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Probability amplitude description of the dynamics of charged particles in a magnetic field
in the macrodomain
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~Received 15 December 2000; revised manuscript received 27 April 2001; published 29 August 2001!

The set of Schro¨dinger-like equations obtained earlier by the author@Phys. Rev. Lett.26, 417 ~1971!, Phys.
Rev. A31, 3951~1985!# for the charged particle dynamics in an inhomogeneous magnetic field in the macro-
domain, are derived here starting from the quantum-mechanic Schro¨dinger equation in its path-integral repre-
sentation. This derivation enables a generalization of the equations to include a curl-free vector potential in the
Schrödinger-like equations. In view of the amplitude character of the latter equations, which now descends
directly from that of the quantum-mechanic Schro¨dinger equation, they now predict the existence in the
macrodomain of all such phenomena, which are characteristic of a probability amplitude theory, e.g., the
interference, and the observation of a curl-free vector a` la Aharonov-Bohm. A discrete energy structure,
predicted as interference maxima and minima has already been observed by the author with his co-workers
@Mod. Phys. Lett. A8, 167 ~1993!#. A prediction is now made for the observability of a curl-free vector
potential in the macrodomain, in the context of the present problem.

DOI: 10.1103/PhysRevE.64.036608 PACS number~s!: 41.20.2q, 05.20.Gg
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I. INTRODUCTION

A probability amplitude description of particle dynamic
is known to be characteristically quantum mechanical, a
known to apply in the microdomains of atomic and su
atomic dimensions characterized by the quantum of actio\.
An amplitude description is, of course, known to describe
wave phenomena in the macrodomain of the continuous
dia. But it has not been known to govern the particle dyna
ics in the macrodomain~excluding the case of many-partic
correlated systems that lead to superconductivity and su
fluidity in the macrodomain!.

The present author had, however, given a ‘‘wav
mechanical’’ model@1# for what was then regarded as th
‘‘nonadiabatic’’ behavior of charged particles in an inhom
geneous magnetic field, which yielded a set of Schro¨dinger-
like equations for the ‘‘nonadiabatic behavior.’’ The nonad
batic leakage of particles from adiabatic traps in this mo
thus turned out to be in the nature of quantumlike tunnel
of the adiabatic potential (mV) which governs the dynamic
of particles along the field lines~in the adiabatic approxima
tion! through the adiabatic equation of motion~see, for ex-
ample, Northrop@2#!

m
dv i

dt
52“ i~mV!. ~1!

Here,v i5ds/dt is the velocity of the particle along the pa
allel coordinates of the field line, andm is an ‘‘adiabatic
action invariant’’

m5
1

2
mv'

2 /V. ~2!

This invariance ofm applies, in the limit of the slow varia
tion of the magnetic field as defined by
1063-651X/2001/64~3!/036608~10!/$20.00 64 0366
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e5
v'

V2

dV

ds
!1, ~3!

whereV5eB/mc is the gyrofrequency of the particle an
v' is the magnitude of the ‘‘perpendicular’’ velocity of th
particle.

Since a nonspecialist reader may not be familiar w
these concepts, an elaboration is in order. It has long b
known since at least the work of Kruskal@3#, who formu-
lated the problem of adiabatic invariance more precisely
elegantly, that the latter concept~of ‘‘adiabatic invariance’’!
in classical mechanics is related to a general class
‘‘asymptotic phenomena’’ and singular perturbation theory
physics, when the Hamiltonian of a system is a function o
small parametere, which signals a slow variation of the po
tential or field governing the dynamics. An actionJ5*pdq
can be defined for any bounded degree of freedom of
system, and the problem of adiabatic invariance of the ac
J5*p dq is one of determining how good the invariance
as the system experiences changes in the field, either ex
itly in time, or through motion in space. It has been sho
that the actionJ has an asymptotic expansion in the sm
parametere, the first term of which is a good approximatio
if e is small enough, and is what is widely referred to as
‘‘adiabatic invariant.’’ If e is not ‘‘small enough,’’ other
terms of the series must be included. When the adiab
invariance of the gyroaction defined by Eq.~2! is good
enough, the three-dimensional motion of the charged part
in a magnetic field reduces to the one-dimensional poten
motion along the field line governed by Eq.~1! with the
potential (mV).

A very crucial aspect of the series for the actionJ is that
besides the terms in various powers ofe, there always exists
a nonanalytic term of the form exp(2c/e) nonexpandible ine
that becomes important whene is not small enough. Effects
associated with such a term are referred to as ‘‘nonadiab
effects.’’ For example, charged particles that may be trap
©2001 The American Physical Society08-1
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RAM K. VARMA PHYSICAL REVIEW E 64 036608
in the adiabatic potential by virtue of Eq.~1! may finally leak
out, given sufficiently long time. Such a leakage of partic
is referred to as a ‘‘nonadiabatic leakage’’ or loss. It has b
a rather challenging problem mathematically to find a pro
way to calculate this loss, because it requires extracting
the contribution due to the nonanalytic term;exp(2c/e).
The author has noted that a formal analogy exists betw
the phenomena of nonadiabatic leakage of particles from
nite adiabatic potential wells and the quantum tunneling
particles from finite classical potential wells. The relatio
ship between quantum mechanics and classical mechan
also known to be asymptotic in nature as evidenced by
WKB series expansion, where\ is formally the small param-
eter. The nonadiabatic effects, in relation to the adiab
equation of motion~1! are analogous to what the quantu
effects are in relation to the classical equation of moti
And the quantum tunneling probability has the nonanaly
~in \) form exp(2C/\) similar to the form exp(2c/e) given
above for the term that is responsible for the nonadiab
leakage of particles.

Based on this formal similarity between the two system
it was conjectured by the author that a Schro¨dinger-like de-
scription may be possible to describe the nonadiabatic le
age of particles from adiabatic potential wells, (mV). Using
these ideas, and Feynman path-integral-type considerat
the author was indeed able to derive@1# the following set of
Schrödinger-like equations

im

l

]C~l!

