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Theoretical analysis of acoustic stop bands in two-dimensional periodic scattering arrays
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This paper presents a theoretical analysis of the recently reported observation of acoustic stop bands in
two-dimensional scattering arrayfobertson and Rudy, J. Acoust. Soc. AdD4, 694 (1998]. A self-
consistent wave scattering theory, incorporating all orders of multiple scattering, is used to obtain the wave
transmission. The band structures for the regular arrays of cylinders are computed using the plane-wave
expansion method. The theoretical results compare favorably with the experimental data.
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[. INTRODUCTION acoustic band structures have been further measured for
acoustic transmission through two-dimensiof24)) periodic
When propagating through media containing many scatarrays of metal cylinders placed in the glIf3]. The authors
terers, waves will be scattered by each scatterer. The scateported experimental observation of acoustic stop bands and
tered waves will be scattered again by other scatterers. Thigave transmission for both square and triangular arrays. The
process is repeated to establish an infinite iterative pattern afpulse response technique was used to determine the trans-
rescattering between scatterers, forming a multiple scatteringiission over a broad frequency band width, whereas the
procesg1]. Multiple scattering of waves is responsible for a acoustic dispersion relation was extracted from the phase in-
wide range of fascinating phenomena, including such asormation.
twinkling light in the evening sky and modulation of ocean  The main purpose of this paper is to provide a theoretical
ambient sound2,3]. On smaller scales, phenomena such asnvestigation of sound transmission by 2D arrays of rigid
electron transport in impure solidgl] are also results of cylinders in air in line with the experiment described by
multiple scattering. When waves propagate through medigobertson and Rud13], providing a direct comparison of
with periodic structures, the multiple scattering leads to thehe acoustic transmission between theory and experiment.
phenomenon of band structures. That is, waves can propgor the purpose, we employ a self-consistent multiple scat-
gate in certain frequency ranges and follow certain dispertering theory[19] to compute the acoustic transmission
sion relations, while in other frequency regimes wave propathrough arrays of scattering cylinders. Meanwhile, the acous-
gation may be stopped. The former ranges are called allowegt pand structures are computed using the plane-wave
bands and the latter the forbidden bands. method well prescribed by Kushwaltfia4]. We will show

The wave dispersion bands were first studied for electhat the theoretical results agree very well with the observa-
tronic waves in solids, providing the basis for understandingijgn.

the properties of conductors, semiconductors, and insulators
[5]. In late 1980s, it became known that such a wave band
phenomenon is also possible for classical waves. The studies
on manipulation of classical waves were started with electro-
magnetic waves in media with periodically modulated refrac-  A. Acoustic scattering by arrays of parallel cylinders
tive indices[6]. Since then, optical wave bands have been
extensively studied, yielding a rich body of literaturel.
The theoretical calculations have proven to match well wit
the experimental observatiof8]. The modulation of optical
waves by periodic media has led to a number of practic
applications including the design of photonic crys{é the

Il. FORMULATION OF THE PROBLEM

ConsiderN straight identical cylinders located E\t with

hi =1,2,... N to form either a regular latticéor a random
array perpendicular to the-y plane; the regular arrange-
ent can be adjusted to comply with the experimir].
here are two types of the regular arrangements of the cyl-

optical fibers[10], and waveguide devicdd1]. Recently, it @nders: the square Iattic_e and the trie_mgular lattice. Thg cyl-
has also been found that a living organism may also displa ders are along the axis. An acoystlc source transmitting
a remarkable photonic engineerifig]. monochromatic waves is placed @t, some distance from

In contrast, research on acoustic wave band structures hie array. The scattered wave from each cylinder is a re-
just startedfor example, refer t13]). Although theoretical Sponse to the total incident wave composed of the direct
computations of band structures have been well documentajave from the source and the multiply scattered waves from
for periodic acoustic structurdd4], the experimental work E)ther cylinders. The final wave reaches a receiver located at
was only recent, and to date only a limited number of mea#, is the sum of the direct wave from the source and the
surements have been reported. One of the first observatiossattered waves from all the cylinders. The cylinders used in
was made on acoustic attenuation by a minimalist sculpturéhe experiment are metal cylinders. Numerical computation
[15] and further studied in the laboratof¥6]. The authors verifies that for acoustic scattering, the effect due to the shear
obtained a sound attenuation spectrum, which was later verinodulus is negligible for such a cylinder in air. This has also
fied by the band structure computatiph7,18. Recently, been confirmed by experimerts6]. When the shear waves
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are ignored, the exact solution for the scattering process cag expresp(r,r ), for eachj #1i, in terms of the modes W|th

