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Wave propagation in one-dimensional optical quasiperiodic systems
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One-dimensional quasiperiodic optical systems are studied, using a Schro¨dinger-like equation with a poten-
tial V(x)52l1 cosx12l2 cosax as an approximation to the wave equation in the slowly-varying wave ap-
proximation. It is shown that small changes in the parametera produce major changes in the band structure of
the system. For certain values ofa, the band structure consists of many ‘‘thin bands’’ and allows the possibility
of dense multiplexing. The propagation of ‘‘noisy optical waves’’ that contain many frequencies with a thermal
distribution is also studied with a thermodynamic model. Quantities like the thermodynamically averaged
group velocity and the thermodynamically averaged inverse effective mass are introduced in order to quantify
the complex relation between the frequency and wave vector in these systems.
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I. INTRODUCTION

It is well known that in solid state physics wave propag
tion in periodic structures leads to bands~intervals of al-
lowed frequencies!. In this context the waves describe ele
trons. This well known theory motivated recently the stu
of a similar phenomenon in the context of electromagne
waves at microwave and optical frequencies propagatin
structures with periodic refractive index~photonic crystals,
e.g., @1#!. In this context we get bands for the electroma
netic waves. In general, the periodicity in the refractive ind
of the material needs to be proportional to the waveleng
For optical frequencies very small periods are required,
very recently such materials have been fabricated.

From a mathematical point of view, this work is in th
context of periodic systems that have been studied for m
decades in various contexts: Partial differential equatio
solid state Physics, Dynamical systems, etc. The solution
the corresponding equations are based on the Floquet-B
theory.

Work on strictly periodic structures has recently been
tended to quasiperiodic structures~e.g.,@2#!. Most of the ex-
isting work in this direction considers the discrete Sch¨-
dinger equation in the context of the tight bindin
Hamiltonian

Hc5c~n11!1c~n21!1V~n!c~n! ~1!

~e.g., Fibonacci structures! for both one- and two-
dimensional systems. This mathematical work motiva
work on one-@3,4# and two-dimensional@5# photonic quasi-
crystals.

In this paper we consider the wave equation~in units
wherec5kB51):

@2]x
21] t

2#c50. ~2!

In the ‘‘slowly varying wave approximation,’’ we assume
wave of the form exp(iVt)c(x,t), whereV is an ‘‘average
frequency,’’ and Eq.~2! reduces to
1063-651X/2001/64~3!/036611~7!/$20.00 64 0366
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22V2#c52 i2V] tc2] t

2c. ~3!

In the slowly varying wave approximation, we assume th
the second term on the right hand side of Eq.~3! is negligible
in comparison to the first term. In this case, we get
Schrödinger-like equation. We use units in which 2V5c
5kB51, and all quantities are normalized accordingly.

In order to incorporate the varying refractive index, w
include a potentialV(x). In this way we get the following
equation written in the time-independent form

@2]x
21V~x!#c~x!5vc~x!. ~4!

In this paper we study explicitly the above eigenvalue eq
tion. Its solutions can be used for the solution of the wa
equation in the slowly varying wave approximation, which
first order with respect to time derivative; or even for t
solution of the ‘‘full’’ wave equation, which is second orde
with respect to time derivative.

We consider the potential

V~x!52l1 cosx12l2 cosax, ~5!

which is periodic for rational values ofa, and quasiperiodic
for irrational values ofa. A periodic refractive index will
lead to a potential with many harmonics, and here for s
plicity we consider only two harmonics with spatial angul
frequenciesqg51 andpg5a ~whereg51/q, a5p/q, and
p andq are coprime integers!. A quasiperiodic refractive in-
dex can lead to a potential of the form of Eq.~5! with irra-
tional a. The quasiperiodic nature of the refractive ind
may be due to small fluctuations in the dielectric constants
widths of the several pieces that constitute the stack, as s
ied in Ref.@4#.

