

2p R dId~dc!.const. ~18!

uJu is the area of the ellipse defined by Eq.~17! with the time
dependencies ‘‘frozen.’’ Therefore,

J5
2

e

H

~a11!1/2
.const. ~19!

This expression can be rewritten in terms ofdI anddc:

uJu5
2k

~a11!3/2
dIdc1

3b

4e

1

~a11!1/2
~dI !2

1
e

3b
~a11!1/2~dc!2. ~20!

If k54m/e2!1, the term withdIdc in Eq. ~20! can be
neglected~in this approximation one hasc* 50). Then J
becomes a sum of two non-negative terms, one of them h
ing the maximum value when the other one vanishes. Th
fore,

dI max~ t !52S eJ

3b D 1/2

~a11!1/4, ~21!

and

dcmax~ t !5S 3bJ

e D 1/2 1

~a11!1/4
. ~22!

Now we calculate the period of oscillations of the action a
phase. Using the well-known relation@1# T52p(]J/]H),
we obtain from Eq.~19!,

T5
4p

e

1

~a11!1/2
. ~23!

The period of oscillations versus time is shown in Fig. 3. T
theoretical curve@Eq. ~23!# shows an excellent agreeme
with the numerical solution.

Now we obtain the complete solutiondI (t) and dc(t).
The Hamilton’s equations corresponding to the Hamilton
~17! are
03661
l

t

v-
e-

d

e

n

d İ 5
e2

3b
~a11!dc1

ek

a11
dI ,

d ċ52
3b

4
dI 2

ek

a11
dc. ~24!

Differentiating the second equation with respect to tim
and substituting the first one, we obtain a linear differen
equation fordc(t),

d c̈1v2~ t !dc50, ~25!

wherev(t)5(e/2)@a(t)11#1/2. For the linearn(t) depen-
dence@Eq. ~9!# we havea(t)54mt/e22d/e, therefore for
k!1 the criterionv̇/v2!1 is satisfied, and Eq.~25! can be
solved by the WKB method~see, e.g.,@4#!.

The WKB solution takes the form~details are given in
Appendix A!

dc~ t !5S 3bJ

e D 1/2 1

~a11!1/4
cosS q01

~a11!3/2

3k D , ~26!

where the phaseq0 is determined by the initial conditions
The full solution for the phase isc5dc1c* and Fig. 4
compares it with a numerical solution of Eqs.~13!. Also
shown are the minimum and maximum phase deviations
dicted by Eqs.~22! and~16!. One can see that the agreeme
is excellent.

The solution fordI (t) can be obtained by substituting Eq
~26! into the second equation of the system~24!. In the same
order of accuracy~see Appendix A!

dI ~ t !52S eJ

3b D 1/2

~a11!1/4sinS q01
~a11!3/2

3k D . ~27!

FIG. 3. Excitation in the vicinity of the quasifixed point: th
time dependence of the periodT of the action and phase oscilla
tions. The solid line is the theoretical curve, Eq.~23!, the asterisks
are points obtained numerically. The parameters arem56.5
31025, e50.04, d520.01, andb51/6.
9-4
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PARAMETRIC AUTORESONANCE PHYSICAL REVIEW E64 036619
Figure 5 shows the dependence of the action variable w
the trendI * (t) subtracted,dI (t), on time predicted by Eq
~27!, and found from the numerical solution. It also sho
the minimum and maximum action deviations~21!. Again, a
very good agreement is obtained.

B. Excitation from arbitrary initial conditions

In this section we go beyond the close vicinity of th
quasifixed point and calculate the maximum deviations
the action I and phasec for arbitrary initial conditions.
Again, these calculations are made possible by employ
the adiabatic invariant for the general case. Correspondin
the period of the action and phase oscillations will be a
calculated.

FIG. 4. Parametric autoresonance excitation in the vicinity
the quasifixed point. Shown is the phasec(t) found analytically
@Eqs.~16! and~26!# and by solving Eq.~13! numerically. The ana-
lytical and numerical curves are indistinguishable. Also shown
the minimum and maximum phase deviations predicted by Eq.~22!
and ~16!. The parameters are the same as in Fig. 3.

FIG. 5. Parametric autoresonance excitation in the vicinity
the quasifixed point. Shown is the action variabledI (t) from Eq.
~27! and from the numerical solution. Also shown are the minimu
and maximum action deviations predicted by Eq.~21!. The param-
eters are the same as in Fig. 3.
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Let us first express the maximum and minimumaction
deviations in terms of the HamiltonianH and driving fre-
quencyn(t). Solving Eq.~12! as a quadratic equation forI,
we obtain,

I 1,25
e

3b
~a1cos 2c!6F e2

9b2
~a1cos 2c!22

8H

3b G 1/2

.