be conveniently formulated, following Twerskg.9]. respect to théth scatterer. In other words, we wapy(r,r ;)
To exactly reproduce the experimental data, it would bq the form ' '

necessary to know the information about the apparatus, the
acoustic pulses generated, the lab environment, and the ar- > B
rangement of the sounding and receiving devices. As the pS(F,Fj)z > Clia(klr—ri|)e'¢r-r. (6)
information is not readily available and is also unnecessary n=-e
for the present theoretical investigation, we make certain re
sonable simplifications.

For simplicity yet without compromising generality, we
approximate the acoustic source as a line source located at
origin, i.e.,rs=0, the numerical computation indicates that H{(k|r —r | e =M1, > HE (K|r,—r;])
the difference between a line source and a plane wave is not I==
essential. Without the cylinders, the wave is governed by

his can be acheived.e., C!' expressed in terms of!)
through the following add|t|0n theorefi20]

xe’i'¢fi*fjJ|(k|F— Fi|)ei'¢’F*Fi.

(V2+Kk?)G(r)=—475?)Xr), (1) (7)
In the cylindrical coordinates, the solution is Taking Eq.(7) into Eg.(3), we have
i (1) - Y .
G(r)=imHg" (kr). 2) ps(r,rj)znZ i wAlein?r, rJ.Zx H, (k|ri—r;)
whereH{Y is the zeroth order Hankel function of the first g - L g
kind. In this sectionj stands fory—1. xe Nor-rJ (klr—ri)e! r-r. (8

With N cylinders located at; (i=1,2, ... N), the scat-

. . . Or by switching the order of summation, we have
tered wave from th¢th cylinder can be written as

o ©

. N i@ (KIF —F )i,
odfiy= 3 inAHOM-Fperin, @ POTTE | , mARK e

n=—o
X J,(K|r—r;)e'¢r-r., (9)
whereH(" is thenth order Hankel function of the first kind,
A} is the coefficient to be determined, and_; is the azi- Comparing with Eq(6), we see that

muthal angle of the vector—r; relative to the positivex o _

axis. o cli= > imAH® (K|ri—r;))e M. (10)
The total wave incident around tlh scatterep;,(r) is a ==

superposition of the direct contribution from the SOUrce 5w we can relatd! to C' (and thus toA]) through Eq.

Po(r)=G(r) and the scattered waves from all other scatter(4) First note that through the addition theorem the source
ers wave can be written,

N >, .
Pin(1) = po(r) + E# P(FF ). @ po(r) =imHE (k)
j=1j#i

—i O (elr Na—il ¢ s P helldrf
In order to seperate the governing equations into modes, we 'W,:E_w HE(K[ri)e™ i (k[r—ri[)e" @,
can express the total incident wave in term of the modes
aboutr; :

= 2 SI(Kr-ripet?r, (11

[

Pin(1)= 2 Brdn(KIr—riem . 5 where

i—i ~HO Kl Ne il ¢r,
The expansion is in terms of Bessel functions of the first kind S=imHZ(Krihe " . (12)

Jn to ensure thapj,(r) does not diverge as—r;. The co-  Matching coefficients in Eq4) and using Eqs(5), (6), and
efficientsB,, are related to thé], in Eq. (3) through Eq.(4).  (11), we have
A particularB,, represents the strength of thth mode of the \
total incident wave on thigh scatterer with respect to thh D .
, . : - Bi=sl+ > cClf, (13
scatterer’s coordinate systefne., aroundr;). In order to i=Ti+i
isolate this mode on the right-hand side of E4), and thus N
determine a particulaB,, in terms of the set oAl , we need or, expandingCl',
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=S+ E 2 i ATH (K| =1 )ell M-,
j=1lj#i l=—
14

At this stage, both th&), are known, but bottB! andA| are
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then Eq.(14) becomes

