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Twisted Gaussian Schell-model solitons
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We show that a certain class of spatially partially coherent solitons, namely, twisted Gaussian Schell-model
solitons, exists in a logarithmically saturable nonlinear medium with a noninstantaneous temporal response.
Unlike previously reported Gaussian Schell-model solitons, those discussed here carry a position-dependent
twist phase, which vanishes in the fully coherent limit. We demonstrate that the presence of the twist phase
provides an opportunity for controlling the degree of spatial coherence of such selithisit affecting their
intensity.
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A theoretical discovery of self-trapping of optical beamsurable Kerr-like media, where the physical characteristics of
[1] has generated a flurry of theoretical and experimenta& soliton, which is made up & uncorrelated modes become
activity in the field of optical spatial solitoni®—16]. Fully  effectively arbitrary as the number of modes becomes very
spatially coherent solitons were extensively studied in varilarge[13], the intensity as well as the degree of coherence of
ous nonlinear medigsee[2-5] and references thergirRe- ~ any TGSM soliton is completely specified by the soliton
cently, spatially partially coherent solitons have been experiwidth, its spatial coherence length and the magnitude of a
mentally realized in a noninstantaneous photorefractivdWist parameter. Moreover, we show that the possibility of
medium[8], and have been theoretically investigated in ma-varying the strength of phase twisting enables one to gener-
terials with photorefractivg9—11], Kerr-type[12—14, satu-  ate twisted Gaussian Schell-model solitons of a given width,
rable logarithmid15] as well as with thresholdingL6] non- with prescribed coherence properties in a wide range of soli-
linearities. ton parameters. Hence, one aaomtrol the degree of spatial

The case of media with logarithmic nonlinearity standscoherence of these solitomgthout affecting their intensity.
out because, first of all, fully spatially coherent solitons ex-We emphasize that gaining control over such a relatively
isting in such media are just the familiar lowest-orderunexplored degree of freedom in soliton physics as spatial
Hermite-Gaussian beams, which are generated by sonf@herence of optical solitons may not only augment our
single-mode lasers. This circumstance facilitates the studinowledge of fundamental properties of such solitons, but it
and application of such solitons. Second, the width of Gausghay also open up novel opportunities in several applied ar-
ian solitons in a saturable medium of logarithmic type is€as such as, for example, imaging with solitons of arbitrary
independent of the intensity5], which is a rather unusual degree of spatial coherence. In this connection, it should be
and, perhaps, even unique situation for nonlinear media. Fupoted that advantages of imaging with partially coherent
thermore, the possibility of obtaining simple, analytical re-light have long been appreciated in the domain of linear
sults makes logarithmically saturable nonlinearity an attracoptics[18].
tive model for studying generic properties of fully as well as  We begin by considering a statistically stationary optical
partially spatially coherent solitons in saturable nonlinearfi€ld U(p,zt). In order for such a field to represent a spa-
media. To our knowledge, however, thely partially coher-  tially partially coherent beam propagating along thaxis,
ent self-trapped beams found in a nonlinear medium of logal (p.2,t) must be of the form:U(p,z,t)=v(p,z,t)e",
rithmic type to dateg 15] are the so-called Gaussian Schell- Wherek=ngw/c, o andng are a carrier frequency and a
model beamgChap. 5 of[ 17]). linear refractive index of the medium, respectively. Further,

In this paper, we show that noninstantaneous, logarithmiv(p.z,t) is an envelope field, which varies slowly with re-
cally saturable nonlinear media support another importangPect toz. The envelope field may be represented as a series
class of solitons, namelywisted Gaussian Schell-model in the spatial modes:

(TGSM) solitons. We apply second-order coherence theory

in the space-time representati6@hap. 3 of[17]) together _

with a self-consistent multimode approach along the lines v(pz) z a(Vis(p.2). @
outlined in[9,17] to obtain a closed-form analytical expres-

sion for the mutual intensity of such solitons. The mutualherey(p,z) stands for a spatial mode functiosis a set of
intensity of each TGSM soliton possesses a nontritvigst  indices labeling the modes, aad(t) =b.e'%" whereby is
phase. This appears to be the first demonstration of the exisreal constant anés(t) is a random phase. Suppose, further
tence of partially coherent solitons carrying a position-that the response time of the nonlinear medium is much
dependent phase that vanishes in the fully coherent limit. Thgreater than a characteristic correlation time of phase fluc-
presence of the twist phase is important because it signifiuations across the partially coherent beam. It then follows
cantly extends the range of parameters for which stable solfrom the theory presented in Ref®,12] that the partially
tons exist in nonlinear media of logarithmic type. In a sharpcoherent beam will propagate in such a noninstantaneous
contrast to the case of partially coherent solitons in nonsatmedium as a stationary soliton if all the spatial modesre
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statistically stationary, mutually uncorrelated linear modes oHere An specifies the strength of nonlinearity, ahdis a