We study the spectrum of Eq.~4! and show that for ratio-
nal values ofa ~in which case we have bands according
Bloch theory!, small changes in the parametera produce
major changes in the band structure of the system. Whea
5p/q, wherep andq are coprime integers, andq is large, the
©2001 The American Physical Society11-1
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band structure consists of many very thin bands, which
be used for the transmission of many different optical sign
~dense multiplexing!. There is an increasing demand for mu
tiplexing in modern communications systems. Our resu
demonstrate that suitable values ofa can achieve ultradens
multiplexing, with important implications for optical tech
nology. We note that the sensitivity of our results to the v
ues ofa is similar to the ‘‘anomalies’’ reported in@4#.

In practice, even a ‘‘monochromatic’’ optical signal wi
contain a distribution of frequencies due to noise. In orde
model this, we assume a thermal distribution of frequenc
and study the thermodynamics of this system. It is sho
that small changes in the parametera produce major change
in the values of the thermodynamic quantities of the syst
The concepts of thermodynamically averaged group velo
and thermodynamically averaged inverse effective mass
introduced in order to quantify the complex relation betwe
the frequency and wave vector.

II. BACKGROUND FORMALISM

We consider Eq.~4! with the potentialV(x) of Eq. ~5!.
The potential is periodic for rational values ofa5p/q
~wherep andq are coprime integers! with period 2pq; and
quasiperiodic for irrational values ofa. It is seen that for
rationala, very small changes in the value ofa can produce
very large changes in the period. For example, asa changes
from 1/2 to 10/21 the period changes from 4p to 42p. Be-
low we will present results for various quantites and for va
ous rational values ofa very close to a certain rationala0.
Irrational values ofa will also be studied through the con
tinued fraction expansion:

a5a01
1

a11
1

a21•••

5@a0 ;a1 ,a2 , . . . #, ~6!

where

pn115an11pn1pn21 , ~7!

qn115an11qn1qn21 , ~8!

andp2151, q2150, p05a0 , q051. The sequence of con
vergents

p1

q1
,
p2

q2
, . . .→a ~9!

tends toa in an oscillatory manner.
For potentials with period 2pq, use of Bloch’s theorem

leads to the solution

ck~x!5expS ikx

q Dc0~x!, ~10!

wherec0(x) is a periodic function with period 2pq that can
be expanded as
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c0~x!5 (
n52`

`

aneinx/q. ~11!

ck(x) is a quasiperiodic function

ck~x12pq!5ck~x!ei2pk, ~12!

wherek takes values from 0 to 1. Combining Eqs.~10! and
~11!, and inserting into Eq.~4!, we get the matrix equation

Anmam5v~k!an , ~13!

where

Anm5S n1k

q D 2

d~n,m!1l1d~n2q,m!1l1d~n1q,m!

1l2d~n2p,m!1l2d~n1p,m!, ~14!

andd(n,m) is Kronecker’s delta,v(k) is a periodic function
of k with period 1.

We have truncated the infinite matrices by allowing t
indices to take values from2Nmax to Nmax and have evalu-
ated numerically the eigenvectors and eigenvalues. In all
numerical results we usedNmax510q. In Fig. 1 we show the
eigenvalues againstl1, for V(x)52l1 cosx12l2 cos(x/2),
k50, and forl250 ~solid lines!; l250.1 ~star lines!. In the
latter case the spectrum is denser due to the fact that
period is larger. This is true even for very small values ofl2,
and it is seen that small perturbations@by the term
2l2 cos(x/2)# produce major changes in the spectrum. As
amplitude of the potential increases~by increasingl1), we
get splitting of the eigenvalues.