N o0
rinAin—j:lequ I;m GILAI=T,. (24)

relating them

matrix equation for the coefficients! . Once solved, the

The boundary conditions are that the pressure and tht#tal wave at any point outside all cyllnders is

normal velocity be continuous across the interface between a
scatterer and the surrounding medium. The total wave out-

side theith scatterer iSpey= pin(r)+ps(r,r,). The wave

inside theith scatterer can be expressed as

Phn(1) = E D Jn(Ky|r—ri)enerr. (15)

The boundary conditions are then

Pext 901 = Pintl g0 (16)
and
E(gpext :i(ypint (17)
PN | P an (mi,

wheredQ' is the boundary of théth scattererk and p are

N )
p(r)= |7-rH(1)(k|r|)+Z 2 imALHM(k|r =) ener—r,
1=

(29

We must stress that total wave expressed by(E§). incor-
porate all orders of multiple scattering. We note, however,
that an inclusion of the lowest order in multiple scattering
may be sufficient for certain situatiori3. Sachez-Dehesa,
private communication We also emphasize that the above
derivation is valid for any configuration of the cylinders. In
other words, Eq(25) works for situations that the cylinders
can be placed either randomly or orderly.

B. Band structures of regular arrays of cylinders

For a regular array of the cylinders, band structures for
the wave propagation appear. The band structures can be
readily computed by the plane-wave methddl]. Though

the wave number and density of the surrounding mediumihe method has been well documented by Kushwjdi,

andk} and p} are the wave number and density of ik
scatterer, respectively. Using Ed8), (5), and (15), multi-

for the sake of convenience we outline the approach as fol-
lows.

plying both sides of the boundary condition equations by The wave equation is

e"¢ -1, and integrating over the bounda#§)', we have for

the case of circular cylindrical scatterers,

B! J (ka) +imAlHW(ka)=D'J,(kal/h), (18

. T T
Bl J/(ka)+iwAHY (ka)= ﬁD'an(ka'/h').

(19
Here a' is the radius of thath cylinder, g'=p}/p is the
density ratio, andh' = k/k} =
theith cylinder. Elimination ofD}, gives

Bl =il Al (20)
where
[ HPka) Iy (kalh) — g'hiHEY' (kal) Jy(kal7h')
g'h'J/(ka')J,(ka'/h')—J,(ka')J/ (ka/h")
(21
If we define
T =Sl lim=HDK|r|)e ", (22)
and
Gli=HO (Kr—rhet=moi—, i+j, (23

ci/c is the sound speed ratio for

2

1 . o
S|+ ()= (26
o0 PO o Fen P

v.

wherep(r) andc(r) are the mass density and sound speed,
respectively; both are modulated by the periodic structures,
i.e., inside the cylinders the values are that of the cylinders,
while outside the cylinders they take the values of the me-
dium. According to Bloch’s theorenfb], the solution of the
pressure field has the Bloch form

p(N=eXT>, $p(G)e T, 27)
G

whereK is termed as the Bloch wave vect@,is the recip-
rocal lattice vectof5]. The summation is made for all pos-
sible reciprocal vectors.

For the periodic structures, both * and (pc?) "1 in Eq.
(26) can be expanded by discrete plane waves as follows:

S
p(1)e(r)

—E o(6)e®", and

—2 7(G)eleT.
p(r) G

(28)

As p(r) and c(r) are known parameters, bo#(G) and

n(é) can be determined from an inverse Fourier transform.
Substituting Eqs(27) and (28) into Eq. (26), we obtain
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e
o

> [a(G—G")(K+G)-(K+G')— n(G—G")w?]$r(G')
G!