a self-induced via the nonlinearity waveguide. The resultantthreshold” intensity. This expression for the nonlinear re-
waveguide has a nonevolving index profile, and each spatidtactive index of the logarithmically saturable medium fol-
mode 5(p,z) obeys the parabolic equation, lows from a more realistic model for such a materiaf,
=n2+(An)2n(1+1/1y), in the limit1>1,. An additional jus-
tification for the use of the simplified formu(@®) is based on

a comparison of numerically simulated dynamics of beams
in the media with Inifl;) and with In(+1/I;) nonlinearities,
with the nonlinear refractive index,,(1) depending only on respectively. Such a comparison indicates that, provided the
the time-averaged intensity=(|v|?). In Eq. (2), V, is @ ratio | na/l;, | max being the peak intensity of the beam, is
gradient transverse to the direction of propagation of thesufficiently large, the former model approximates well the
beam. Since we are interested in spatial coherence propertitgter [15].

of optical solitons, we have to calculate the mutual intensity In order to find partially coherent solitons that can exist in
at a pair of points specified by the vectgisandp, in the  logarithmically saturable media, we first assume the intensity

2ik%+Vi+k2nﬁ.(l> U(p,2)=0, 2

transverse plane of the beam, defined@kap. 3 of[17]) profile of a circular soliton to be Gaussian, so that
T(py,po)=(v*(py,Z,t Z,t)). 3 2
(pr.p2) = (v* (p1,Z.)0(p;.2,1)) 3 |<p>:|0exp< B p_2>, .
g

Here the angular brackets denote the time average. We have

also omitted the time dependencelobecause of the statis- \\here, is the axial intensity and the constant represents
tical stationarity of the envelope field. In order to perform the,a soliton width. Under this assumption, E@) for the
time averaging, we recall that the spatial modes are mutuallgpatim modey, takes the form

uncorrelated, which implies the cancellation of the cross- s
mode interference terms. Mathematically, this is expressed as J

2ik5+Vf+kZ(An)z[In(Iollt)—p2/20|2]] =0,
<a: (t)as’(t»:)\séss’ ) (4) (10)

where \s=(|ag|?) is the average amplitude of each mode.which is equivalent to the Schimger equation for a two-

Next, on substituting from Eq1) for the envelope field into  dimensional isotropic harmonic oscillator. In view of the

Eq. (3), and on taking the time average with the help of Eq.axial symmetry of the intensity profile assumed in E9),

(4), we obtain for the mutual intensity the representation  we express all the eigensolutions to Efj0) in polar coor-
dinatesp=(p, ¢) as[20]

— *
F(Pl,Pz)—ES: Nsihs (p1.2) s(p2.2). (5 B 2) = (pll )Mexd i (me+ knnz) LM (p2112)
2
In practice, the coherence properties of statistical fields are exng — r (11)
guantitatively described in terms of the degree of spatial co- i '

herenceg19] at a pair of points specified by the vectgss

and p,, defined as HereL'nm|(x) is an associate Laguerre polynomial of order
(n=0,1,2...), andwith the azimuthal indexm, (m=0,
( ) I'(p1,po) ©) +1,...); 1, is a characteristic width of each mode in the
MP1:P2)= ——— > transverse plane,
Hpo i (p2) P
k2(am?] "

where the average intensity of the be&fp) can be readily | =

1~ ’ (12)
shown to be expressed as

207

andk,, is a mode propagation constant given by the expres-
(p)=2 Nus(p2)]” @ sion

— 2 _ 2
Given an explicit dependence of the material refractive index Kmn™ k(An/\/E) In(lo/1) = (2n+|m|+ 1)/KIT. (13)

on the intensity, the problem of finding self-trapped partially g ,nhose that the modal weights.. are distributed ac-
coherent beams is reduced to solving the mode equatns PP gtn

cording to
together with Eq.(7), which plays the role of the self- g
consistency condition. n! -
We consider the following model for the nonlinear refrac- KngAwalml 7", (14

tive index[5]:
5 5 where A is a positive constant, which is to be determined
nLi(D=(An)%In(lI/1y). (8 later, £ and » specify the weight of each mode in the repre-
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sentation(5). We substitute the expressions foy,, and¢,,,  eigenfunctions of the Hamiltonian and tlzecomponent of

from Eqgs.(11) and(14) into Eq. (5). Next, we sum over the the angular momentum of each mode. The invariant twist

modes with the same azimuthal mode inadexbut with dif-  phase arises as a consequence of the presence of such addi-

ferent radial indicem, using the following formula for a tional integral of motion. It should also be noticed that in

series of the associated Laguerre-Gaussian polynoh2id)s  deriving Eqg. (17), we have already imposed the self-
consistency condition by requiring that the soliton intensity

