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The set of Schidinger-like equations obtained earlier by the auffiRitys. Rev. Lett26, 417(1971), Phys.
Rev. A31, 3951(1985] for the charged particle dynamics in an inhomogeneous magnetic field in the macro-
domain, are derived here starting from the quantum-mechanic @olger equation in its path-integral repre-
sentation. This derivation enables a generalization of the equations to include a curl-free vector potential in the
Schralinger-like equations. In view of the amplitude character of the latter equations, which now descends
directly from that of the quantum-mechanic Satirmer equation, they now predict the existence in the
macrodomain of all such phenomena, which are characteristic of a probability amplitude theory, e.g., the
interference, and the observation of a curl-free vectda &haronov-Bohm. A discrete energy structure,
predicted as interference maxima and minima has already been observed by the author with his co-workers
[Mod. Phys. Lett. A8, 167 (1993]. A prediction is now made for the observability of a curl-free vector
potential in the macrodomain, in the context of the present problem.
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I. INTRODUCTION v, dQ
€07 gs <t &

A probability amplitude description of particle dynamics
is known to be characteristically quantum mechanical, and ) )
known to apply in the microdomains of atomic and sub-WhereQ2=eB/mc is the gyrofrequency of the particle and
atomic dimensions characterized by the quantum of adtion v iS the magnitude of the “perpendicular” velocity of the
An amplitude description is, of course, known to describe théParticle. o N _
wave phenomena in the macrodomain of the continuous me- Since a nonspecialist reader may not be familiar with
dia. But it has not been known to govern the particle dynamihese concepts, an elaboration is in order. It has long been
ics in the macrodomaitexcluding the case of many-particle known since at least the work of Kruskg8], who formu-

correlated systems that lead to superconductivity and supelated the problem of adiabatic invariance more precisely and
fluidity in the macrodomain elegantly, that the latter concefuif “adiabatic invariance)

The present author had, however, given a swave-in classical mechanics is related to a general class of
mechanical” model[1] for what was then regarded as the ‘@Symptotic phenomena”and singular perturbation theory in
“nonadiabatic” behavior of charged particles in an inhomo- Physics, when the Hamiltonian of a system is a function of a
geneous magnetic field, which yielded a set of Sdhrger- small parametee, which signals a slow variation of the po-
like equations for the “nonadiabatic behavior.” The nonadia-tential or field governing the dynamics. An actids [ pdq
batic leakage of particles from adiabatic traps in this modefan be defined for any bounded degree of freedom of the
thus turned out to be in the nature of quantumlike tunnelingsystem, and the problem of adiabatic invariance of the action
of the adiabatic potential(Q) which governs the dynamics J=Jp dd is one of determining how good the invariance is
of particles along the field linegn the adiabatic approxima- @as the system experiences changes in the field, either explic-

tion) through the adiabatic equation of moti¢see, for ex- itly in time, or through motion in space. It has been shown
ample, Northrod 2]) that the actionJ has an asymptotic expansion in the small

parametek, the first term of which is a good approximation
d if € is small enough, and is what is widely referred to as the
U” " . . . . 5 . “ ”

m— = —V(nQ). (1) adiabatic invariant.” If € is not “small enough,” other
dt terms of the series must be included. When the adiabatic

invariance of the gyroaction defined by E(2) is good
Here,v=ds/dt is the velocity of the particle along the par- enough, the three-dimensional motion of the charged particle
allel coordinates of the field line, andu is an “adiabatic  in @ magnetic field reduces to the one-dimensional potential

action invariant” motion along the field line governed by E@l) with the
potential ().
1 A very crucial aspect of the series for the actibis that
w= Emvf/Q_ (2)  besides the terms in various powersepthere always exists