]t
52S m

l D 2 1

2m

]2C~l!

]s2
1~mV!C~l!,

l51,2,3, . . . , ~4!

which are an infinite set of equations forl51,2, . . . for the
amplitude functionsC(l), in which the probability density
is given by a generalized expression:

P~s,t !5(
l

C* ~l!C~l!. ~5!

As is obvious from here, the gyroactionm appears in the role
of \ and the adiabatic potential (mV) appears in the location
of potential in the QM-Schro¨dinger equation. In the limitm
→0 ~which is formally equivalent toe→0) these equations
lead to the adiabatic equation of motion~1!, while for m
Þ0, these equations would describe the loss of partic
from adiabatic traps analogous to quantum tunneling. T
adiabatic equation of motion~1! which follows from Eq.~4!
in the limit m→0, bears the same relationship with the lat
as the classical equation of motion does with the Q
Schrödinger equation, from which it is similarly obtained i
the limit \→0. These equations were able to describe, q
successfully through the model51, the various character
istics of the experimentally determined life terms agai
nonadiabatic leakage existing at the time~1970!, and also
predicted the existence of the other multiple lifetimes cor
sponding to the other modesl52,3, . . . for thesame energy
E and gyroaction valuem at injection. These multiple
lifetimes were subsequently observed@4# through a series o
03660
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experiments carried out at the Physical Research Labora
The success of these predictions by this Schro¨dinger-like
model was strongly suggestive that an amplitude formal
was at work in the macrodomain.

The derivation in Ref.@1# was, however, somewhat heu
ristic, and it is interesting that such a heuristically inducti
derivation was able to produce the set of equations that w
later confirmed through a deductive derivation based o
known dynamical equation of classical mechanics as a s
ing point, since the problem ostensibly belongs to the
main of classical mechanics. The equation of classical m
chanics in question is the classical Liouville equation for t
problem under consideration, and Eqs.~4! and ~5! were ob-
tained by constructing what may be regarded as a Hilb
space representation of the former. Needless to say, the
sical Liouville equation is just another representation of cl
sical dynamics, since its characteristics are just the Hami
equations of motion.~It is perhaps desirable to give a brie
outline of the derivation of Ref.@5# leading to Eqs.~4! and
~5!, to motivate the reader who may not be familiar with
This is given in the Appendix.! With this derivation, Eqs.~4!
and~5! can be justifiably raised from the status of a ‘‘mode
of Ref. @1# to that of a theory, with the important claim that
affords an amplitude description of charged particle dyna
ics in the macrodomain.

It will be noted from this derivation that each of its non
standard steps are specially designed as follows:~i! carrying
out a noncanonical transformation to the initial momenta v
ues, ~ii ! change of the gyrophase variablef to the action
phaseF, ~iii ! writing the Liouville density functionf 5c2,
to ensure positive definiteness off, as well as to serve as
step towards constructing a Hilbert space representation,
finally ~iv! obtaining the equation for a suitable Fouri
transformC of c whose evolution is shown to be governe
by the set of Eqs.~4! and ~5!. This derivation amounts to a
kind of ‘‘unfolding’’ of the classical Liouville density func-
tion f to the set~4! for the set of amplitude functionsC(l)

It may be pointed out that the gyroactionm, which takes
the place of\ in Eq. ~4! is typically m'109\, so that the
corresponding spatial dimensions would beL'109Å
510 cm. Thus Eq.~4! presents a case of an amplitude fo
malism complete with the probability prescription~5! for
macroscopic dimensions. The main difference from the a
plitude formalism of quantum mechanics is that the latter
the fundamental constant\, while in the former case,m ~as
an initial value and therefore anexact constant of motion!
can be chosen to have any value in an experiment. But
amplitude character of Eq.~4! prevails.

Based on this fact~the amplitude character! the author
had suggested in Ref.@5# the existence of interferencelik
effects in the macrodomain for particles with typic
deBroglie-like wavelengthl'10 cm. Such effects have
been subsequently observed by Varma and Punithavelu@6,7#
in the form of a discrete energy structure, which essentia
represents interference maxima and minima, and which h
been recently confirmed by Ito and Yoshida@8# ~though their
explanation is somewhat different from ours!.

However, in spite of the remarkable predictive succes
of this theory~the prediction and subsequent observation
8-2
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PROBABILITY AMPLITUDE DESCRIPTION OF THE . . . PHYSICAL REVIEW E 64 036608
previously unexpected and unsuspected multiple reside
times in adiabatic traps@4# and interferencelike effect
@6–8#! it has enjoyed the status of a ‘‘stand-alone’’ theory.
does connect to classical mechanics through the derivatio
Ref. @5# which derives it from the classical Liouville equa
tion, by constructing its Hilbert space representation. Ho
ever, it is not connected in a manner that is commonly
garded as manifest, namely, in terms of the equation
motion and the initial value paradigm, or even through
standard application of the Liouville equation. So the orig
and significance of its amplitude character have aroused
siderable interest over the years. Being an amplitude the
one would expect it to be connected with quantum mech
ics in some way. But such a connection has not yet b
properly elucidated.

It, therefore, becomes interesting and necessary to ex
ine whether the wave functions of the Schro¨dinger-like for-
malism of Ref.@5# can be related to the wave function of th
QM-Schrödinger equation for the same system, name
charged particles in an inhomogeneous magnetic field.

It is one of the objectives of this paper to establish suc
connection. This would enlarge the scope for making, as
shall see, new predictions for this system in the mac
domain, which would not have been otherwise possib
Such a connection was sought to be established right a
the first paper of 1971, and an attempt was made in
direction in 1972@9#. Though this derivation did produce th
same set of equations, it did not go far enough and left so
issues unanswered. The advantage of a derivation sta
from quantum mechanics would, of course, be that the
plitude character of the derived set of equations, inasmuc
it would now flow directly from that of the QM-Schro¨dinger
equation, would now prevail unreservedly. Furthermore
would afford a closer understanding of the relationship
tween the QM-Schro¨dinger equation and these sets of equ
tions, as well as between the present quantum-mecha
derivation and the derivation of Ref.@5#.