©

amplitudel, and width o, match those of the ansat®).
2 (m+ ) 2 L LR(Y) Thus the self-consistency requirement specifies the value of
the constan, A=(1—¢§)l,.
(xyz)~™? zZ(x+y) 4xyz Further, giveno,, o., andu, there are two unknown
T 12 ex;{— 1—7 Im 1—7 parameters¢ and 7, in three equation$l8). Hence, these

equations not only provide the values of the modal weights
(19 in terms of known parameters, but they also specify a rela-
tion between the spatial coherence length of the soliton and
the twist parameter for which such TGSM solitons exist. In
order to find this relation, we first express the quanties
and # in terms of the soliton parameters. It follows from Egs.
(18b) and(180), that

Herel ,(x) is a modified Bessel function of order. We then
perform the summation over the azimuthal mode index
utilizing the generating function for the modified Bessel
functions[22],

+1z
eXtYE

as well as the property,(x)=1_,(X). The resulting expres- . - .
sion for the mutual intensity of a stabl@3] partially coher- ~ The non-negativity of every coefficient,,, together with

[

= > t"y(2), (16) _[1+udg
m=—o n= >
(o3

1-uo 0

ent soliton carrying the twist phase is found to be _Eq. (20_)3 leads to _the condi'_cion on the_twist parameter, which
is familiar from linear optics of partially coherent TGSM
- p5+ps (p1—p2)? beams{ 26,27
L(pr.po)=loexp ———5~exg —————
40, 20¢ 1 1
. . - S Ssus—. (21
Xexfiupyposin(é1—¢o)], 7 o o
where It is evident from this inequality that the twist phenomenon
is characteristic of partially coherent solitons, since it van-
1 1+&é—(n+1ln) \/E (189 ishes in the fully coherent limit,uy— 0 aso.— ). Next, we
20'2 = (1_5)@ ; infer from Eqgs.(189 and (18b), that
12lo2—1
1 +1/ =, 22
ERYAR LA 7’)2@, (18b) ST 22
(O (1_ g)li
where
and
1 1 1
-1/ —=—+—. (23
= w (180 ol o2 207
(1-9I7

It then follows, again from the non-negativity of the,,’s,
It follows at once from Eqs(6) and(17) that the degree of that

spatial coherence of TGSM solitons is given by

|J_ = O eff (24)
B (p1—p2)° . -
m(p1,p2)=expg — ————|exdiupip,Sin(éd— ¢y) ]. Finally, on substituting for; and & from Egs.(20) and (22)
2‘70 19 into Eq.(18b), we arrive after some algebra at the expression
2 1/2
In these expressions; is the soliton widthg . is the spatial 9 _ (a”—D)/2 (25)
coherence length of the soliton, ands a twist parameter Oc |1+1+ uza‘c‘(az—l)

[24]. We recall that each spatial mode of the TGSM soliton is

an isotropic two-dimensional harmonic oscillator. The com-where a?=2k?¢(An)2. Equation(25) defines the range of
ponent of the angular momentum of such an oscillator alongparametersi and o that can serve as the twist strength and
the axis of symmetry is known to be consenj@8], which  the spatial coherence length of a soliton of the wiath For

is manifest in polar coordinates, sine&¢ are simultaneous these soliton parameters, inequali®4) can be shown to be
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5 of attainable soliton coherence lengths. Thus the presence of
the twist provides an opportunity for generating solitons with
45 prescribed widthas well asprescribed spatial coherence
. length. To produce such TGSM solitons experimentally, one
© can follow the method, which is somewhat similar to the
3 25 scheme proposed theoretically [i26] and implemented ex-
y perimentally in[28] in the context of linear optics. First of
3 all, one can pass a fully coherent, elliptic Gaussian beam of
given widthso, and o, , which propagates in a linear me-
25 dium, through a rotating diffuser. Provided the absorption of
light is negligible, the diffuser acts as a random phase screen
-1 -0.5 0 0.5 1 producing an anisotropic, GSM beam. The mutual intensity
2 of such a beam at a pair of points, specified by the vectors