a nonanalytic term of the form exp(/€) nonexpandible ire

that becomes important whenis not small enough. Effects
This invariance ofu applies, in the limit of the slow varia- associated with such a term are referred to as “nonadiabatic
tion of the magnetic field as defined by effects.” For example, charged particles that may be trapped
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in the adiabatic potential by virtue of E@L) may finally leak  experiments carried out at the Physical Research Laboratory.
out, given sufficiently long time. Such a leakage of particlesThe success of these predictions by this Sdimger-like
is referred to as a “nonadiabatic leakage” or loss. It has beemodel was strongly suggestive that an amplitude formalism
a rather challenging problem mathematically to find a propefvas at work in the macrodomain.
way to calculate this loss, because it requires extracting out The derivation in Ref[1] was, however, somewhat heu-
the contribution due to the nonanalytic termexp(—c/e).  ristic, and it is interesting that such a heuristically inductive
The author has noted that a formal analogy exists betweeglerivation was able to produce the set of equations that were
the phenomena of nonadiabatic leakage of particles from fitater confirmed through a deductive derivation based on a
nite adiabatic potential wells and the quantum tunneling oknown dynamical equation of classical mechanics as a start-
particles from finite classical potential wells. The relation-ing point, since the problem ostensibly belongs to the do-
ship between quantum mechanics and classical mechanicshgain of classical mechanics. The equation of classical me-
also known to be asymptotic in nature as evidenced by thehanics in question is the classical Liouville equation for the
WKB series expansion, whefeis formally the small param-  problem under consideration, and E¢$. and (5) were ob-
eter. The nonadiabatic effects, in relation to the adiabati¢ained by constructing what may be regarded as a Hilbert
equation of motion(1) are analogous to what the quantum space representation of the former. Needless to say, the clas-
effects are in relation to the classical equation of motionsical Liouville equation is just another representation of clas-
And the quantum tunneling probability has the nonanalyticsical dynamics, since its characteristics are just the Hamilton
(in #1) form exp(=C/%) similar to the form exp{-cle) given  equations of motion(lt is perhaps desirable to give a brief
above for the term that is responsible for the nonadiabatigutline of the derivation of Ref5] leading to Eqs(4) and
leakage of particles. (5), to motivate the reader who may not be familiar with it.
Based on this formal similarity between the two systemsThis is given in the AppendixWith this derivation, Eqs(4)
it was conjectured by the author that a Sdinger-like de-  and(5) can be justifiably raised from the status of a “model”
scription may be possible to describe the nonadiabatic leakof Ref.[1] to that of a theory, with the important claim that it
age of particles from adiabatic potential wellg,(@). Using  affords an amplitude description of charged particle dynam-
these ideas, and Feynman path-integral-type considerationgs in the macrodomain.

the author was indeed able to derj\ig the following set of It will be noted from this derivation that each of its non-
Schradinger-like equations standard steps are specially designed as follgiysarrying
out a noncanonical transformation to the initial momenta val-
ip oW\ (w)® 1 TN QT ues, (i) change of the gyrophase variabfeto the action
N ot (N 2m g2 ()T, phase®, (iii) writing the Liouville density functionf = y?,
to ensure positive definiteness fpfas well as to serve as a
A=123..., (4) step towards constructing a Hilbert space representation, and
finally (iv) obtaining the equation for a suitable Fourier
which are an infinite set of equations for=1,2, ... for the transform¥ of ¢ whose evolution is shown to be governed
amplitude functions¥’(\), in which the probability density by the set of Eqs(4) and (5). This derivation amounts to a
is given by a generalized expression: kind of “unfolding” of the classical Liouville density func-
tion f to the set(4) for the set of amplitude functiorid (\)
_ * It may be pointed out that the gyroactian which takes
P(S’t)_; TEOTR). © the place off in Eq. (4) is typically u~10%, so that the

