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Twisted Gaussian Schell-model solitons

Sergey A. Ponomarenko
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627

~Received 13 February 2001; published 30 August 2001!

We show that a certain class of spatially partially coherent solitons, namely, twisted Gaussian Schell-model
solitons, exists in a logarithmically saturable nonlinear medium with a noninstantaneous temporal response.
Unlike previously reported Gaussian Schell-model solitons, those discussed here carry a position-dependent
twist phase, which vanishes in the fully coherent limit. We demonstrate that the presence of the twist phase
provides an opportunity for controlling the degree of spatial coherence of such solitonswithoutaffecting their
intensity.

DOI: 10.1103/PhysRevE.64.036618 PACS number~s!: 42.65.Tg, 41.20.Jb, 42.25.Kb, 42.81.Dp
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A theoretical discovery of self-trapping of optical beam
@1# has generated a flurry of theoretical and experime
activity in the field of optical spatial solitons@2–16#. Fully
spatially coherent solitons were extensively studied in v
ous nonlinear media,~see@2–5# and references therein!. Re-
cently, spatially partially coherent solitons have been exp
mentally realized in a noninstantaneous photorefrac
medium@8#, and have been theoretically investigated in m
terials with photorefractive@9–11#, Kerr-type@12–14#, satu-
rable logarithmic@15# as well as with thresholding@16# non-
linearities.

The case of media with logarithmic nonlinearity stan
out because, first of all, fully spatially coherent solitons e
isting in such media are just the familiar lowest-ord
Hermite-Gaussian beams, which are generated by s
single-mode lasers. This circumstance facilitates the st
and application of such solitons. Second, the width of Gau
ian solitons in a saturable medium of logarithmic type
independent of the intensity@5#, which is a rather unusua
and, perhaps, even unique situation for nonlinear media.
thermore, the possibility of obtaining simple, analytical r
sults makes logarithmically saturable nonlinearity an attr
tive model for studying generic properties of fully as well
partially spatially coherent solitons in saturable nonline
media. To our knowledge, however, theonly partially coher-
ent self-trapped beams found in a nonlinear medium of lo
rithmic type to date@15# are the so-called Gaussian Sche
model beams~Chap. 5 of@17#!.

In this paper, we show that noninstantaneous, logarith
cally saturable nonlinear media support another impor
class of solitons, namelytwisted Gaussian Schell-mode
~TGSM! solitons. We apply second-order coherence the
in the space-time representation~Chap. 3 of@17#! together
with a self-consistent multimode approach along the lin
outlined in @9,12# to obtain a closed-form analytical expre
sion for the mutual intensity of such solitons. The mutu
intensity of each TGSM soliton possesses a nontrivialtwist
phase. This appears to be the first demonstration of the e
tence of partially coherent solitons carrying a positio
dependent phase that vanishes in the fully coherent limit.
presence of the twist phase is important because it sig
cantly extends the range of parameters for which stable s
tons exist in nonlinear media of logarithmic type. In a sha
contrast to the case of partially coherent solitons in non
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al

i-

i-
e
-

-
r

e
y

s-

r-
-
-

r

-

i-
nt

y

s

l

is-
-
e

fi-
li-
p
t-

urable Kerr-like media, where the physical characteristics
a soliton, which is made up ofN uncorrelated modes becom
effectively arbitrary as the number of modes becomes v
large@13#, the intensity as well as the degree of coherence
any TGSM soliton is completely specified by the solito
width, its spatial coherence length and the magnitude o
twist parameter. Moreover, we show that the possibility
varying the strength of phase twisting enables one to ge
ate twisted Gaussian Schell-model solitons of a given wid
with prescribed coherence properties in a wide range of s
ton parameters. Hence, one cancontrol the degree of spatia
coherence of these solitonswithout affecting their intensity.
We emphasize that gaining control over such a relativ
unexplored degree of freedom in soliton physics as spa
coherence of optical solitons may not only augment o
knowledge of fundamental properties of such solitons, bu
may also open up novel opportunities in several applied
eas such as, for example, imaging with solitons of arbitr
degree of spatial coherence. In this connection, it should
noted that advantages of imaging with partially coher
light have long been appreciated in the domain of line
optics @18#.