III. BANDS AND MULTIPLEXING

In this section we show that small changes in the para
eter a of the potential produce major changes in the ba
structure of the model. We study two aspects of the gen

FIG. 1. The eigenvaluesv(k50) againstl1 for the potential
V(x)52l1 cosx12l2 cos(x/2) with l250 ~solid lines! and l2

50.1 ~star lines!. We use units in which 2V5c5kB51.
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WAVE PROPAGATION IN ONE-DIMENSIONAL OPTICAL . . . PHYSICAL REVIEW E 64 036611
problem. In Sec. III A, we consider numberspn /qn very
close to 1/2, and show that the results are very sensitiv
the exact valuepn /qn . In Sec. III B, the numberspn /qn are
convergents of an infinite continued fraction, and we stu
the spectrum. We show that nesting of bands takes place
in our context can be used for dense multiplexing.

A. Sensitive dependence of bands ona

In the previous section we have calculated the eigenva
v(k) as a function ofk. The bands are the allowed values
frequency~presented in black in the figures!. For later pur-
poses, we stress that the endpoints of the band are incl
in the band, i.e., mathematically the bands are closed in
vals. In Fig. 2 we present the lowest part of the bands for
potential

V~x!52l1 cosx12l2 cosS px

q D , ~15!

with l150.05, l250.05, and for various values ofp/q that
are very close to 1/2. In Fig. 3 we present the bands for
same potential withl150.2, l250.2. It is seen that the ban
structure is complicated and is very sensitive to the va
of a.

B. Nesting of bands and dense multiplexing

In order to explain this band structure we first consider
simple casel150 and l2→0. In this case the frequenc
spectrum isvn5@(n1k)/q#2 and we get bands from (n/q)2

to @(n11)/q#2, which for a very small potential are sep
rated by a very small gapg'0. As the potential increases
the gap increases and the band becomes@(n/q)21gn ,$(n
11)/q%22gn11#, where thegi are gaps. In the case of
sequence of convergents corresponding to a givena, the
period of the problem increases in themth step from 2pqm
to 2pqm11, whereqm andqm11 are related as described

FIG. 2. The bands for the potential 2l1 cosx12l2 cos(px/q)
with l150.05, l250.05, and various values ofp/q close to 1/2.
We use units in which 2V5c5kB51.
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Eq. ~8!. Due to this increase in the period, the spectru
becomes denser and each band splits into more bands
example, for am large, so that Eq.~8! gives qm11
'am11qm , the band

@~1/qm!21g1 ,~2/qm!22g2# ~16!

will split into many bands, where the first one is

F S am11

qm11
D 2

1g1 ,S am1111

qm11
D 2

2g1,1G , ~17!

the second one is

F S am1111

qm11
D 2

1g1,1,S am1112

qm11
D 2

2g1,2G , ~18!

etc. This shows the process of band splitting and nest
Rigorously speaking, nesting occurs only whenqm11 is an
integer multiple ofqm (qm115am11qm). In the caseqm11
5am11qm1qm21, which really occurs here, a small numb
of the new bands might overlap previous band gaps. But
majority of them are clearly nested within the previous on
In Fig. 4 we demonstrate nesting for the example of Eq.~15!
with p/q51/5 and p/q51/(511/7)57/36. We have
checked that for large values ofam , we get a very clear
nesting while for smaller values the nesting is not comple

At each step the density of bands~i.e., the number of
bands per original band! is greater than 1. The lowest densi
occurs when allam51 ~Fibonacci sequence! which is
known to lead to a density factor of the Golden ratio. In t
case of largeam considered here, the density will be muc
greater than the Golden ratio.

FIG. 3. The bands for the potential 2l1 cosx12l2 cos(px/q)
with l150.2, l250.2, and various values ofp/q close to 1/2. We
use units in which 2V5c5kB51.
1-3
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IV. NOISY OPTICAL SIGNALS WITH A THERMAL
DISTRIBUTION

Optical signals in realistic systems will be noisy. This
due to noise in the laser source, impurities, external vib
tions, etc. In this section we model noisy optical signals
suming a thermal distribution. We study various thermod
namic quantities and show that small changes in
parametera produce major changes in the thermodynam
of the system.