corresponding spatial dimensions would He~10°A
As is obvious from here, the gyroactignappears in the role =10 cm. Thus Eq(4) presents a case of an amplitude for-
of # and the adiabatic potentigl«()) appears in the location malism complete with the probability prescriptiqs) for
of potential in the QM-Schidinger equation. In the limik macroscopic dimensions. The main difference from the am-
—0 (which is formally equivalent t&—0) these equations plitude formalism of quantum mechanics is that the latter has
lead to the adiabatic equation of motigh), while for u the fundamental constarit while in the former casey (as
#0, these equations would describe the loss of particlean initial value and therefore aaxactconstant of motion
from adiabatic traps analogous to quantum tunneling. Thean be chosen to have any value in an experiment. But the
adiabatic equation of motiofil) which follows from Eq.(4) amplitude character of Ed@4) prevails.
in the limit u— 0, bears the same relationship with the latter Based on this facfthe amplitude charactethe author
as the classical equation of motion does with the QM-had suggested in Ref5] the existence of interferencelike
Schralinger equation, from which it is similarly obtained in effects in the macrodomain for particles with typical
the limit #—0. These equations were able to describe, quiteleBroglie-like wavelengthh\~10 cm. Such effects have
successfully through the mode=1, the various character- been subsequently observed by Varma and Punithdéells
istics of the experimentally determined life terms againstin the form of a discrete energy structure, which essentially
nonadiabatic leakage existing at the tif#970, and also represents interference maxima and minima, and which have
predicted the existence of the other multiple lifetimes correbeen recently confirmed by Ito and Yoshi@ (though their
sponding to the other modas=2,3, . . . for thesame energy explanation is somewhat different from ours
£ and gyroaction valueu at injection. These multiple However, in spite of the remarkable predictive successes
lifetimes were subsequently obsernjéd through a series of of this theory(the prediction and subsequent observation of
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previously unexpected and unsuspected multiple residendde classical macrodomain, as these observations would sig-
times in adiabatic trapg4] and interferencelike effects nify, would appear to manifestly contradict the Lorentz equa-
[6—8]) it has enjoyed the status of a “stand-alone” theory. Ittion of motion. This would entail an enlargement of our un-
does connect to classical mechanics through the derivation eferstanding of the classical charged particle dynamics in a
Ref. [5] which derives it from the classical Liouville equa- magnetic field.

tion, by constructing its Hilbert space representation. How- As will be reported shortly, we have indeed found some
ever, it is not connected in a manner that is commonly repreliminary experimental evidence for the effect that a curl-
garded as manifest, namely, in terms of the equation ofree vector potential has on the electroméa Aharonov-
motion and the initial value paradigm, or even through theBohm in the classical macrodomain.

standard application of the Liouville equation. So the origin  In the next section we derive the required set of equations
and significance of its amplitude character have aroused costarting from the Feynman path-integral representation for
siderable interest over the years. Being an amplitude theoryhe quantum-mechanical problem under consideration.

one would expect it to be connected with quantum mechan-

ics in some way. But such a connection has not yet been || A PATH-INTEGRAL REPRESENTATION EOR A

properly elucidated. CHARGED PARTICLE IN AN INHOMOGENEOUS

It, therefore, becomes interesting and necessary to examyAGNETIC FIELD AND THE DERIVATION OF THE SET
ine whether the wave functions of the Sdttireger-like for- OF SCHRODINGER-LIKE EQUATIONS
malism of Ref[5] can be related to the wave function of the ) ) )
QM-Schralinger equation for the same system, namely, Slnc_e we want to start with the quantum-me_chamcal con-
charged particles in an inhomogeneous magnetic field. ~ Siderations of the charged particle dynamics, it is expedient

It is one of the objectives of this paper to establish such 40 employ, as done earhét_)], the path—lntggral representa-
connection. This would enlarge the scope for making, as wé&on. Then if¢(r,6,z,t+7) is the probability amplitude for
shall see, new predictions for this system in the macrothe particle atr,6,z (cylindrical coordinatesat the timet
domain, which would not have been otherwise possible: 7, it is connected to that atr(-Ar,6—A6,z—Azt)
Such a connection was sought to be established right aftéprough the Feynman relatiorr peing a small time interval
the first paper of 1971, and an attempt was made in that
direction in 19729]. Though this derivation did produce the (T, 0,2,t+7) =
same set of equations, it did not go far enough and left some T
issues unanswered. The advantage of a derivation starting (e
from quantum mechanics would, of course, be that the am- xex;{'_f Ldt}
plitude character of the derived set of equations, inasmuch as fi Jy
it would now flow directly from that of the QM-Schdinger
equation, would now prevail unreservedly. Furthermore, it
would afford a closer understanding of the relationship be- . . S

o : wherelL is the Lagrangian for the charged particle in a mag-

tween the QM-Schrdinger equation and these sets of equa- i field:
tions, as well as between the present quantum-mechanicaF '
derivation and the derivation of Rg5]. 1 o e . _ _