The time derivative ofI vanishes whenI 5I max or I 5I min .
Therefore, from the first equation of the system~13! c50 so
that

I max,min5
e

3b
~a11!6F e2

9b2
~a11!22

8Hup,down

3b G 1/2

,

~28!

whereHup,down5H(I max,min ,c50).
Now we express the maximum and minimumphasede-

viations through the HamiltonianH and driving frequency
n(t). The time derivativeċ vanishes if c5cmax or c
5cmin , then the second equation of the system~13! yields
I 5(e/3b)(a1cos2c). In this case the Hamiltonian~12! be-
comesHright,le f t5(e2/24b)(a1cos 2cmax,min)

2. Finally, the
expression forcmax,min is

cmax,min56
1

2
arccosF S 24bHright,le f t

e2 D 1/2

2aG . ~29!

Figure 6 shows a part of a typical autoresonant orbit in
phase plane. Forn(t)5const this orbit is determined by th
equationH(I ,c,n)5const, and it is closed. As in our cas
n(t) changes with time, the trajectory is not closed. To c
culate the maximum and minimum deviations of action a
phase we should know the values of the Hamiltonian at f
points of the orbit that we will call ‘‘up,’’ ‘‘down,’’ ‘‘left,’’
and ‘‘right’’ in the following.

f

e

f

FIG. 6. A part of the autoresonant orbit in the phase pla
Knowing the Hamiltonian at the four points, we can calculate
maximum and minimum deviations of the action and phase. T
parameters are the same as in Fig. 3.
9-5
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Knowing the values of the Hamiltonian at these fo
points, we calculateI max,min from Eq. ~28! and cmax,min
from Eq. ~29!. Figures 7 and 8 show these deviations
action and phase correspondingly, and the values ofI andc,
found from numerical solution. The theoretical and nume
cal results show an excellent agreement.

Now we are prepared to calculate the adiabatic invar
J„H,n(t)…. Its ~approximate! constancy in time allows one
in principle, to find the HamiltonianH(t) at any timet, in
particular at the points of the maximum and minimum act
and phase deviations~see Fig. 6!.

It is convenient to rewrite the adiabatic invariant in t
following form:

J5
1

2p R cdI. ~30!

FIG. 7. The maximum and minimum deviations of the actio
calculated from Eq.~28! ~thick line! and from numerical solution
~thin line!. The parameters are the same as in Fig. 3.

FIG. 8. The maximum and minimum deviations of the pha
calculated from Eq.~29! ~thick line! and from numerical solution
~thin line!. The parameters are the same as in Fig. 3.
03661
r
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t

Using Eq.~12!, we can findc5c„H,I ,a(t)…:

c56
1

2
arccosS 8H13bI

2eI
2a D , ~31!

so that Eq.~30! becomes

J5
1

2pEI min

I max
arccosS 8H13bI

2eI
2a DdI, ~32!

whereI max and I min are given by Eq.~28!. Notice thatH(t)
and a(t) should be treated as constants under the inte
~32!, see Refs.@1,3,29#. This integral can be expressed
terms of elliptic integrals~see Appendix B for details!. For
definiteness, we used the values ofH(t) and a(t) in the
‘‘up’’ points, see Fig. 6. We checked numerically that th
adiabatic invariantJ„H(t),a(t)… is constant in our example
within 0.12%.

Now we calculate the period of action and phase osci
tions. From the first equation of system~13! we have

T52E
I min

I max dI

~eI /2!sin 2c
, ~33!

whereI max andI min are given by Eq.~28!, while c5c(I ) is
defined by Eq.~31!.

Using Eq.~12!, we obtain after some algebra,

T5
8

3bEI min

I max dI

G~ I !1/2
, ~34!

where G(I ) is given in Appendix B, Eq.~B2!. Again, we
treatH(t) anda(t) as constants under the integral~34!, and
take their values in the ‘‘right’’ points, see Fig. 6. The fin
result is

T5C2K~C3!, ~35!

whereC254(2/3bHe2)1/4 and

C35
1

2
2

C2
2

16 F3bH

2
1

e2

16
~12a2!G .

Figure 9 shows the periodT of the phase and action oscilla
tions versus time obtained analytically and from numeri
solution. This completes our consideration of the parame
autoresonance without dissipation.

C. Role of dissipation

Now we very briefly consider the role of dissipation in th
parametric autoresonance. Consider the averaged equa
~10! and assume that the detuning is zero. The nontriv
quasifixed point exists when the dissipation is not too stro
g,e/4, and it is given by

a* 5S 2e

3b D 1/2Fa~ t !1S 12
16g2

e2 D 1/2G 1/2

,

,

,

9-6
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c* 5
1

2
arcsinS 4g

e
1

2k

a~ t !1~1216g2/e2!1/2D . ~36!