The partition function is defined as

Z~b,k!5 (
N50

`

exp~2bvN!, ~19!

whereb5T21 is the inverse temperature that quantifies
amount of noise, andvN are the eigenfrequencies. We al
define the probabilitiessN5Z21 exp(2bvN). The free en-
ergy is defined by

F~b,k!5
21

b
ln Z, ~20!

the average frequency

^v&~b,k![ (
N50

`

vNsN52]b ln Z, ~21!

FIG. 4. The bands for the potential 2l1 cosx12l2 cos(px/q)
with l150.05, l250.05, and p/q51/5, 1/(511/7)57/36. The
nesting is clearly seen. We use units in which 2V5c5kB51.
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S~b,k![2 (
N50

`

sN ln sN52 ln Z1b^v&5~12b]b!ln Z.

~22!

In the context of wave propagation in quasiperiodic stru
tures ^v&(b,k) shows the complicated temperatur
dependent~i.e., noise dependent! relation between the fre
quency ^v& and the wave vectork. The entropyS(b,k)
quantifies the uncertainty in the frequency due to noise.

In Figs. 5–7 we plot these quantities for various values

FIG. 5. Free energy againstl2 for the potential 2l1 cosx
12l2 cos(px/q) with l153, b55 and~a! p/q51/2, ~b! p/q54/7,
~c! p/q56/11,~d! p/q53/7,5/11,10/21,11/21~for these four values
of p/q, the curves are practically identical!. We use units in which
2V5c5kB51.

FIG. 6. Average frequency againstl2 for the potential
2l1 cosx12l2 cos(px/q) with l153, b55, and~a! p/q51/2, ~b!
p/q54/7, ~c! p/q56/11, ~d! p/q53/7,5/11,10/21,11/21~for these
four values ofp/q, the curves are practically identical!. We use
units in which 2V5c5kB51.
1-4
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WAVE PROPAGATION IN ONE-DIMENSIONAL OPTICAL . . . PHYSICAL REVIEW E 64 036611
p/q that are very close to 1/2, forl153, and over ranges o
l2. It is seen that all the thermodynamic quantities are v
sensitive top/q. This is because the spectrum is denser
larger denominatorsq. We also note that asl2 increases, the
entropyS tends either to zero or to ln2, depending onp/q.
This is because the potential functionV(x), as defined in Eq.
~15!, has, respectively, either one or two global minima
each period.

A. Average group velocity

The thermodynamically averaged group velocity is giv
by

vav[ K ]v

]k L 5(
N

]vN

]k
sN5

21

b
]k ln Z. ~23!

For simplicity we will refer to this as the average velocit
v(k) is a periodic function ofk with period 1, and this im-
plies that all ]vN /]k are periodic with period 1. Conse
quentlyvav is a periodic function ofk.

In Fig. 8, we present the average velocity againstk for
b5500 and for the potential 2l1 cosx12l2 cos(px/q) with
l150.05,l250.05 and various values ofp/q close to 1/2. It
is seen that for very low temperatures~largeb) the average
velocity is nonzero and is very sensitive to the exact value
p/q. In Fig. 9 we present the average velocity againstb for
k50.3 and for the same potential. It is seen that at hig
temperatures the average velocity is zero.

B. Effective mass

We introduce the concept of thermodynamically averag
inverse effective mass for the propagating waves as

FIG. 7. Entropy againstl2 for the potential 2l1 cosx
12l2 cos(px/q) with l153, b55 and~a! p/q51/2, ~b! p/q54/7,
~c! p/q53/7, ~d! p/q56/11, ~e! p/q55/11, ~f! p/q510/21,11/21
~for these two values ofp/q, the curves are practically identical!.
We use units in which 2V5c5kB51.
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@m1~k,b!#215
]

]k K ]v

]k L 5
]vav

]k
5

21

b
]k

2 ln Z ~24!

or as

@m2~k,b!#215K ]2v

]k2 L . ~25!