We also take the opportunity to generalize these sets of L=-m(X?+r26?+2%)+ —(rA,+10A,+zA,) (7
equations to include all the three components of vector po- 2 ¢

tential A, but taking meAaéa to have nonzero curl, so that gng wherefL dt in the exponent of Eq6) is written in the
the magnetic field still has onl, andB, components and  orm

A; andA, are curl free in almost the entire region except for

a small source region. We assume axisymmetry of the mag- t+r 1

netic field. With this generalization, it will be shown that we f dt'L=L7= Em[(Ar)2+r2(A 0)%+(A2)%)/ 7
obtain a set of equations, still one-dimensional, but with a

structure similar to that of the QM-Schtimger equation

32
fd(Aﬁ)rd(Ar)d(Az)

m
2mihT

Xi(r—Ar,0—A0,z—Azt), (6)

e
with a vector potential, which is assumed here to be curl free (AT AcHTAOA,+AZA). 8
in the entire region of space except inside a thin torus where

the B, field is confined. If we take a Fourier transform of E¢6) with respect to the

As will be shown in Sec. Il B, the set of equations with y4iaple ¢ (taking the functions to be periodic with period
the vector potential so obtained predicts the possibility ofzw) we obtain

observing, in the manner of the Aharonov-Bohm effect, the
curl-free vector potential in the macrodomais10 cm).

m |32

Should such an effect indeed be observed in the macro- ¥(r,v,zt+7)=|5=5— Jd(AG)rd(Ar)d(AZ)
o . . 2mihT

domain, it would constitute a spectacular demonstration of

the amplitude character of governing equations in the mac- i )

rodomain, for it is the amplitude that carries the information Xex gLT— iv(A6)

of the vector potential in its phase. Moreover, and more im-

portantly, the observation of the curl-free vector potential in X(r—Ar,v,z—Az1t), 9
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wherev is an integer {rve or —ve), the angular Fourier wherehg andh, are the scale factorbg=(1—x/p),hy=r,
transform variable. andp(s) is the radius of curvature of the particular field line.
Next, consider the exponeft/AL7—iv(A#)] with the If, for simplicity, we consider the small Larmor radius limit
expression forL7 given by Eq.(8). On completing the and assume to be large, that is, we select a line of force for
square in A 9), we get the particles to be on, near the axis of the magnetic-field
configuration, we then have;=1. The parametric equation

1 1 mr? e 2 of a line of force is given by
%LT— v(A9)= 57, AO— 7| hv—=rA,|/mr?
T ¢ r=R(s), z=z(s). (13
2
— E T (ﬁv— ErA ) (10) In the small Larmor radius limit the coordinateof the par-
ﬁ 2 c [ " . - . . . .
2mr ticle will always remain small during the motion; we can

thus expand €/c)rA, in the potential-energy term in the
Using this in Eq.(9) and carrying out integration with re- Power ofx/p:
spect to A 6), this yields p
rAez(rAﬁ)x=O+x&(rA9)|x=o+ e (14)

m
Y(r,z,v,t+ r)=(+)fd(Az) d(Ar)
2mifir Moreover, we have the total magnetic field on a field line

if1 (Ar)?2 1 (A2)? e 19
X eX| % Em - +§m - +EAFA, B:_Fﬁ_x(er)' (15)
2
e T e
+=-AzA,|— (ﬁv— —rA,,) Hence,
c 2mr2 C 2 2
e B e eB
Xlﬂ(r_Ar,Z_AZ, V,t). (11) (ﬁV_ErA(;) = (hV_E(rAH)X=O +Trx
e 2 2 eB
Note that the exponent now has the term mi/2(7iv =\ tiv——(rAp),| +|—| x2r2+2xr _)
—(elc)rA,)? which represents an effective potential for the c ° c
(r,z) motion. Note also that in taking the Fourier transform e
of Eq. (6) we had assumed the dependence oA, (if any) X| iv—=(rAgy_o| +-- . (16)
to be weak enough to justify its being disregardsithce we c

have assumed axisymmetry, this will not be required here
howevej. But, in general, this would indeed be justified if
we takev>1.