We also take the opportunity to generalize these set
equations to include all the three components of vector
tential A, but taking onlyAuêu to have nonzero curl, so tha
the magnetic field still has onlyBr andBz components and
Ar andAz are curl free in almost the entire region except
a small source region. We assume axisymmetry of the m
netic field. With this generalization, it will be shown that w
obtain a set of equations, still one-dimensional, but with
structure similar to that of the QM-Schro¨dinger equation
with a vector potential, which is assumed here to be curl f
in the entire region of space except inside a thin torus wh
the Bu field is confined.

As will be shown in Sec. III B, the set of equations wi
the vector potential so obtained predicts the possibility
observing, in the manner of the Aharonov-Bohm effect,
curl-free vector potential in the macrodomain ('10 cm).
Should such an effect indeed be observed in the ma
domain, it would constitute a spectacular demonstration
the amplitude character of governing equations in the m
rodomain, for it is the amplitude that carries the informati
of the vector potential in its phase. Moreover, and more
portantly, the observation of the curl-free vector potential
03660
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the classical macrodomain, as these observations would
nify, would appear to manifestly contradict the Lorentz equ
tion of motion. This would entail an enlargement of our u
derstanding of the classical charged particle dynamics i
magnetic field.

As will be reported shortly, we have indeed found som
preliminary experimental evidence for the effect that a cu
free vector potential has on the electronsà la Aharonov-
Bohm in the classical macrodomain.

In the next section we derive the required set of equati
starting from the Feynman path-integral representation
the quantum-mechanical problem under consideration.

II. A PATH-INTEGRAL REPRESENTATION FOR A
CHARGED PARTICLE IN AN INHOMOGENEOUS

MAGNETIC FIELD AND THE DERIVATION OF THE SET
OF SCHRÖDINGER-LIKE EQUATIONS

Since we want to start with the quantum-mechanical c
siderations of the charged particle dynamics, it is exped
to employ, as done earlier@9#, the path-integral representa
tion. Then if c(r ,u,z,t1t) is the probability amplitude for
the particle atr ,u,z ~cylindrical coordinates! at the timet
1t, it is connected to that at (r 2Dr ,u2Du,z2Dz,t)
through the Feynman relation (t being a small time interval!

c~r ,u,z,t1t!5S m

2p i\t D 3/2E d~Du!rd~Dr !d~Dz!

3expF i

\Et

t1t

LdtG
3c~r 2Dr ,u2Du,z2Dz,t !, ~6!

whereL is the Lagrangian for the charged particle in a ma
netic field:

L5
1

2
m~ ẋ21r 2u̇21 ż2!1

e

c
~ ṙ Ar1r u̇Au1 żAz! ~7!

and where*L dt in the exponent of Eq.~6! is written in the
form

E
t

t1t

dt8L5Lt5
1

2
m@~Dr !21r 2~Du!21~Dz!2#/t

1
e

c
~Dr Ar1rDuAu1DzAz!. ~8!

If we take a Fourier transform of Eq.~6! with respect to the
variableu ~taking the functions to be periodic with perio
2p) we obtain

c~r ,n,z,t1t!5S m

2p i\t D 3/2E d~Du!rd~Dr !d~Dz!

3expF i

\
Lt2 in~Du!G

3c~r 2Dr ,n,z2Dz,t !, ~9!
8-3
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RAM K. VARMA PHYSICAL REVIEW E 64 036608
wheren is an integer (1ve or 2ve), the angular Fourier
transform variable.

Next, consider the exponent@ i /\Lt2 in(Du)# with the
expression forLt given by Eq. ~8!. On completing the
square in (Du), we get

1

\
Lt2n~Du!5

1

2

mr2

\t FDu2tS \n2
e

c
rAuD /mr2G2

2
1

\

t

2mr2 S \n2
e

c
rAuD 2

. ~10!

Using this in Eq.~9! and carrying out integration with re
spect to (Du), this yields

c~r ,z,n,t1t!5S m

2p i\t D E d~Dz! d~Dr !

3expH i

\ F1

2
m

~Dr !2

t
1

1

2
m

~Dz!2

t
1

e

c
DrAr

1
e

c
DzAzG2

t

2mr2 S \n2
e

c
rAuD 2J

3c~r 2Dr ,z2Dz, n,t !. ~11!

Note that the exponent now has the term 1/2mr2(\n
2(e/c)rAu)2 which represents an effective potential for t
(r ,z) motion. Note also that in taking the Fourier transfor
of Eq. ~6! we had assumed theu dependence ofAu ~if any!
to be weak enough to justify its being disregarded~since we
have assumed axisymmetry, this will not be required he
however!. But, in general, this would indeed be justified
we taken@1.

Since we would eventually be interested in the large qu
tum number limit~approaching ‘‘classical’’ or macroscopic!
we shall taken@1. This would be in the spirit of the Born
Oppenheimer approximation. In factM5\n(n@1) defines
the canonical angular momentum which will not be co
served ifAu is not strictly independent ofu.

Now, we specialize to the case of the near adiabatic li
defined by the inequality~3! which implies that the particle
stays close to the magnetic line around which it gyrates;
the gyroradiusr L of the particle is much less compared to t
characteristic lengthL of the magnetic-field variation. In a
curl-free inhomogeneous magnetic field, the field lin
would, in general, have a curvature. It is then more app
priate to have a local orthogonal system of coordinates
place of the cylindrical coordinate system.

Following Dykhne and Chaplik@10#, we employ, for an
axisymmetric magnetic-field configuration, the coordina
system (s,x,u) wheres is the length along the line of force
x a coordinate orthogonal to the particular field line, andu
the angular coordinate orthogonal to bothx and s. The line
elementdl in this coordinate system is given by

dl25dx21hs
2ds21hu

2du2, ~12!
03660
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wherehs andhu are the scale factors,hs5(12x/r),hu5r ,
andr(s) is the radius of curvature of the particular field lin
If, for simplicity, we consider the small Larmor radius lim
and assumer to be large, that is, we select a line of force f
the particles to be on, near the axis of the magnetic-fi
configuration, we then havehs.1. The parametric equation
of a line of force is given by

r 5R~s!, z5z~s!. ~13!