We begin by considering a statistically stationary optic
field U(r,z,t). In order for such a field to represent a sp
tially partially coherent beam propagating along thez axis,
U(r,z,t) must be of the form:U(r,z,t)5v(r,z,t)eikz,
where k5n0v/c, v and n0 are a carrier frequency and
linear refractive index of the medium, respectively. Furth
v(r,z,t) is an envelope field, which varies slowly with re
spect toz. The envelope field may be represented as a se
in the spatial modes:

v~r,z,t !5(
s

as~ t !cs~r,z!. ~1!

herecs(r,z) stands for a spatial mode function,s is a set of
indices labeling the modes, andas(t)5bse

ius(t), wherebs is
a real constant andus(t) is a random phase. Suppose, furth
that the response time of the nonlinear medium is mu
greater than a characteristic correlation time of phase fl
tuations across the partially coherent beam. It then follo
from the theory presented in Refs.@9,12# that the partially
coherent beam will propagate in such a noninstantane
medium as a stationary soliton if all the spatial modescs are
©2001 The American Physical Society18-1
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statistically stationary, mutually uncorrelated linear modes
a self-induced via the nonlinearity waveguide. The result
waveguide has a nonevolving index profile, and each spa
modecs(r,z) obeys the parabolic equation,

H 2ik
]

]z
1¹'

2 1k2nnl
2 ~ I !J cs~r,z!50, ~2!

with the nonlinear refractive indexnnl(I ) depending only on
the time-averaged intensity,I 5^uvu2&. In Eq. ~2!, ¹' is a
gradient transverse to the direction of propagation of
beam. Since we are interested in spatial coherence prope
of optical solitons, we have to calculate the mutual intens
at a pair of points specified by the vectorsr1 andr2 in the
transverse plane of the beam, defined as~Chap. 3 of@17#!

G~r1 ,r2!5^v* ~r1 ,z,t !v~r2 ,z,t !&. ~3!

Here the angular brackets denote the time average. We
also omitted the time dependence ofG because of the statis
tical stationarity of the envelope field. In order to perform t
time averaging, we recall that the spatial modes are mutu
uncorrelated, which implies the cancellation of the cro
mode interference terms. Mathematically, this is expresse

^as* ~ t !as8~ t !&5lsdss8 , ~4!

where ls5^uasu2& is the average amplitude of each mod
Next, on substituting from Eq.~1! for the envelope field into
Eq. ~3!, and on taking the time average with the help of E
~4!, we obtain for the mutual intensity the representation

G~r1 ,r2!5(
s

lscs* ~r1 ,z!cs~r2 ,z!. ~5!

In practice, the coherence properties of statistical fields
quantitatively described in terms of the degree of spatial
herence@19# at a pair of points specified by the vectorsr1
andr2, defined as

m~r1 ,r2!5
G~r1 ,r2!

AI ~r1!AI ~r2!
, ~6!

where the average intensity of the beamI (r) can be readily
shown to be expressed as

I ~r!5(
s

lsucs~r,z!u2. ~7!

Given an explicit dependence of the material refractive ind
on the intensity, the problem of finding self-trapped partia
coherent beams is reduced to solving the mode equations~2!,
together with Eq.~7!, which plays the role of the self
consistency condition.

We consider the following model for the nonlinear refra
tive index @5#:

nnl
2 ~ I !5~Dn!2ln~ I /I t!. ~8!
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Here Dn specifies the strength of nonlinearity, andI t is a
‘‘threshold’’ intensity. This expression for the nonlinear r
fractive index of the logarithmically saturable medium fo
lows from a more realistic model for such a material,n2

5n0
21(Dn)2ln(11I/It), in the limit I @I t . An additional jus-

tification for the use of the simplified formula~8! is based on
a comparison of numerically simulated dynamics of bea
in the media with ln(I/It) and with ln(11I/It) nonlinearities,
respectively. Such a comparison indicates that, provided
ratio I max/I t , I max being the peak intensity of the beam,
sufficiently large, the former model approximates well t
latter @15#.

In order to find partially coherent solitons that can exist
logarithmically saturable media, we first assume the inten
profile of a circular soliton to be Gaussian, so that

I ~r!5I 0expS 2
r2

2s I
2D , ~9!

whereI 0 is the axial intensity and the constants I represents
the soliton width. Under this assumption, Eq.~2! for the
spatial modecs takes the form

H 2ik
]

]z
1¹'

2 1k2~Dn!2@ ln~ I 0 /I t!2r2/2s I
2#J cs50,

~10!

which is equivalent to the Schro¨dinger equation for a two-
dimensional isotropic harmonic oscillator. In view of th
axial symmetry of the intensity profile assumed in Eq.~9!,
we express all the eigensolutions to Eq.~10! in polar coor-
dinatesr5(r,f) as @20#

cmn~r,z!5~r/ l'! umuexp@ i ~mf1kmnz!#Ln
umu~r2/ l'

2 !

3expS 2
r2

2l'
2 D . ~11!

HereLn
umu(x) is an associate Laguerre polynomial of ordern,

(n50,1,2, . . . ), and with the azimuthal indexm, (m50,
61, . . . ); l' is a characteristic width of each mode in th
transverse plane,

l'5F k2~Dn!2

2s I
2 G21/4

, ~12!

andkmn is a mode propagation constant given by the expr
sion

kmn5k~Dn/A2!2ln~ I 0 /I t!2~2n1umu11!/kl'
2 . ~13!