Since we would eventually be interested in the large quan
tum number limit(approaching “classical” or macroscopic
we shall takev>1. This would be in the spirit of the Born-
Oppenheimer approximation. In fabt=#Av(v>1) defines
the canonical angular momentum which will not be con-
served ifA, is not strictly independent of.

Now, we specialize to the case of the near adiabatic limit )
defined by the inequality3) which implies that the particle 1 (ﬁv— ErA ) =Em92x2 (17)

L. . . . 9 .

stays close to the magnetic line around which it gyrates; i.e., 2mr? c 2

the gyroradiug of the particle is much less compared to the

characteristic lengti. of the magnetic-field variation. In a Equation(11) then reads in the local coordinate system, as
curl-free inhomogeneous magnetic field, the field lines

would, in general, have a curvature. It is then more appro- _
priate to have a local orthogonal system of coordinates iﬁb(X’S’V’HT)_
place of the cylindrical coordinate system. _ 5 5

Following Dykhne and Chaplik10], we employ, for an % p[ ' [1 (Ax)° 1 (As)” e

. 7 i . : . ex =m +=m + = AxA,
axisymmetric magnetic-field configuration, the coordinate 2 T 2 T c
system 6,%,0) wheres is the length along the line of force,

x a coordinate orthogonal to the particular field line, ahd + SASAS—%mQZ(S)XZ ]
X p(Xx—AX,5—As,v,t). (18

Note that (A ,),—, refers to the value on the particular field
line from whichx is measured.r ) ,— o basically represents
the flux coordinate of the field line. For the axisymmetric
case is a constant of motion anfdyv(»>1) is identified as
the canonical angular momentukh=7% v, which is further
identified withe/c(rA,)=o=M (when the departures from
axisymmetry as smalt will be an adiabatic invariantThen
Eq. (16) gives the potential-energy term in Ed.1) as

m

fi

the angular coordinate orthogonal to bottands. The line
elementd| in this coordinate system is given by

dI?=dx?+h2ds?+h?d ¢?, (12 Now define a function
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WSt v)= (XSt V)exp{ - ili_ EJXAde] . (19

In terms ofyr we have Eq(18) as

m

; 2
Xexp{l—[immx) —EmQZ(S)XZT

T//(x,s,v,t+ T)=

h|2 T 2
+ (AS)2+eA +
M T EASA

X P(x—Ax,5—As,v,t). (20)

Next we consider an eigenfunction expansjaf] of a part
of the kernel in Eq(18), i.e.,

1/2 i 1 1
— | = 2_ 2,.2,,2
) exq’hT[zm(Ax) 2mQ TX

m
2mihT

=2 xn(x)e BTy (x—Ax). (21)
n/
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an adiabatic invariant, which is identified with=n#,
n,>1 the gyroaction. However, transitions will, in general,
occur fromn, to n=ny,+X\, wheren,>\>1, when() and

A vary with s. Therefore)\ represents a change in the quan-
tum number fromn, induced by the motion in a varying
magnetic field and vector potentidl;. (We may call it
“nonadiabaticity.” But this should be properly considered as
“gquantum nonadiabaticity” as we are still in the quantum
domain, albeit with large quantum numberg/e therefore
note that

Ny T

1m As)zﬁ eAsA 0
2hn,| 7| TMMec| 7T

=noLam/u—nLat/w=(Ng+N)Lat/p, (25
where

1
LA=§m

As

T

c

(26)

2 e[As
As— u)

is the effective Lagrangian in the presence of a vector poten-
tial Ag. It is actually the adiabatic Lagrangian but for the
vector potential term. In view of, Eq$24) and (25 we

This part of the kernel represents a harmonic oscillator With:herefore’ write the exponel4) in Eq. (23) as

frequency(), where they,, are the harmonic-oscillator wave
functions and

E,= hQ(s) (22

L
T2

Im
2 h

(As)®> e
+ EASAS— N

NoLam/pw+ANLp7/ =

are the Landau energy levels. If we now use the expansion

(21) in Eq. (20), multiply both sides byyy , and integrate
overx, using the orthonormality of the eigenfunctign, we
obtain