In the small Larmor radius limit the coordinatex of the par-
ticle will always remain small during the motion; we ca
thus expand (e/c)rAu in the potential-energy term in th
power ofx/r:

rAu5~rAu!x501x
]

]x
~rAu!ux501 . . . . ~14!

Moreover, we have the total magnetic field on a field line

B52
1

r

]

]x
~rAu!. ~15!

Hence,

S \n2
e

c
rAuD 2

5F S \n2
e

c
~rAu!x50D1

eB

c
rx G2

5S \n2
e

c
~rAu!oD 2

1S eB

c D 2

x2r 212xrS eB

c D
3S \n2

e

c
~rAu!x50D1••• . ~16!

Note that (rAu)x50 refers to the value on the particular fie
line from whichx is measured. (rAu)x50 basically represents
the flux coordinate of the field line. For the axisymmetr
case,n is a constant of motion and\n(n@1) is identified as
the canonical angular momentumM[\n, which is further
identified withe/c(rAu)x50[M ~when the departures from
axisymmetry as smalln will be an adiabatic invariant!. Then
Eq. ~16! gives the potential-energy term in Eq.~11! as

1

2mr2 S \n2
e

c
rAuD 2

5
1

2
mV2x2. ~17!

Equation~11! then reads in the local coordinate system, a

c~x,s,n,t1t!5S m

2p i\t D E d~Ds! d~Dx!

3expH i

\ F1

2
m

~Dx!2

t
1

1

2
m

~Ds!2

t
1

e

c
DxAx

1
e

c
DsAs2

t

2
mV2~s!x2G J

3c~x2Dx,s2Ds,n,t !. ~18!

Now define a function
8-4
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c̃~x,s,t;n!5c~x,s,t,n!expH 2
i

\

e

cE
x

AxdxJ . ~19!

In terms ofc̃ we have Eq.~18! as

c̃~x,s,n,t1t!5S m

2p i\t D E d~Ds! d~Dx!

3expH i

\ F1

2
m

~Dx!2

t
2

1

2
mV2~s!x2t

1
1

2
m

~Ds!2

t
1

e

c
DsAs1G J

3c̃~x2Dx,s2Ds,n,t !. ~20!

Next we consider an eigenfunction expansion@11# of a part
of the kernel in Eq.~18!, i.e.,

S m

2p i\t D 1/2

expH i

\t F1

2
m~Dx!22

1

2
mV2t2x2G J

5(
n8

xn8~x!e2 iEn8t/\xn8
* ~x2Dx!. ~21!

This part of the kernel represents a harmonic oscillator w
frequencyV, where thexn are the harmonic-oscillator wav
functions and

En5S n1
1

2D\V~s! ~22!

are the Landau energy levels. If we now use the expan
~21! in Eq. ~20!, multiply both sides byxn* , and integrate
overx, using the orthonormality of the eigenfunctionxn , we
obtain

C~s,n,n,t1t!

5S m

2p i\t D 1/2E d~Ds!

3expH i

\ F1

2
m

~Ds!2

t
1

e

c
DsAs2n\V~s!tG J

3C~s2Ds,n,n,t1t!. ~23!

Equation~23! follows on carrying out the integration ove
(Dx) on the right-hand side of Eq.~20!. Consider now the
exponent in Eq.~23!, and note that it can be written as

1

2
m

~Ds!2

\t
1

e

\c
DsAs2nVt

5nF1

2

m

\n S Ds

t D 2

1
e

\nc S Ds

t DAs2VGt. ~24!

Now note also that whenAs and V are independent ofs
~homogeneous field! n is a strict constant of motion; call i
no . WhenV andAs are slowly varying functions ofs, no is
03660
h

n

an adiabatic invariant, which is identified withm5no\,
no@1 the gyroaction. However, transitions will, in genera
occur fromno to n5no1l, whereno@l.1, whenV and
As vary with s. Therefore,l represents a change in the qua
tum number fromno induced by the motion in a varying
magnetic field and vector potentialAs . ~We may call it
‘‘nonadiabaticity.’’ But this should be properly considered
‘‘quantum nonadiabaticity’’ as we are still in the quantu
domain, albeit with large quantum numbers.! We therefore
note that

noF1

2

m

\no
S Ds

t D 2

1\no

e

c S Ds

t DAs2VGt
5noLAt/m→nLAt/m5~no1l!LAt/m, ~25!

where

LA5
1

2
mS Ds

t D 2

2
e

c S Ds

t DAs2mV ~26!

is the effective Lagrangian in the presence of a vector po
tial As . It is actually the adiabatic Lagrangian but for th
vector potential term. In view of, Eqs.~24! and ~25! we
therefore, write the exponent~24! in Eq. ~23! as

noLAt/m1lLAt/m5
1

2

m

\ F ~Ds!2

t
1

e

c
DsAs2no\VtG

1lLAt/m. ~27!

This leads Eq.~23! to the form

C~s,t1t,no1l;n!

5S m

2p i\t D 1/2E d~Ds!

3expH i

\ F1

2
m

~Ds!2

t
1

e

c
DsAs2no\V~s!tG

(1)

1
il

m F1

2
m

~DS!2

t
1

e

c
DSAs2mVtG

(2)
J

3C~s2Ds,t,no1l;n!. ~28!

