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Wave propagation in one-dimensional optical quasiperiodic systems
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One-dimensional quasiperiodic optical systems are studied, using ad8aenlike equation with a poten-
tial V(x) =2\, cosx+2\,cosax as an approximation to the wave equation in the slowly-varying wave ap-
proximation. It is shown that small changes in the parameteroduce major changes in the band structure of
the system. For certain values ®f the band structure consists of many “thin bands” and allows the possibility
of dense multiplexing. The propagation of “noisy optical waves” that contain many frequencies with a thermal
distribution is also studied with a thermodynamic model. Quantities like the thermodynamically averaged
group velocity and the thermodynamically averaged inverse effective mass are introduced in order to quantify
the complex relation between the frequency and wave vector in these systems.
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I. INTRODUCTION [— 02— Q2= —12Qdp— 024 )

It is well known that in solid state physics wave propaga-In the slowly varying wave approximation, we assume that
tion in periodic structures leads to banf@istervals of al-  the second term on the right hand side of Bj}.is negligible
lowed frequencies In this context the waves describe elec- in comparison to the first term. In this case, we get a
trons. This well known theory motivated recently the StudySchr"ujinger_like equation. We use units in which)2=c
of a similar phenomenon in the context of electromagnetic=k;=1, and all quantities are normalized accordingly.
waves at microwave and optical frequencies propagating in |n order to incorporate the varying refractive index, we
structures with periodic refractive indephotonic crystals, include a potentiaV(x). In this way we get the following

e.g.,[1]). In this context we get bands for the electromag-equation written in the time-independent form
netic waves. In general, the periodicity in the refractive index

of the material needs to be proportional to the wavelength. [— 2+ V(X)](X) = 0 gh(X). (4)
For optical frequencies very small periods are required, and
very recently such materials have been fabricated. In this paper we study explicitly the above eigenvalue equa-

From a mathematical point of view, this work is in the tion. Its solutions can be used for the solution of the wave
context of periodic systems that have been studied for mangquation in the slowly varying wave approximation, which is
decades in various contexts: Partial differential equationsijirst order with respect to time derivative; or even for the

solid state Physics, Dynamical systems, etc. The solutions @olution of the “full” wave equation, which is second order
the corresponding equations are based on the Floquet-Bloghith respect to time derivative.

theory. We consider the potential
Work on strictly periodic structures has recently been ex-
tended to quasiperiodic structuresg.,[2]). Most of the ex- V(X) =2\, COSX+ 2\, COSaX, (5)

isting work in this direction considers the discrete Sehro
dinger equation in the context of the tight binding which is periodic for rational values af, and quasiperiodic

Hamiltonian for irrational values ofa. A periodic refractive index will
_ lead to a potential with many harmonics, and here for sim-
Hy=y(n+ 1)+ ¢(n-1)+V(n)¢(n) (1) plicity we consider only two harmonics with spatial angular

frequenciexyy=1 andpy=« (wherey=1/q, a«=p/q, and
P andq are coprime integefsA quasiperiodic refractive in-
dex can lead to a potential of the form of E&) with irra-

(e.g., Fibonacci structurgsfor both one- and two-
dimensional systems. This mathematical work motivate
work on oneq{3,4] and two-dimensiondl5] photonic quasi-

crystals. tional «. The quasiperiodic.natqre of t_he ref_ractive index
In this paper we consider the wave equatiom units MY be due to small qu_ctuatlons in the_d|electr|c constants or
wherec=kg=1): widths of the several pieces that constitute the stack, as stud-
ied in Ref.[4].
[— a2+ 2 y=0. 2) We study the spectrum of E¢4) and show that for ratio-

nal values ofa (in which case we have bands according to
In the “slowly varying wave approximation,” we assume a Bloch theory, small changes in the parameter produce
wave of the form exp{t)¥(x,t), where() is an “average major changes in the band structure of the system. When
frequency,” and Eq(2) reduces to =p/q, wherep andq are coprime integers, armgs large, the
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band structure consists of many very thin bands, which can
be used for the transmission of many different optical signals
(dense multiplexing There is an increasing demand for mul-
tiplexing in modern communications systems. Our results
demonstrate that suitable valuesstan achieve ultradense
multiplexing, with important implications for optical tech-
nology. We note that the sensitivity of our results to the val-
ues ofw is similar to the “anomalies” reported if4].