uo .
¢ p1=(Xq1,Y1) andp,=(X,,Y,) in the transverse plane of the

FIG. 1. The ratioo, /o of the soliton widtho, , which is kept ~Peam, is given by the expression
fixed, to the variable spatial coherence lengthas a function of
the parametets?. The parameter is taken to be such that? 2 o
=101. Gaussian Schell-model solitons correspond to the maximum I( _ _ _yl+y2
p1,p2) =Bex ex

of the curve. 4U|2y
fulfilled. The relation between the soliton parameterso (pr—p»)?
and uc? is displayed in Fig. 1. This figure illustrates the Xexg -5 |
dependence of the coherence length of a soliton of a given
width on the magnitude of the twist. It is also instructive to
plot the soliton widtho, versus the strength of the nonlin- HereB is a positive constant, ang, is the coherence length
earity An of the medium for different values of the twist of the anisotropic GSM beam. If the resulting anisotropic
parameteu (see Fig. 2 Itis seen from Fig. 2 that for a fixed GSM beam is then passed through a system of cylindric
value of the coherence length, the dependence,0bn u, lenses similar to the one utilized 28], a TGSM beam
while strong for relatively weak nonlinearities, tends to be-emerges at the entrance to the logarithmically saturable non-
come less pronounced as the magnitude of the nonlinear réinear medium. Finally, we can adjustand o so that the
fractive index increases. self-consistency conditiori25) is fulfiled. Since such a

The analysis of Eq(25) indicates that in the fully coher- TGSM beam is an incoherent superposition with the proper
ent limit (o.—), the soliton width is equal too, modal weights of the modes of the nonlinear waveguide,
=1/\J2kAn, in agreement with earlier resulf§]. Further- ~ which is induced by the beam upon its entrance into the
more, the coherence length of a partially coherent solitodogarithmically saturable nonlinear medium, the partially co-
with no twist, (U=0), is uniquelydetermined by its width, herent TGSM beam will propagate in such a medium without
which is again in accord with previously reported resultsspreading. Thus given the knowledge of the strength of loga-

[15]. The case of a nonzero twist is essentially different,rithmic nonlinearity, the coherence control of such solitons

though, because, given the soliton width, there is a range can be handled, in principle, by varying certain parameters of
a linear optical system at the stage of preparation of a TGSM

beam.

2 2
X1+X5

2
Tx

—_

(26)

2
2 Tco

% To conclude, we have obtained a closed-form analytical

50 expression for the mutual intensity of a class of partially

45 coherent solitons with a position-dependent twist phase,

’é‘ which can exist in logarithmically saturable media. Our ana-
2 40 lytical results may help to shed light on the properties and
IS 2 behavior of partially coherent solitons in other saturable me-
dia. Moreover, since the degree of spatial coherence repre-

30 sents a relatively unexplored dimension in physics of spatial
solitons, we believe that the demonstrated possibility of con-

25 trolling the soliton width and its spatial coherence length

1 1.1 1.2 13 1.4 simultaneously(and independentlymay stimulate a search
A 10-3 for effective means o€oherence controbf solitons in satu-
n X rable nonlinear media. In this connection, it should be men-
FIG. 2. The soliton widthr, versus the strength of the nonlin- tioned that the possibility of manipulating the degree of spa-
earity An for different values of the twist parameter Solid, dash- ~ tial coherence of a soliton without affecting the soliton
dotted, and dashed lines correspond to the cases=1, uo? intensity profile is not unique to saturable nonlinearities. The
=0.8, andu=0, respectively. The soliton coherence lengthris  Similar possibility has been recently shown to exist in the
=79 um. context of the partially coherent solitons with s&gb) inten-
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sity profile that are supported by noninstantaneous Kerr meaonlinearity of a medium exceeds a threshold imposed by the
dia [14]. We expect solitons with controllable spatial coher-degree of spatial coherence of the soliton.

ence properties to be useful in futuristic all-optical networks e author wishes to thank Professor Emil Wolf for criti-
for guiding other coherent or partially coherent beams agg readings of the manuscript. This research was supported
well as for a distortion-free image transmission thl’OUgh nonby the U.S. Air Force Office of Scientific Research under
linear media. Another potential application of partially coher-Grant No. F49260-96-1-0400, and by the Engineering Re-
ent solitons is related to the control of the modulational in-search Program of the Office of Basic Energy Sciences at the
stability of spatial solitons, which, as was recently U.S. Department of Energy under Grant No. DE-Fg02-90 ER
demonstrated in Ref29], occurs whenever the value of the 14119.
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