-y
2]
T

=0, (29 14+ i
which has the matrix form %12' .
gw— ]
> T'gadr(G)=0. 2,
G’ ]
3 Stop Band
The dispersion relation connecting the frequeacynd the ge
wave vectorK is determined by the secular equation at
defl'g g ]=defa(G—G')(K+G)-(K+G') 2
—9(G—G")w?]s s 0 2500 5000 7500 10000
' Frequency (Hz)
=0, (30

FIG. 1. Transmission as a function &k along theI'X (i.e.,
where “det” denotes the determinant. Equati@®) leads to ~ [100) direction for the square lattice.
the dispersion relation between the frequengK) and the  Here we note an editorial error in E() of [13]. In the

wave vectorK. We use the standard eigenvalue inversionexperiment carried out ifiL3], the following parameters are
method in the IMSL library to solve Eq30) to obtain the used.

dispersion relation. (1) For the square latticeg=3.7 cm andd=2.34 cm.
This gives a filling factor of 0.31.
lIl. NUMERICAL RESULTS (2) For the triangular lattice, for the same cylinders, the

filling factor is fixed as 0.366, leading to a spacing of 3.683
Numerical computation has been performed to obtain them,.

transmitted acoustic wave and the acoustic band structures. The theoretical results show that the wave transmission is

In particular, the numerical computation has been carried oWensitive to the filling factor, as well as the number of the
for the experimental situatior{43]. cylinders. In order to limit the possible finite size effects so
First we consider the transmitted waves described by Ecthat they do not obscure the observation of the band gap
(25). In the simulation, all the cylinders are assumed to besffects, we found that we need to have more rods than used
the same, in accordance with the experiment. Moreover, thgy the experiment. For frequencies at which wave propaga-
radii of the cylinders and the lattice constants are also takeﬂon is possib|e, there is sensitive interference between the
from the experiment. Several values for the acoustic Conpropagating wave and the reflected waves at the boundaries,
trasts between the Cylinder and the air and different Cy|indel’§ie|ding the familiar pattern of nulls and peaksl If there is a
including the conduit cylinders originally used in the experi- hand gap, the transmission will not be possible within the
ment were used in the initial stage of computation. We foundyap. Then the received signal is small, and the transmission
that the results are in fact insensitive to the detailed materig)j|| be re|ative|y insensitive to the boundary effects. |n other
composition of the cylinders as long as the contrasts exceefjords, the inhibition of a band gap will not be altered by
a certain value. This agrees with the previous experimenta}arying the sample size. Our numerical results confirm this.
observation[16] and the theoretical resultgl8]. In the The transmission spectrum for the square lattice of the
present Computation, we also allow the total number of thQOds is presented in F|g 1 for the propagation a|0ng]—w(e
cylinders to vary from 36 to 500. The cylinders are placed tqj.e.,[100]) direction. In the computation, we set the number
form a square lattice or a triangular lattice. of cylinders to 200. The transmitter and receiver are placed
Assume that the lattice spacingas the diameter of the at such a small distance from the scattering array that the
Cylinders isd. For the square lattice, the fllllng factor, that is boundary effects do not suppress the band gaps. Here we
the fraction of the sample area occupied by the scatteringbserve a well defined inhibition regime ranging from about

cylinders, is calculated as 3 kHz to 5.5 kHz. Within this range of frequency, the trans-
mission is significantly reduced. This agrees very well with
d? the experimental data shown in FigaBof [13]. We have
f= E' (3D also performed a series of numerical tests with respect to
changing the number of cylinders or the shape of the array.
For the triangular lattice, the filling factor is given as All results indicate th_at _the reg?me o_f inhi_bition is rather
stable. For the transmission outside this regime, however, the
2 transmitted amplitude can vary significantly as the number of
f= ) (32)  scatterers or the shape of the array changes. For example, the
2\3a? transmission through an array ofx@0 will differ from that
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o . . . . s s FIG. 3. The theoretical dispersion relation is shown for the
0 1000 2000 3000 4000 5000 6000 7000 square. The experimental data read fridr@] are also plotted as the
Frequency (Hz) black dots.