In practice, even a “monochromatic” optical signal will
contain a distribution of frequencies due to noise. In order to
model this, we assume a thermal distribution of frequencies,
and study the thermodynamics of this system. It is shown
that small changes in the parameteproduce major changes
in the values of the thermodynamic quantities of the system.
The concepts of thermodynamically averaged group velocity
and thermodynamically averaged inverse effective mass art
introduced in order to quantify the complex relation between
the frequency and wave vector.

IIl. BACKGROUND FORMALISM

We consider Eq(4) with the potentialV(x) of Eqg. (5).
The potential is periodic for rational values af=p/q
(wherep andq are coprime integeyswith period 27q; and
quasiperiodic for irrational values atf. It is seen that for
rational «, very small changes in the value @fcan produce
very large changes in the period. For examplegahanges
from 1/2 to 10/21 the period changes fromr 40 42:7r. Be-
low we will present results for various quantites and for vari-
ous rational values of very close to a certain rational.
Irrational values ofa will also be studied through the con-
tinued fraction expansion:

a=agy+ 1 =lag;ay,as, ...], (6)
gt ————
a2—|— e
where
Pn+1=an+1PntPn-1, (7)
On+1=®n+10n T 0n-1, (8)

andp_;=1,q_1=0,pgy=ag, 0o=1. The sequence of con-
vergents

P1 P2

PR PR ©

— o

tends toa in an oscillatory manner.
For potentials with period 2q, use of Bloch’s theorem
leads to the solution
ikx
(X)) =ex R Po(X), (10

wherey(x) is a periodic function with period 29 that can
be expanded as

w(0)

40

20
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FIG. 1. The eigenvalues(k=0) against\, for the potential
V(X) =2\ cosx+2\,cosf/2) with \,=0 (solid lines and A,
=0.1 (star lineg. We use units in which@=c=kg=1.

Pox)= X ane™. (11)

Y (x) is a quasiperiodic function
(X +27Q) = P (x) €27,

wherek takes values from 0 to 1. Combining Eq&0) and
(11), and inserting into Eq(4), we get the matrix equation

(13

(12

Anmam=o(K)a,,

where

n+k\?2
T) s(n,m)+x8(n—q,m)+\,8(n+q,m)

nm—

+N8(n—p,m)+A,8(n+p,m), (14)

and é(n,m) is Kronecker’s deltaw(K) is a periodic function
of k with period 1.

We have truncated the infinite matrices by allowing the
indices to take values from Ny, 5, t0 N2 @nd have evalu-
ated numerically the eigenvectors and eigenvalues. In all our
numerical results we useéd,,,,=10q. In Fig. 1 we show the
eigenvalues againsty, for V(x) =2\, cosx+2\,cosi/2),
k=0, and forA,=0 (solid lineg; A,=0.1 (star lines. In the
latter case the spectrum is denser due to the fact that the
period is larger. This is true even for very small values gf
and it is seen that small perturbatiody the term
2\, cos/2)] produce major changes in the spectrum. As the
amplitude of the potential increasésy increasing\ ), we
get splitting of the eigenvalues.