We note that the two terms in the exponent in Eq.~28! lead
to widely different scales of variation of the wave functio
The first one@in the square bracket marked with the subscr
~1!# leads to the variation on the microscopic scale char
terized by the denominator\, while the second one@marked
with the subscript~2!# leads to a variation on the macrosca
characterized by the denominatorm5no\. We also accord-
ingly denote the intervalDs in the second bracket byDS to
emphasize the slower variation of the macroscale. Now
factor of the kernel with the subscript~1! term in the expo-
nent in Eq.~28!, namely,
8-5
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Ks5S m

2p i\t D 1/2

3expH i

\ F1

2
m

~Ds!2

t
1

e

c
DsAs2no\V~s!G J , ~29!

which represents a motion along the coordinates in the po-
tential no\V(s), and curl-free vector potentialAs , can be
expanded in terms of the energy eigenfunctions@11# of the
Hamiltonian corresponding to the Lagrangian in the ex
nent of the kernelKs in Eq. ~29!:

Ks5(
k8

wk8~s!e2 iEk8t/\wk8
* ~s2Ds!, ~30!

where

Ek5
1

2m S \k2
e

c
AsD 2

1no\V5
1

2m
~\K !21no\V

~31a!

with

K5S k2
e

\c
AsD5S 2m

\2 D 1/2

@EK2no\V#1/2 ~31b!

and

wk~s!5S m

2pK\2D 1/2
1

2i FexpH i E k1dsJ 2expH i E k2dsJ G
5S m

2pK\2D 1/2

expF ie

\cE
s

AsdsGsinF Es

dsK~s!G ,
~32a!

where

k65
e

\c
As6K. ~32b!

We shall now transform, away from Eq.~28! the rapidly
varying partKs of the kernel in this equation by transformin
it into the Fourier space with respect to that part ofs, which
accounts for the rapid variation. Thus using Eq.~30! in Eq.
~28! multiplying both sides bywk* , and integrating overs,
and later overDs ~on the right-hand side! one gets

C~K,l,t1t;no ,n!5e2 iEkt/\ expF il

m H 1

2
m

~DS!2

t

1
e

c
DSAS2mVtJ GC~K,l,t;no ,n!,

~33!

where the weak dependence ofV and As on S has been
disregarded in taking the Fourier transform. WritingK5Ko
03660
-

1k, whereKo is a large constant wave numberKo@1/L (L,
characteristic length ofV and As) and k!Ko (k;1/L).
Then

EK5EKo
1

\k

m
~\Ko!

5EKo
1~\k!vo , ~34!

noting that (\Ko)5mvo , with vo being the velocity corre-
sponding to the wave numberKo . Using Eq.~34! in Eq. ~33!
we get~dropping the subscripto on vo!

C~k,l,t1t;Ko ,no ,n!

5e2 iEKo
t/\ expF il

m H 1

2
m

~DS!2

t
1

e

c
DSAS2mVtJ

2 ikvtG3C~k,l,t,Ko ,no ,n!. ~35!

Equation~35! is still left with a rapid time dependence cha
acteristic of the microdomain of\ @showing through the fac-
tor exp(2iEKo

t/\) on the right-hand side#. To ‘‘remove’’
~transform away! this ~rapid! time dependence, multiply both
sides by exp@iEko

t/\#, and integrate over a time intervalDt,

T@Dt@\/Eko
(T being the characteristic macroscopic tim

T.L/v) which finally yields

C~k,l,t1t;EKo
,Ko ,no ,n!

5expF i
l

m H 1

2
m

~DS!2

t
1

e

c
DSAs2mVtJ 2 ikvtG

3C~k,l,t;EKo
,Ko ,no ,n!. ~36!

There are now two ways to proceed from Eq.~36!. One, is to
take the inverse transform with respect tok, which gives@the
momentum parameters (n,no ,Ko ,EKo

) will be suppressed
hereafter#

C~S,l,t1t;n,no ,Ko ,EKo
!

5expF il

m
LAtGC~S2vt,l,t;n,no ,Ko ,EKo

!,

~37!

where

LA5
1

2
mS DS

t D 2

1
e

c

DS

t
AS2mV ~38!

is the reduced Lagrangian. We no longer call it ‘‘adiabati
Lagrangian because of the presence of the curl-free ve
potentialAS , which would have no effect on the adiabat
~classical! equation of motion. But in Eq.~37! for the ampli-
tudeC, it will have a nontrivial effect.

As can be seen, Eq.~37! has been obtained from Eq.~16!
by systematically transforming away all the rapid depend
8-6
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cies onu, the coordinatesx ands, and the timet, character-
istic of the microscale of\. The corresponding ‘‘central’
quantum wave numbers (n,no ,Ko ,EKo

) appear as param
eters in the argument of the wave functions in Eq.~37!.
These wave functions then represent the transition am
tudes from the large quantum numbers (no ,Ko) to (no
1l,Ko1k) as a consequence of magnetic-field inhomo
neity, with the quantum numbers characterizing the la
quantum number state (n,no ,Ko ,EKo

), which may be re-
garded as initial values. It must be emphasized that th
transition amplitudesC are probability amplitudes neverthe
less, and exhibit all the properties that are characteristic
quantum-mechanical probability amplitude, but now in t
macroscopic domain characterized by the wave numbek
!Ko , l!no , and the actionm5no\@\. Note that since
we considered an axisymmetric magnetic field, whereM
5\n(n@1) is an exact constant of motion, no division su
asn5no1d(d!no) was required to be done. It would, how
ever, be necessary if one were to consider a nonaxisymm
field, in which cased would correspond to the change fro
no due to nonaxisymmetry. Such a case is considered la

Equation~37! is of the Feynman path-integral form. On
way to proceed is to integrate the right-hand side o
(DS)5vt, which yields

C~S,l,t1t!5S ml

2p imt D 1/2E d~DS!

3expF i
l

m
LAtGC~S2DS,l,t !. ~39!

Using the standard procedure~Feynman and Hibbs@11#! this
gives

im

l

]C~l!

]t
52

1

2m S m

l i

]

]S
2

e

c
ASD 2

C~l!1mVC~l!,

l51,2,3, . . . , ~40!

where the probability densityP(S,t) is then given by

P~S,t !5(
l

C* ~l!C~l!. ~41!