FIG. 2. Transmission as a function &b along theI'X (i.e.,

[100]) direction for the triangular lattice. about 5.1 and 5.4 kHz. Again the stop band cannot be clearly
identified in our transmission calculation.
through an array of 825, even with the same lattice con- The theoretical dispersion relation is shown in Figs. 3 and
stant. The oscillatory behavior for frequencies below 2.8 kHZ4 for the square and triangular lattices, respectively. The ex-
is purely caused by the boundary. They may or may noperimental data read frofii3] are also plotted as the black
appear, depending on the arrangement of the array. But tH#ots in the figures.
inhibition behavior within the range between 3-5.5 kHz re-  First we consider the square lattice case. Overall speak-
mains quantitatively the same for both arrays. Such a stabl@g, the experimental and theoretical data are in a good
inhibition regime is a clear indicator for the stop band. Thisagreement. The experimental data are only slightly lower
will be further confirmed by the band structure calculationthan the theoretical prediction. For propagation along the
given below. I'M direction, the experimental data agree remarkably well
We also performed the transmission calculation using Eqwith the theory for the first dispersion curve. For higher fre-
(25) for propagation along thEM (i.e.,[110]) direction. The ~ quencies, the experimental data seem to follow third disper-
band structure calculation indicates a small stop band withiion band, though we see that some experimental data fall on
about 5.6 and 6.0 kHz. Unfortunately, this stop band cannoth® second band. The agreement between the theory and the
be clearly identified in our transmission calculation. In the€Xperiment is slightly obscured by the presence of three
experiment, the transmission data in this case is also led@nds near the edge of the Brillouin zone. The theory pre-
compelling[13]. The authors of13] then used the phase dicts a small band gap, as d|s_cussed ea_rller. N_ear the band
information extracted from the Fourier transformed data to?2P: the t.heory and the experiment are in a Sl'ght discrep-
locate the anomalous phase delay caused by the stop barficy- Again, for the transmission along th& direction, the
Our numerical data on the phase delay is again less convinc-
ing. Several reasons may contribute to this. Among others, a
prominent reason may be due to the finite number of cylin-
ders. In principle, the stop band from the band structure cal-
culation is obtained for an infinitely large array of scatterers.
The fact that there is only a small gap in this situation would
imply that a vastly large number of scatterers is required in
the transmission calculation. Our present computing facili-
ties, however, do not allow us to simulate the scattering from

J
7x10*

2
2
%

5x10*

4104

Angular Frequency (rad/s)

- g 3xi0*
an array of exceedingly large size.

We also performed numerical computation of the trans- 2x10*
mission through the triangular lattice. The transmission spec- \
trum is shown in Fig. 2 for wave propagation along 1% |
direction. Again we observe a stop band between 4 kHz and 0

5.7 kHz. This is also in remarkable agreement with the ex- 60 60 40 -2 0 20, 40 60 80
. . . . Wave Vector (m )

perimental observation, referring to Fig(a#t of [13]. The

computation of the transmission along th& direction is FIG. 4. The theoretical dispersion relation is shown for the tri-

also done. Like in the case of the square lattice, the bangngular lattices. The experimental data read ffa6j are also plot-
structure calculation indicates a narrow stop band withirted as black dots.
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agreement in the lower dispersion band appears better than aase, the stop band estimated from the transmission spectrum
the higher band. A reason may be that the phase is relativefyom Fig. 2 agrees with the dispersion band calculation in the
hard to accurately measure at high frequencies. For bothX direction.
bands, the experimental data are lower than the predicted
values. Comparing the band structure results in Fig. 3 with
the transmission results in Fig. 1, we see that the stop band |n conclusion, in this paper we have presented a theoret-
predicted from the transmission spectrum is also slightlyical analysis of the acoustic propagation through two-
shifted toward lower frequencies. The further computationdimensional regular arrays of parallel cylinders in air. A self-
indicates that such a very small shift is due to the finiteconsistent method is used to compute the wave transmission,
number of cylinders. Increasing the number of scatterers wiltaking into account all orders of multiple scattering. We
lift a bit the stop band in the transmission spectrum. stress that this approach in fact allows us to consider any
Now we consider the triangular lattice. Again, from Fig. 4 configuration of the scattering arrays. For the regular arrays,
we see that the agreement between the theory and the expeffie plane-wave method is used to calculate the band struc-
ment is genuinely good, considering the complication in-tures. Two lattice arrangements are considered. The theory
volved in the experiment. However, there are a few smalfre then applied to the experimental situations, yielding fa-
discrepancies. First, the experiment observes a wider stofPrable agreements.
band along thd'X direction, and the experimental observa-
tion of the stop band along tHéM direction is not so obvi-

ous. From Fig. 4, we see that the two lowest dispersion The work received support from National Science Coun-
bands are observed by experiment. In the triangular latticeil of ROC.

IV. SUMMARY
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