IIl. BANDS AND MULTIPLEXING

In this section we show that small changes in the param-
eter « of the potential produce major changes in the band
structure of the model. We study two aspects of the general
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FIG. 2. The bands for the potential\2cosx+2\,cospx/q) FIG. 3. The bands for the potential\2cosx+2\,cospx/q)
with A;=0.05, A,=0.05, and various values @/q close to 1/2.  with A\;=0.2, \,=0.2, and various values @/q close to 1/2. We
We use units in which 2=c=kz=1. use units in which 2 =c=kg=1.

problem. In Sec. IllA, we consider numbers /g, very Eqg. (8). Due to this increase in the period, the spectrum

EAOSE to tll 2’| and/shO\;v tgat tTﬁ éeiljlts arebvery /sensmve Becomes denser and each band splits into more bands. For
€ exact valu®,/qy . In Sec. 1115, the numberp,/q, are example, for a, large, so that EQ.(8) gives Qm:1

convergents of an infinite continued fraction, and we study%a qyn, the band

the spectrum. We show that nesting of bands takes place that™ ™" 1"m"

in our context can be used for dense multiplexing. [(1/9,)2+ 91, (2/0m)%— 0] (16)

A. Sensitive dependence of bands oa ) o ] )
] ] ) will split into many bands, where the first one is
In the previous section we have calculated the eigenvalues

w(k) as a function ok. The bands are the allowed values of

frequency(presented in black in the figunesFor later pur- Wit apeit1\?
poses, we stress that the endpoints of the band are included 1 ~G11)» (17)
! . . . Om+1 Om+1
in the band, i.e., mathematically the bands are closed inter-
vals. In Fig. 2 we present the lowest part of the bands for the
potential the second one is
pX \
V(X)=2\ CcosXx+ 2\, CO T (15 a1+ 1)\2 e +2\2
+ng! _gLZ! (1&
qm+1 Qm+l

with A ;=0.05,\,=0.05, and for various values @fq that
are very close to 1/2. In Fig. 3 we present the bands for the . o .
same potential with ; =0.2, \,=0.2. It is seen that the band ©tC- This shows the process of band splitting and nesting.
structure is complicated and is very sensitive to the valudtigorously speaking, nesting occurs only whgp, ; is an
of a. integer multiple ofq,, (Qm+1=am+10m)- In the caseyy,, 1

= &+ 19mT Am- 1, Which really occurs here, a small number

of the new bands might overlap previous band gaps. But the
majority of them are clearly nested within the previous ones.

In order to explain this band structure we first consider then Fig. 4 we demonstrate nesting for the example of @§)
simple casex;=0 and\,—0. In this case the frequency with p/gq=1/5 and p/q=1/(5+1/7)=7/36. We have
spectrum isw,=[(n+k)/q]? and we get bands frorm(q)? checked that for large values af,,, we get a very clear
to [(n+1)/q]?, which for a very small potential are sepa- nesting while for smaller values the nesting is not complete.
rated by a very small gag~0. As the potential increases, At each step the density of bandse., the number of
the gap increases and the band becoffe¢q)?+ g, ,{(n bands per original bands greater than 1. The lowest density
+1)/q}2—gn+1], Where theg; are gaps. In the case of a occurs when alla,,=1 (Fibonacci sequengewhich is
sequence of convergents corresponding to a giwerthe  known to lead to a density factor of the Golden ratio. In the
period of the problem increases in theh step from 2rq,,  case of largex,, considered here, the density will be much
to 27qm 1, Whereq,, andq,, ., are related as described in greater than the Golden ratio.

B. Nesting of bands and dense multiplexing
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FIG. 4. The bands for the potential\2cosx+2\,cospx/q)
with A;=0.05, A,=0.05, and p/q=1/5, 1/(5+1/7)=7/36. The
nesting is clearly seen. We use units in which2c=kg=1.