This set of equations@~38! and~39!# is then a generalization
of the set obtained earlier@5# to include a curl-free vecto
potential. The other way to proceed from Eq.~36! is to fol-
low the procedure given in Ref.@5# where apart from the
vector potential termAS , the same equation was obtaine
@Eq. ~31! of Ref. @5##. This method does not appeal to th
Feynman procedure as carried out in Eq.~39!.

III. DISCUSSION

A. The nature of the Schrödinger-like formalism

The first thing to note about the Schro¨dinger-like formal-
ism, represented by Eqs.~40! and~41! is that the wave func-
tions C governed by these equations must necessarily
amplitudes in the sense of wave mechanics, as they
03660
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directly from the wave amplitudes of the QM-Schro¨dinger
formalism. The second thing to note is that these equati
are identical in form@except the generalization to include th
vector potential in Eq.~40!# to those obtained earlier@5# as a
Hilbert space representation of the classical Liouville eq
tion, or to those obtained even earlier@1# through a heuristic
derivation. In fact, it is interesting to note that Eq.~36! is the
same as Eq.~31! of Ref. @5# ~apart from the vector potentia
term in Eq.~36!, which is absent from Eq.~31! of Ref. @5#!.
Also the parameter argumenta8s of the amplitude functions
of Ref. @5# which were taken to be the initial values of th
momenta,$a%[(M ,po ,mo ,E) @being, respectively, the ca
nonical angular momentumM, the linear momentumpo ,
gyroactionmo , and energyE, are identical with the param
eter argument of the functions of the present derivat
which are$refer to Eq.~36!% n,Ko ,no ,EKo

and essentially

the set (M5\n,po5\Ko ,m5\no ,E5EKo
) of Ref. @5#.

Hence there is a one to one correspondence between
amplitude functions of Ref.@5# and those of this paper.

Therefore the present derivation from quantum mechan
vindicates the earlier derivations and assignment to the fu
tions C(n) of Ref. @5# and the meaning of wave amplitud
à la wave mechanics, and therefore justifies the predict
made about their describing interferencelike phenomena
which the evidence has already been reported@6–8#. The
significant point to be appreciated is that these Eqs.~40! and
~41! refer now to the macroscopic dimension of 10–50 c
characterized by the magnitude ofm'109\ ~typically! rather
than to the microdomain of;1 Å which is characteristic of
\. This presents a severe dilemmavis a vis the standard
classical-mechanical~equation of motion–initial value! para-
digm, which does not support such an interference phen
ena.~It may be mentioned, however, that there does exist
be sure, wave and interference phenomena in classical p
ics, for example, waves on a string, or in any other contin
ous medium. But the dilemma mentioned above refes onl
the equation of motion-initial value paradigm for singl
particle dynamics, which does not support interference p
nomena.! The author has been faced with this dilemma, a
he has suggested@12# that topological considerations in clas
sical mechanics may be at play. Topological properties
global properties of a system, and cannot be captured by
standard equation of motion-intial value paradigm, whi
represents only a local evolution. He has in fact shown@12#
that the Einstein-Bohr-Sommerfeld kind of quantization co
ditions can be obtained for a classical-mechanical system
a consequence of their topological properties, where the
of \ is enacted by an appropriate action~Poincare´ invariant!
belonging to the classical-mechanical system. It would th
seem that the Hilbert space representation of the class
Liouville equation captures the global topological propert
of the system configuration space, and the wave amplit
character of the equations so obtained is a reflection of
fact.

From the point of view of the present derivation~from
quantum mechanics! it is interesting to examine the meanin
of the C(l) and the indexl. We recall thatl was taken to
be the change in the Landau-level quantum number fromno
8-7
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to no1l, induced by the inhomogeneity in the magne
field as the motion takes place along the field line. Th
C(l) has the interpretation of the transition probability a
plitude for finding the particle in the stateno1l (no being
the level number in the absence of inhomogeneity!. This
transition to the states (no6l) induced by the inhomogene
ity may be termed the ‘‘quantum nonadiabaticity.’’

B. Observation of the curl-free vector potential à la
Aharonov-Bohm in the macrodomain

The set of Eqs.~40! and ~41! generalized as they are t
include a curl-free vector potential, afford the possibility
making yet another spectacular prediction, namely, the
servability of the curl-free vector potential in the macr
domain, in the manner of the Aharonov-Bohm effect in t
microdomain of\. Since Eq.~40! is one-dimensional~along
the field line coordinate! the situation here is somewhat di
ferent, however, compared to the standard Aharonov-Bo
effect. From Eq.~40!, for l51, we get the condition for the
one-dimensional interference maxima

E
o

LS mvs1
e

c
AsDds52pnm, ~42!

wherevs is the velocity of the particle along the field line.
we consider the passage of electrons from an electron so
S to a Faraday cup detectorD, through a Rowland ring@a
torus of a high-magnetic permeability material wou
around by current carrying wires, so that the magneticBu
field is completely confined in it, and there is only a curl-fr
vector potential (Ar ,Az) in the space outside# then Eq.~42!
yields, on carrying out integration between the source
detector

E
o

L

mvs ds1b
e

c
F52pnm, ~43!

where F is the flux F5*Bu ds enclosed in the Rowland
ring, andb is a geometrical factor that is determined by t
distanceL between the gun and the detector and the m
radius of the Rowland ring.

It may be mentioned that condition~42! for the interfer-
ence maxima follows by considering at the plate, the in
ference of two waves:~i! the one originating at the sourc
~the electron gun! with the amplitude given by
exp@(i/m)*o

Lds(mv1eA/c)# and ~ii ! the other one a scattere
wave, scattered off the grid sitting just next to the plate, w
the amplitude given by exp@(i/m)*L2d

L ds(mv1eA/c)#, where
d is the plate-grid separation,d!L. It is interesting to note
that in this situation, there are no two paths that encircle
flux topologically. On the other hand, we have two op
paths, one from the source to the plate, and the other f
the grid to the plate detector~corresponding to the scattere
wave from the grid!. The two paths span different extents
the one-dimensional space with the vector potentialA,
thereby leading to the condition~42! for the maxima arising
out of the two waves mentioned above. Equation~43! there-
fore, involves only a fractionb of the total flux F in the
03660
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ring, with b being unity when there is complete linkage as
the case of the standardA-B effect.