Again, we assumek!1. This quasifixed point describes th
slow trend in the dissipative case. As we see numerically,
oscillations around the trend,da5a2a* and dc5c2c*
decay with time. Therefore, one can expect that thea(t) will
approach, at sufficiently large times, the trenda* (t). Figure
10 shows the time dependence of the amplitude, found
solving numerically the system of averaged equations~10!,
and the amplitude trend from Eq.~36!. We can see that in
deed the amplitudea(t) approaches the trenda* (t) at large
times. Figure 10 also compares a numerical solution of
full ~unreduced! equation of motion@Eq. ~8!# with the nu-

FIG. 9. The periodT of the phase~action! oscillations obtained
from Eq. ~35! ~solid line!, and from numerical solution~asterisks!.
The parameters are the same as in Fig. 3.

FIG. 10. Parametric autoresonance with dissipation. Shown
a numerical solution of the full~unreduced! equation of motion~8!
~the curve including rapid oscillations!, the time dependence of th
amplitude of oscillations, obtained from Eqs.~10!, and the ampli-
tude trenda* (t), predicted by Eq.~36!. The parameters arem
56.531025, e50.04, d50, g50.002, andb51/6.
03661
st

y

e

merical solution of the averaged equations. A good agr
ment between these two curves is observed at small am
tudes. At larger amplitudes, a systematic disagreem
appears.

Therefore, a small amount of dissipation enhances the
bility of the parametric autoresonance excitation scheme
similar result for the externally driven autoresonance w
previously known@30#.

IV. CONCLUSIONS

We have investigated, analytically and numerically,
combined action of two mechanisms of resonant excitat
of nonlinear oscillating systems: parametric resonance
autoresonance. We have shown that parametric autor
nance represents a robust and efficient method of excita
of nonlinear oscillating systems. The concept of parame
autoresonance can be extended to the excitation of nonli
waves. For example, it would be very interesting to app
this scheme to the Faraday waves@31#, where amplitude
measurements can be performed@32#. We expect that para
metric autoresonance will find applications in different fiel
of physics.
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APPENDIX A: CALCULATION OF PHASE AND ACTION
DEVIATIONS BY THE WKB METHOD

Changing the variables from timet to a, we can rewrite
Eq. ~25! in the following form:

dc91S a~ t !11

4k2 D dc50, ~A1!

where 9 denotes the second derivative with respect toa.
Solving this equation by the WKB method@4#, we obtain for
dc,

dc~ t !5
~2kC!1/2

~a11!1/4
cosS V01

@a~ t !11#3/221

3k D , ~A2!

where V0 and C are constants to be found later. Now w
obtain the solution fordI . Substituting Eq.~A2! into the
second equation of the system~24!, we obtain in the same
order of accuracy,

dI ~ t !5
2e

3b
~2kC!1/2~a11!1/4sinS V01

@a~ t !11#3/221

3k D .

~A3!

The constantC can be expressed through the adiabatic
variant J, given by Eq.~20!. From Eqs.~A2! and ~A3! we
have

re
9-7
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2kC5S 3b

2e D 2 1

~a11!1/2
~dI !21~a11!1/2~dc!2.

Comparing it with Eq.~20! we find:C.3bJ/2ke. Substitut-
ing this value into Eqs.~A2! and ~A3! we obtain the final
expressions~26! and ~27! for dc(t) anddI (t).

APPENDIX B: CALCULATION OF THE ADIABATIC
INVARIANT

After integration by parts and some algebra, using E
~12! and ~28!, we obtain the following expression for th
adiabatic invariant:

J5
1

2pEI min

I maxS I 22
8H

3b

G~ I !1/2
D dI, ~B1!

where

G~ I !5~ I max2I !~ I 2I min!F S I 1
e~12a!

3b D 2

2
16D

9b2G ,

~B2!

and we assumeD5(e2/16)(12a)223bH/2,0. Calcula-
tion of this integral employs several changes of varia
shown in the best way by Fikhtengolts@33#. Using the reduc-
tion formulas@28#, we arrive at
,

,

03661
s.

e

J5C1F 11mm8

~12m!2~11m8!
PS m

m21
\k2D2

1

12m
K~k2!

1
m1m8

~12m!~11m8!
E~k2!G , ~B3!

where

m5
~e/3b!~11a!2~8H/3b!1/2

~e/3b!~11a!1~8H/3b!1/2
.0,

m85
~e/3b!~12a!1~8H/3b!1/2

2~e/3b!~12a!1~8H/3b!1/2
.0.

k25
m

m1m8
, C15c

64H

3b~m1m8!1/2
,

and

c5
1

2p F e

3b
~11a!1S 8H

3b D 1/2G21/2

3F2
e

3b
~12a!1S 8H

3b D 1/2G21/2

. ~B4!

Here K, E, andP are the complete elliptic integrals of th
first, second, and third kind, respectively.
,

,
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