IV. NOISY OPTICAL SIGNALS WITH A THERMAL
DISTRIBUTION

Optical signals in realistic systems will be noisy. This is

PHYSICAL REVIEW B4 036611

3
A

FIG. 5. Free energy against, for the potential 2, cosx
+2\, cospxq) with \;=3, B=5 and(a) p/q=1/2, (b) p/q=4/7,
(c) p/q=6/11,(d) p/q=3/7,5/11,10/21,11/2ffor these four values
of p/q, the curves are practically identigalMe use units in which
20 =c=kg=1.

and the entropy

S(B,k)E—NZ:O svInsy=—INZ+ B(w)=(1-Bay)InZ.
(22)

In the context of wave propagation in quasiperiodic struc-
tures (w)(B,k) shows the complicated temperature-
dependenti.e., noise dependentelation between the fre-
guency(w) and the wave vectok. The entropyS(S,k)
guantifies the uncertainty in the frequency due to noise.

In Figs. 5—7 we plot these quantities for various values of

due to noise in the laser source, impurities, external vibra-

tions, etc. In this section we model noisy optical signals as-
suming a thermal distribution. We study various thermody-
namic quantities and show that small changes in the
parametere produce major changes in the thermodynamics

of the system.
The partition function is defined as

[’

Z(B.k)= 2, exp —Boy),

N=0

(19

where =T ! is the inverse temperature that quantifies the
amount of noise, andy are the eigenfrequencies. We also

define the probabilitiesy=Z"'exp(—Bwy). The free en-
ergy is defined by

-1
F(B.k)= ?In Z, (20)
the average frequency
(w)(ﬂ,k)ENZ:o onSN=—dgINZ, (21)

(@)

3
Az

FIG. 6. Average frequency against, for the potential
2\ 1 cosx+2\, cospx/q) with \;=3, =5, and(a) p/q=1/2, (b)
p/q=4/7, (c) p/q=6/11, (d) p/q=3/7,5/11,10/21,11/21for these
four values ofp/q, the curves are practically identitaMe use
units in which 2)=c=kg=1.
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FIG. 8. Average velocity againdt for the potential 2, cosx
+2\, cospxqg) with =500, A;=0.05, A,=0.05 and(a) p/q
=1/2, (b) p/q=3/5, (c) p/q=2/5, (d) p/q=4/7, (e) p/q=3/7, (f)
p/q=5/11,6/11,10/21,11/21,20/41,21/41,30/61,31/6fbr these
eight values ofp/q, the curves are practically identigaWe use
units in which 2)=c=kg=1.

FIG. 7. Entropy againsth, for the potential 2;cosx
+2\, cosfpxq) with A;=3, B=5 and(a@ p/q=1/2, (b) p/q=4/7,
(c) p/q=3/7, (d) p/q=6/11, () p/q=>5/11, (f) p/q=10/21,11/21
(for these two values of/q, the curves are practically identigal
We use units in which 2=c=kz=1.

p/q that are very close to 1/2, for;=3, and over ranges of 9 oo\ v -1
\,. It is seen that all the thermodynamic quantities are very [ml(k,ﬁ)]1=£<ﬁ> = ﬁ;‘” = —&ﬁ Inz (24
sensitive top/q. This is because the spectrum is denser for B
larger denominatorg. We also note that as, increases, the or as
entropy S tends either to zero or to In2, depending jpig.
This is because the potential functiviix), as defined in Eq. Pw
(15), has, respectively, either one or two global minima in [mz(k,ﬂ)]_1=<—>- (25
each period. Jk?
In the first case we differentiate with respecktthe average
A. Average group velocity velocity (which, as explained above is the thermodynami-
The thermodynamically averaged group velocity is givenc@lly averaged group velocityln the second case we calcu-

by Gl N

Jw a(,!)N -1

Uavz<ﬁ>:% WSN=7ﬁk|nZ. (23 o.08k

0.06f
For simplicity we will refer to this as the average velocity,
w(k) is a periodic function ok with period 1, and this im-
plies that all dwy/dk are periodic with period 1. Conse-
quentlyv,, is a periodic function ok.
In Fig. 8, we present the average velocity agaidor
B=500 and for the potential X cosx+2\, cosfx/q) with

0.041

0.02r

%/’:fi

A1=0.05,A,=0.05 and various values pfq close to 1/2. It 0 T
is seen that for very low temperaturéarge 8) the average
velocity is nonzero and is very sensitive to the exact value of 00—t

p/g. In Fig. 9 we present the average velocity agajpisor
k=0.3 and for the same potential. It is seen that at higher
temperatures the average velocity is zero.