In the first case we differentiate with respect tok the average
velocity ~which, as explained above is the thermodynam
cally averaged group velocity!. In the second case we calcu

FIG. 8. Average velocity againstk for the potential 2l1 cosx
12l2 cos(px/q) with b5500, l150.05, l250.05 and ~a! p/q
51/2, ~b! p/q53/5, ~c! p/q52/5, ~d! p/q54/7, ~e! p/q53/7, ~f!
p/q55/11,6/11,10/21,11/21,20/41,21/41,30/61,31/61~for these
eight values ofp/q, the curves are practically identical!. We use
units in which 2V5c5kB51.

FIG. 9. Average velocity againstb for the potential 2l1 cosx
12l2 cos(px/q) with k50.3, l150.05, l250.05 and~a! p/q51/2,
~b! p/q53/5, ~c! p/q52/5, ~d! p/q54/7, ~e! p/q53/7, ~f! p/q
55/11,6/11,10/21,11/21,20/41,21/41,30/61,31/61~for these eight
values ofp/q, the curves are practically identical!. We use units in
which 2V5c5kB51.
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late the thermodynamically averaged value of the second
rivative ]2v/]k2. These two quantities are similar, and t
numerical results confirm that at very low temperatures
for high values of the coupling constantsl1 ,l2 they are
almost equal. But at higher temperatures and for low val
of the coupling constants they are different. Like the qua
ties introduced in the previous subsection, they also quan
the complicated effect of the potential on the propagat
waves.

Straightforward differentiation of the results presented
Fig. 8 gives 1/m1 ~Fig. 10!. We have also calculated numer
cally 1/m2, and present results in Fig. 11. It is seen that
inverse effective masses@m1(k,b)#21 and@m2(k,b)#21 be-
come zero and also take negative values for certain value
k. These results for 1/m1 are anticipated from the gener
mathematical properies ofvav . Periodic functions likevav
that are continuous and differentiable everywhere, h
maxima and minima where the slope is zero and, which c
respond to the zeros of 1/m1. They also have regions o
negative slope that correspond to the negative values
1/m1. In a similar way we can explain the behavior of 1/m2.

FIG. 10. Inverse effective mass 1/m1(k,b) againstk for b
5500 and for the potential 2l1 cosx12l2 cos(px/q) with l1

50.05,l250.05, and~a! p/q51/2, ~b! p/q52/5, ~c! p/q53/5, ~d!
p/q54/7, ~e! p/q53/7, ~f! p/q55/11,6/11,10/21,11/21,20/41
21/41,30/61,31/61~for these eight values ofp/q, the curves are
practically identical!. We use units in which 2V5c5kB51.
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V. DISCUSSION

We have considered optical wave propagation in qua
periodic systems in the slowly varying wave approximatio
modeled with Eq.~4! with the potential~5!, which can be
periodic or quasiperiodic. Whena is rational, the potential is
periodic and we have demonstrated that the bands split a
denominator ofa increases. This shows that suitable valu
of a can achieve ultradense multiplexing. The sensitivity
various quantities to small changes in the value ofa has
been studied, and can be used to define the tolerances
these system can have while still preserving the de
multiplexing.

We have modeled noisy signals that occur in practice w
a thermal distribution of frequencies. We have studied
thermodynamics of these signals and calculated the com
relationship between the frequency^v& and the wave vector
k. This has been quantified with quantities like the therm
dynamically averaged group velocity of Eq.~23! and the
effective masses of Eqs.~24! and ~25!.

From a practical point of view, the work is a contributio
to the currently ‘‘hot’’ problem of ultradense multiplexing i
optical communications. We believe that photonic quasicr
tal fibers may be used for ultradense multiplexing.

FIG. 11. Inverse effective mass 1/m2(k,b) againstk for b
5500 and for the potential 2l1 cosx12l2 cos(px/q) with l1

50.05,l250.05, and~a! p/q51/2, ~b! p/q52/5, ~c! p/q53/5, ~d!
p/q54/7, ~e! p/q53/7, ~f! p/q55/11,6/11,10/21,11/21,20/41
21/41,30/61,31/61~for these eight values ofp/q, the curves are
practically identical!. We use units in which 2V5c5kB51.
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