From Eq.~43! it follows that the value ofF would clearly
affect the position of the interference maxima exhibiting
periodicity with (e/c)(bF/m). One can varyF by varying
the current in the Rowland ring and look for a period
change in the interference maxima.

In experiments carried out at the Physical Research La
ratory, @13# we have indeed found some evidence for t
existence of these effects. These are at present under
tiny, and should be reported shortly.

IV. CONCLUDING REMARKS

The problem of charged particle dynamics in a magne
field that we have studied over the last 30 years, both th
retically and experimentally, has been a rather interes
venture. The Schro¨dinger-like formalism for its description
which we discovered 30 years back and checked experim
tally for its predictions over the years has, however, p
sented an enigma. Does it represent a description of
classical-mechanical attributes of the system? Looking at
macrodimensions of its domain, it ought to be so. But loo
ing at its amplitude character, which, in view of the prese
derivation, descends directly from that of quantum mech
ics, must imply in it all the physical attributes of an amp
tude theoryà la wave mechanics; for instance, the cons
quences of the existence of phase~such as the interferenc
phenomena, observability of a curl-free vector potential!. Its
predictions on the existence of the multiplicity of lifetime
and their subsequent experimental confirmation, followed
rectly from the amplitude character of the equations. Lik
wise the observations of the curl-free vector potential, wh
is completely outside the domain of classical mechanics
possible only through the agency of the phase of the am
tude. Of course, the results on the observation of the ve
potential are still being scrutinized and need to be confirm
by other workers later. But, as is clear from Eq.~40!, the
vector potential appears in it in a significant way, and m
have its consequences.

What then is the nature of this theory? The present d
vation certainly establishes its connection with quantum m
chanics. Its amplitude character, is, to be sure, a signatur
quantum mechanics, as per this derivation, though it car
no other signature of the latter~for instance, no\). One may
say that it carries some remnants of the quantum struc
into the macrodomain, a kind of ‘‘quantum wings’’ of th
macrodomain of classical mechanics. On the other hand
amplitude character had also been obtained@5# from the clas-
sical Liouville equation without appeal to quantum mecha
ics. Thus, notwithstanding its derivation from quantum m
chanics, its amplitude character must be regarded
independent of the latter. It may be concluded that the a
plitude character of the formalism of Ref@5# must represent
some fundamental property of classical particle dynamics
self ~in relation to at least the particular dynamical syste!
which has not been revealed so far. It is possible that i
related to the topological structure of classical dynam
along the lines elucidated by the author earlier, which can
8-8
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captured by an amplitude or Hilbert space representat
Clearly, further investigations of these equations are de
able and should help understand the issues better.

Meanwhile, another incidental but important comme
may, however, be made about Eqs.~40! and ~41!. Clearly
these equations have been obtained using the large qua
numberansatz. As per the correspondence principle, th
ought to belong to the macrodomain of classical dynam
But they are still amplitude equations. In this sense th
equations may be considered to represent a relationship
tween classical and quantum mechanics, though the clas
limit is not visible in terms of the Hamilton-Jacobi represe
tation as the standard quasiclassical~WKB! approximation
yields, but rather in terms of the action-angle formalism. W
shall dwell on this issue in detail later.

APPENDIX: AN OUTLINE OF THE DERIVATION
OF EQS. „4… AND „5… FROM R. K. VARMA,

PHYS. REV. A 31, 3952„1985…

As noted in Ref.@1#, the adiabatic equation of motion~1!
for the dynamics along the field line, can be obtained fr
the LagrangianL5 1

2 mv i
22mV, through the stationarity o

the action

S5E
t1

t2
dtS 1

2
mẊ22mV D . ~A1!

One may define an action phaseF through

F5S/m5
1

mE dt
1

2
mv22E V dt[

1

mE 1

2
mv2 dt1f,

~A2!

wheref52* tV dt is the gyrophase of the particle in th
magnetic field; wherem is taken here to be theinitial value
of the gyroaction that is anexactconstant of motion, rathe
than just an adiabatic invariant.

One starts in Ref.@5# from the classical Liouville equation
for an ensemble of charged particles in an inhomogene
static magnetic field. The ensemble chosen is taken to
what has been termed as a ‘‘coherent system of trajectori
by Synge@15# and a ‘‘family’’ by Dirac @16#. This corre-
sponds to ad function in the initial momenta values, and
distribution in the position coordinates~or vice versa!. The
Liouville equation is thus transformed to the initial momen
valuesa i ~from the ‘‘current momenta’’! which are by defi-
nition, the exact constants of motion. The correspond
termsȧ i] f /]a i in the Louville equation thus disappear fro
it, anda i appear as parameters in the Liouville density fun
tion. These are taken to bePi

(o) , with the initial momentum
parallel to the magnetic fieldP u

(o) , the canonical angula
momentum for the assumed axisymmetric field, andm (o), the
initial gyroaction value and the energyE, all assumed to have
d-function distributions. The Liouville equation is then le
with the terms corresponding to the conjugate position co
dinates, namely,Xi , the ‘‘parallel’’ coordinatef, the gy-
rophase, and, of course, the timet, and is given as
03660
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] f

]X
2V

] f

]f
50, ~A3!

where the subscript parallel onX is dropped, andv5Ẋ is
now considered as a function of theX and appropriate initial
momenta values, rather than being independent ofX as in the
Liouville equation before this transformation. This is obv
ously a noncanonical transformation. The Liouville dens
function f is thus a function of (X,f,t) and the initial mo-
menta values$a i%[(pi

(o) ,m (o),Pu ,E ) appear as parameter
f 5 f (X,f,t;$a i%). Two important steps are next carried ou
First, the gyrophase anglef is transformed to the action
phaseF defined by Eq.~A2!, and second, the Liouville den
sity function f is written asf 5c2, with c as a real quantity.
This ensures the positive definiteness off, as well as paves
the way, at the same time, to construct a Hilbert space
resentation of the Liouville equation. It should be obvio
that c must also satisfy the transformed Liouville equati
~A3! with c5c(X,F,t;a i). The importance of the transfor
mation to the action phaseF lies in the fact that whenF
5(1/m)*L dt appears as an exponent in the for
exp@(i/m)*L dt# it is reminiscent of the Feynman kerne
where nowm appears in place of\. This is indeed the origin
of m appearing in the role of\ in Eqs.~4!, and the adiabatic
potential (mV) appearing in the location of potential in th
Schrödinger equation.