I

FIG. 9. Average velocity againg for the potential 2, cosx
+2\, cospxq) with k=0.3, A;=0.05,\,=0.05 and(a) p/q=1/2,
(b) p/q=3/5, (c) p/gq=2/5, (d) p/q=4/7, (e) p/q=3/7, (f) p/q
=5/11,6/11,10/21,11/21,20/41,21/41,30/61,31(6k these eight

We introduce the concept of thermodynamically averagedalues ofp/q, the curves are practically identigalVe use units in
inverse effective mass for the propagating waves as which 20 =c=kg=1.

B. Effective mass
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FIG. 10. Inverse effective mass rh{(k,B) againstk for B
=500 and for the potential & cosx+2\,cospx/q) with A,
=0.05,A,=0.05, anda) p/q=1/2,(b) p/q=2/5,(c) p/q=3/5, (d)
p/q=4/7, (e p/q=3/7, (f) p/q=>5/11,6/11,10/21,11/21,20/41,
21/41,30/61,31/6Xfor these eight values qgb/q, the curves are
practically identical. We use units in which@=c=kg=1.

late the thermodynamically averaged value of the second de-
rivative 9°w/ k2. These two quantities are similar, and the
numerical results confirm that at very low temperatures o

for high values of the coupling constanks,\, they are
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FIG. 11. Inverse effective mass rhj(k,B) againstk for B
=500 and for the potential & cosx+2\,cospxqg) with A,
=0.05,\,=0.05, anda) p/g=1/2,(b) p/q=2/5,(c) p/q=3/5, (d)
p/q=4/7, (e) p/q=3/7, (f) p/q=5/11,6/11,10/21,11/21,20/41,
21/41,30/61,31/6Xfor these eight values ob/q, the curves are
practically identical. We use units in which @=c=kg=1.

V. DISCUSSION

We have considered optical wave propagation in quasi-

Iperiodic systems in the slowly varying wave approximation,

modeled with Eq.(4) with the potential(5), which can be
periodic or quasiperiodic. Whem is rational, the potential is

almost equal. But at higher temperatures and for low valueperiodic and we have demonstrated that the bands split as the
of the coupling constants they are different. Like the quantidenominator ofe increases. This shows that suitable values
ties introduced in the previous subsection, they also quantifyf o can achieve ultradense multiplexing. The sensitivity of
the complicated effect of the potential on the propagatingsarious quantities to small changes in the valueaohas

waves.

been studied, and can be used to define the tolerances that

Straightforward differentiation of the results presented inthese system can have while still preserving the dense
Fig. 8 gives Ih; (Fig. 10. We have also calculated numeri- multiplexing.
cally 1/m,, and present results in Fig. 11. It is seen that the We have modeled noisy signals that occur in practice with

inverse effective massém,(k,8)] * and[m,(k,8)] ! be-

a thermal distribution of frequencies. We have studied the

come zero and also take negative values for certain values #fermodynamics of these signals and calculated the complex
k. These results for fi, are anticipated from the general relationship between the frequengy) and the wave vector

mathematical properies af,, . Periodic functions likev ,

that are continuous and differentiable everywhere, havé
maxima and minima where the slope is zero and, which cor

respond to the zeros of . They also have regions of
negative slope that correspond to the negative values
1/m;. In a similar way we can explain the behavior offrih/

k. This has been quantified with quantities like the thermo-
ynamically averaged group velocity of E(R3) and the
effective masses of Eq&24) and (25).

From a practical point of view, the work is a contribution

&P the currently “hot” problem of ultradense multiplexing in

optical communications. We believe that photonic quasicrys-
tal fibers may be used for ultradense multiplexing.
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