Suppose that the modal weightslmn are distributed ac-
cording to

lmn5A
n!

~n1umu!!
jn1umu/2hm, ~14!

where A is a positive constant, which is to be determin
later,j andh specify the weight of each mode in the repr
8-2
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TWISTED GAUSSIAN SCHELL-MODEL SOLITONS PHYSICAL REVIEW E64 036618
sentation~5!. We substitute the expressions forlmn andcmn
from Eqs.~11! and~14! into Eq. ~5!. Next, we sum over the
modes with the same azimuthal mode indexm, but with dif-
ferent radial indicesn, using the following formula for a
series of the associated Laguerre-Gaussian polynomials@21#:

(
n50

`
n!

~m1n!!
znLn

m~x!Ln
m~y!

5
~xyz!2m/2

12z
expF2

z~x1y!

12z G I mSA4xyz

12z D .

~15!

HereI m(x) is a modified Bessel function of orderm. We then
perform the summation over the azimuthal mode indexm
utilizing the generating function for the modified Bess
functions@22#,

expF S t1
1

t D z

2G5 (
m52`

`

tmI m~z!, ~16!

as well as the propertyI m(x)5I 2m(x). The resulting expres
sion for the mutual intensity of a stable@23# partially coher-
ent soliton carrying the twist phase is found to be

G~r1 ,r2!5I 0expS 2
r1

21r2
2

4s I
2 D expF2

~r12r2!2

2sc
2 G

3exp@ iur1r2sin~f12f2!#, ~17!

where

1

2s I
2

5
11j2~h11/h!Aj

~12j!l'
2

, ~18a!

1

sc
2

5
~h11/h!Aj

~12j!l'
2

, ~18b!

and

u5
~h21/h!Aj

~12j!l'
2

. ~18c!

It follows at once from Eqs.~6! and ~17! that the degree o
spatial coherence of TGSM solitons is given by

m~r1 ,r2!5expF2
~r12r2!2

2sc
2 Gexp@ iur1r2sin~f12f2!#.

~19!

In these expressions,s I is the soliton width,sc is the spatial
coherence length of the soliton, andu is a twist parameter
@24#. We recall that each spatial mode of the TGSM soliton
an isotropic two-dimensional harmonic oscillator. The co
ponent of the angular momentum of such an oscillator al
the axis of symmetry is known to be conserved@25#, which
is manifest in polar coordinates, sinceeimf are simultaneous
03661
l
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eigenfunctions of the Hamiltonian and thez component of
the angular momentum of each mode. The invariant tw
phase arises as a consequence of the presence of such
tional integral of motion. It should also be noticed that
deriving Eq. ~17!, we have already imposed the se
consistency condition by requiring that the soliton intens
amplitude I 0 and width s I match those of the ansatz~9!.
Thus the self-consistency requirement specifies the valu
the constantA, A5(12j)I 0.

Further, givens I , sc , and u, there are two unknown
parameters,j and h, in three equations~18!. Hence, these
equations not only provide the values of the modal weig
in terms of known parameters, but they also specify a re
tion between the spatial coherence length of the soliton
the twist parameter for which such TGSM solitons exist.
order to find this relation, we first express the quantitiesj
andh in terms of the soliton parameters. It follows from Eq
~18b! and ~18c!, that

h5A11usc
2

12usc
2
. ~20!

The non-negativity of every coefficientlmn , together with
Eq. ~20!, leads to the condition on the twist parameter, wh
is familiar from linear optics of partially coherent TGSM
beams@26,27#

2
1

sc
2
<u<

1

sc
2

. ~21!

It is evident from this inequality that the twist phenomen
is characteristic of partially coherent solitons, since it va
ishes in the fully coherent limit, (u→0 assc→`). Next, we
infer from Eqs.~18a! and ~18b!, that

j5
l'
2 /seff

2 21

l'
2 /seff

2 11
, ~22!

where

1

seff
2

[
1

sc
2

1
1

2s I
2

. ~23!

It then follows, again from the non-negativity of thelmn’s,
that

l'>seff . ~24!

Finally, on substituting forh andj from Eqs.~20! and ~22!
into Eq.~18b!, we arrive after some algebra at the express

s I

sc
5F ~a221!/2

11A11u2sc
4~a221!