A Fourier series expansion ofc with respect toF,

c5(
n

ĉ~n!e2 inF, ~A4!

is employed in the finite-time representation of the equat
for c, yielding an equation of the form

ĉ~X,l ,t1t!5ei ( l /m)* t
t1tdt8 Lĉ~X2vt,l ,t !. ~A5!

This is clearly of the Feynman path-integral form althou
not exactly. It is, therefore, dealt with in a different way
given in Ref. @5#, leading finally to the Schro¨dinger-like
equation~4! of the text. Furthermore, if one uses the expre
sion ~A4! in the relationf 5c2, an integration of this over
the unobservable action phaseF, yields the convolution
( lC* ( l )C( l ) on the right-hand side of Eqs.~5! or ~42! for
the probability density P(X,t)5*dF f (X,F,t), where
C(X,l ,t), which is governed by Eq.~40!, is related to
ĉ(X,l ,t) in a manner given in Ref.@5#.

It may be noted that the set of equations~4! bear the same
relationship to the adiabatic equation of motion~1!, as the
quantum-mechanical Schro¨dinger equation does to the cla
sical equation of motion. The meaning of the mode num
l appearing in Eq.~4! is now clear from Eq.~A4!. It is
interesting to note that the mode numberl here is the same a
l of Eq. ~40!, which has been identified in the derivation
this paper as the change in the Landau quantum number
no to no1l, as a consequence of the magnetic-field inhom
geneity. It is quite fascinating to see that this changel in the
Landau quantum number should appear as a Fourier in
related to the series~A4! in the derivation of Ref.@5#.
8-9
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If one wishes to reconstruct the Liouville density functio
f as a solution of the Louville equation from the solutio
C(n) of the Schro¨dinger-like equations, one can do so b
backtracking the various steps used to obtainC(n) from f.
If, however, we regard Eq.~A4! not just as a Fourier serie
expansion but also as an asymptotic expansion in the spir
the work of Kruskal@3#, ~see also Rosenbluth and Varm
@14#! thenC(n) have magnitudes;e1/2unu21C(1), with e as
the adiabaticity parameter defined by Eq.~3!. So the most
dominant term corresponds ton51, and others fall off ase unu

for n>2.
In the context of the derivation of the same equations~40!

in the present paper, thel represents the change in th
Landau-level quantum number fromno to no1l,(no@1) as
a consequence of the magnetic-field inhomogeneity~or any
other nonadiabatic perturbation!. Thus C(l),l51, would
t.

03660
of

be the most dominant term in the summation~5! or ~41! as
the transition tono61 would be the most dominant. Trans
tions to no62,no63, . . . corresponding tol52,3, . . .
would be progressively smaller and smaller in magnitude
is interesting to note how the Fourier indexn in Eq. ~A4! in
the derivation of Ref.@5#, has come to be identified as th
change in the Landau-level number in the derivation of
present paper.

It may also be mentioned that the derivation of Ref.@5# is
exact~except for neglecting the higher-order terms in an e
pansion of the form~16! in Ref. @5#! representing, as it does
the transformation of Liouville equation to Eqs.~4!. There-
fore, while the system of Eq.~4! and~5! do appear analogou
to the Schro¨dinger theory, they are not obtained just throu
an analogy, but as a consequence of an exact deriva
particularly including the probability connection~5!.
h

@1# R.K. Varma, Phys. Rev. Lett.26, 417 ~1971!.
@2# T.G. Northrop,Adiabatic Motion of Charged Particles~Inter-

science, New York, 1963!.
@3# M.D. Kruskal, J. Math. Phys.3, 806 ~1962!.
@4# D. Bora, P.I. John, Y.C. Saxena, and R.K. Varma, Phys. Let

75, 60 ~1979!; Plasma Phys.22, 563 ~1980!; Phys. Fluids25,
2284 ~1982!.

@5# R.K. Varma, Phys. Rev. A31, 3951~1985!.
@6# R.K. Varma and A.M. Punithavelu, Mod. Phys. Lett. A8, 167

~1993!.
@7# R.K. Varma and A.M. Punithavelu, Mod. Phys. Lett. A8, 3823

~1993!.
@8# A. Ito and Z. Yoshida, Phys. Rev. E63, 026502~2001!.
A

@9# R.K. Varma and C.W. Horton, Jr., Phys. Fluids25, 1469
~1972!.

@10# A.M. Dykhne and A.V. Chaplik, Zh. E´ksp. Teor. Fiz.40, 666
~1961! @Sov. Phys. JETP13, 465 ~1961!#.

@11# R.P. Feynman and A.R. Hibbs,Quantum Mechanics and Pat
Integrals ~McGraw-Hill, New York, 1965!.

@12# R.K. Varma, Mod. Phys. Lett. A9, 3653~1994!.
@13# R.K. Varma and A.M. Punithavelu~to be published!.
@14# M.N. Rosenbluth and R.K. Varma, Nucl. Fusion7, 33 ~1967!.
@15# J.L. Synge, inHandbuch der Physik~Springer-Verlag, Berlin,

1960!, Vol. III/1, p. 121.
@16# P.A.M. Dirac, Can. J. Math.3, 1 ~1951!.
8-10