W(s,n,v,t+17)

m |12
- ( 2’7TiﬁT) j d(As)

i[1 (As)?
X ex %Em -

e
+EAsAs—nﬁQ(s)r

)

XW¥(s—As,n,v,t+7). (23

Equation(23) follows on carrying out the integration over
(Ax) on the right-hand side of Eq20). Consider now the
exponent in Eq(23), and note that it can be written as

1 (As)2+eA 0

2M s TrcASATIOT
C[1m As\? e AsA 0 o4
=270\ ) Thnc| 7 AR @Y

Now note also that whed\g and ) are independent o
(homogeneous fiejdn is a strict constant of motion; call it
ny,. WhenQ andAg are slowly varying functions o, n, is

This leads Eq(23) to the form

Y(s,t+7,n,+\;v)

m

1/2
- ( 27Tiﬁ7') f d(As)

i1 (As)?
Xex %Em -

e
+ EASAS— N i (s) T

(2)]

We note that the two terms in the exponent in E28) lead

to widely different scales of variation of the wave function.
The first ondin the square bracket marked with the subscript
()] leads to the variation on the microscopic scale charac-
terized by the denominatdr, while the second onjgmarked
with the subscript2)] leads to a variation on the macroscale
characterized by the denominater=n,%. We also accord-
ingly denote the intervaAs in the second bracket b S to
emphasize the slower variation of the macroscale. Now, a
factor of the kernel with the subscript) term in the expo-
nent in Eq.(28), namely,

(1)

iN[1 (AS)?
+—|=m
Mml2

e
+ EASAS_,LLQT

XW(s—As,t,nyg+A\;v). (28

036608-5



RAM K. VARMA

m |12
Ks=

2mihT

i
XeX[{%

which represents a motion along the coordirate the po-
tential n,2€)(s), and curl-free vector potentighg, can be
expanded in terms of the energy eigenfunctiphl of the

1 (As)? eA 0
EmT+E SAS—nO (S)

] . (29

PHYSICAL REVIEW E 64 036608

+k, whereK, is a large constant wave numhég>1/L (L,
characteristic length of) and A;) and k<K, (k~1/L).
Then

ik
Exk=Ek, * F(ﬁKo)

=EKO+(ﬁk)vo, (34)

Hamiltonian corresponding to the Lagrangian in the expohoting that ¢K,)=mu,, with v, being the velocity corre-

nent of the kernelCs in Eq. (29):

Ks=2 ¢.(s)e  Eemto* (s—As), (30)
where
E—lh A2 ﬁQ—lﬁKz rQ
K_ﬁ K— s| the _%( )+no
(318
with
2 1/2
K= —EA il E.—n,A0Q]Y2  (31b
K= 3o hs 2 [Exk—Nnoh )] (31b
and

exp{if K+ds]—expl’if de]

1/2
(s)= i =
P 2nKh2] 2i

m 1/2 ie (s r{ s
=\ 5z ex %J Agds|si stK(s),
(329
where
e
Kt:h—CASiK. (32b

We shall now transform, away from E@28) the rapidly

varying partiCs of the kernel in this equation by transforming

it into the Fourier space with respect to that parsoivhich
accounts for the rapid variation. Thus using E8Q) in Eq.
(28) multiplying both sides byy* , and integrating oves,
and later overAs (on the right-hand sideone gets

1 (aS)?

— iA
V(KN t+7n,,v)=e E"texg—{ -m——
ml2 T

V(KN t;ng,v),

+ EASAS_ ul) T}
(33

where the weak dependence Qf and Ag on S has been
disregarded in taking the Fourier transform. Writig= K,

sponding to the wave numbkr, . Using Eq.(34) in Eq. (33
we get(dropping the subscript onv,)

Y (kN t+ 7Ky ,ng,v)
. iN[1 (AS)? e
:e'EKcT/hexF{— — (45) +EASAS—/.LQT

2

"

—ikvT (35

XUk, Ko N, v).