G 1/2

, ~25!

wherea252k2s I
2(Dn)2. Equation~25! defines the range o

parametersu andsc that can serve as the twist strength a
the spatial coherence length of a soliton of the widths I . For
these soliton parameters, inequality~24! can be shown to be
8-3
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SERGEY A. PONOMARENKO PHYSICAL REVIEW E64 036618
fulfilled. The relation between the soliton parameterss I /sc

and usc
2 is displayed in Fig. 1. This figure illustrates th

dependence of the coherence length of a soliton of a g
width on the magnitude of the twist. It is also instructive
plot the soliton widths I versus the strength of the nonlin
earity Dn of the medium for different values of the twis
parameteru ~see Fig. 2!. It is seen from Fig. 2 that for a fixed
value of the coherence length, the dependence ofs I on u,
while strong for relatively weak nonlinearities, tends to b
come less pronounced as the magnitude of the nonlinea
fractive index increases.

The analysis of Eq.~25! indicates that in the fully coher
ent limit (sc→`), the soliton width is equal tos I

51/A2kDn, in agreement with earlier results@5#. Further-
more, the coherence length of a partially coherent soli
with no twist, (u50), is uniquelydetermined by its width,
which is again in accord with previously reported resu
@15#. The case of a nonzero twist is essentially differe
though, because, given the soliton widths I , there is a range

FIG. 1. The ratios I /sc of the soliton widths I , which is kept
fixed, to the variable spatial coherence lengthsc as a function of
the parameterusc

2 . The parametera is taken to be such thata2

5101. Gaussian Schell-model solitons correspond to the maxim
of the curve.

FIG. 2. The soliton widths I versus the strength of the nonlin
earityDn for different values of the twist parameteru. Solid, dash-
dotted, and dashed lines correspond to the casesusc

251, usc
2

50.8, andu50, respectively. The soliton coherence length issc

579 mm.
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of attainable soliton coherence lengths. Thus the presenc
the twist provides an opportunity for generating solitons w
prescribed widthas well as prescribed spatial coherenc
length. To produce such TGSM solitons experimentally, o
can follow the method, which is somewhat similar to t
scheme proposed theoretically in@26# and implemented ex-
perimentally in@28# in the context of linear optics. First o
all, one can pass a fully coherent, elliptic Gaussian beam
given widthss Ix ands Iy , which propagates in a linear me
dium, through a rotating diffuser. Provided the absorption
light is negligible, the diffuser acts as a random phase scr
producing an anisotropic, GSM beam. The mutual intens
of such a beam at a pair of points, specified by the vec
r15(x1 ,y1) andr25(x2 ,y2) in the transverse plane of th
beam, is given by the expression

G~r1 ,r2!5BexpS 2
x1

21x2
2

4s Ix
2 D expS 2

y1
21y2

2

4s Iy
2 D

3expF2
~r12r2!2

2sc0
2 G . ~26!

HereB is a positive constant, andsc0 is the coherence length
of the anisotropic GSM beam. If the resulting anisotrop
GSM beam is then passed through a system of cylind
lenses similar to the one utilized in@28#, a TGSM beam
emerges at the entrance to the logarithmically saturable n
linear medium. Finally, we can adjustu and sc so that the
self-consistency condition~25! is fulfilled. Since such a
TGSM beam is an incoherent superposition with the pro
modal weights of the modes of the nonlinear wavegui
which is induced by the beam upon its entrance into
logarithmically saturable nonlinear medium, the partially c
herent TGSM beam will propagate in such a medium with
spreading. Thus given the knowledge of the strength of lo
rithmic nonlinearity, the coherence control of such solito
can be handled, in principle, by varying certain parameter
a linear optical system at the stage of preparation of a TG
beam.

To conclude, we have obtained a closed-form analyti
expression for the mutual intensity of a class of partia
coherent solitons with a position-dependent twist pha
which can exist in logarithmically saturable media. Our an
lytical results may help to shed light on the properties a
behavior of partially coherent solitons in other saturable m
dia. Moreover, since the degree of spatial coherence re
sents a relatively unexplored dimension in physics of spa
solitons, we believe that the demonstrated possibility of c
trolling the soliton width and its spatial coherence leng
simultaneously~and independently! may stimulate a search
for effective means ofcoherence controlof solitons in satu-
rable nonlinear media. In this connection, it should be m
tioned that the possibility of manipulating the degree of s
tial coherence of a soliton without affecting the solito
intensity profile is not unique to saturable nonlinearities. T
similar possibility has been recently shown to exist in t
context of the partially coherent solitons with sech2(x) inten-

m
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sity profile that are supported by noninstantaneous Kerr
dia @14#. We expect solitons with controllable spatial cohe
ence properties to be useful in futuristic all-optical netwo
for guiding other coherent or partially coherent beams
well as for a distortion-free image transmission through n
linear media. Another potential application of partially coh
ent solitons is related to the control of the modulational
stability of spatial solitons, which, as was recen
demonstrated in Ref.@29#, occurs whenever the value of th
ett
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nonlinearity of a medium exceeds a threshold imposed by
degree of spatial coherence of the soliton.
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