Equation(35) is still left with a rapid time dependence char-
acteristic of the microdomain @f [showing through the fac-
tor exp(—iEKoﬂﬁ) on the right-hand side To “remove”

(transform awaythis (rapid) time dependence, multiply both
sides by expEy t/4], and integrate over a time intervat,

T>At>ii/EK0 (T being the characteristic macroscopic time
T=L/v) which finally yields

W (k,\ t+ 7';EKO,K0 Ny, V)

= ML (AS)2+eAS Q ik
—eX|;§mT EAS,urlvr

x*I'(k,)\,t;EKO,KO,nO,v). (36

There are now two ways to proceed from E86). One, is to
take the inverse transform with respeckiavhich givegthe
momentum parameters;;(no,Ko,EKo) will be suppressed

hereaftet

V(S t+7wng,Ko )

iN
:ex;{;LAT \If(S—vT,)\,t;v,no,Ko,EKo),
(37)
where
L —l AS 2+eASA QO 38
aA=oM —| F oA (39

is the reduced Lagrangian. We no longer call it “adiabatic”
Lagrangian because of the presence of the curl-free vector
potential Ag, which would have no effect on the adiabatic
(classical equation of motion. But in Eq.37) for the ampli-
tude W, it will have a nontrivial effect.

As can be seen, E¢37) has been obtained from EQL6)
by systematically transforming away all the rapid dependen-
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cies ond, the coordinateg ands, and the time, character-
istic of the microscale ofi.. The corresponding “central”

guantum wave numberSV(nO,Ko,EKo) appear as param-

eters in the argument of the wave functions in Eg7).

These wave functions then represent the transition ampl

tudes from the large quantum numbens, (K,) to (n,

PHYSICAL REVIEW E 64 036608

directly from the wave amplitudes of the QM-ScHinger
formalism. The second thing to note is that these equations
are identical in fornjexcept the generalization to include the
vector potential in Eq40)] to those obtained earli¢b] as a
iHilbert space representation of the classical Liouville equa-
tion, or to those obtained even earljdq through a heuristic

+X\,Ko+k) as a consequence of magnetic-field inhomogederivation. In fact, it is interesting to note that Eg6) is the
neity, with the quantum numbers characterizing the largsame as Eq31) of Ref.[5] (apart from the vector potential

guantum number statev(no,Ko,EKo), which may be re-

term in EQ.(36), which is absent from Eq31) of Ref.[5]).

garded as initial values. It must be emphasized that thes®!SO the parameter argumeats of the amplitude functions
transition amplitudes” are probability amplitudes neverthe- Of Ref. [5] which were taken to be the initial values of the
less, and exhibit all the properties that are characteristic of fomenta{a}=(M.,p,,u,.£) [being, respectively, the ca-
quantum-mechanical probability amplitude, but now in thenonical angular momenturM, the linear momentunp,,
macroscopic domain characterized by the wave numkers gyroactionu,, and energy, are identical with the param-

<K,, A<<n,, and the actionu=ny%>%. Note that since
we considered an axisymmetric magnetic field, white

eter argument of the functions of the present derivation
which are{refer to Eq.(36)} v,Ko.No . Ex, and essentially

=fiv(v>1) is an exact constant of motion, no division suchthe set M=#v,p,=%K,,u=%n,,E=E« ) of Ref. [5].

asv=v,+ 5(5<vo) was required to be done. It would, how- ance there is a one to one correspondence between the
ever, be necessary if one were to consider a nonamsymmetrghpmude functions of Ref5] and those of this paper.

field, in which cases would correspond to the change from

Therefore the present derivation from quantum mechanics

v, due to nonaxisymmetry. Such a case is considered laterngicates the earlier derivations and assignment to the func-
Equation(37) is of the Feynman path-integral form. One tjong y(n) of Ref. [5] and the meaning of wave amplitude

way to proceed is to integrate the right-hand side ove

(AS)=v, which yields

)1/2J e

A
Xex |;LAT

VSNt =| 5

P(S—ASA,1). (39

Using the standard proceduiféeynman and Hibbfl1]) this
gives

iwd¥N)  1(p g e |2
A —ﬁ<ﬂa—S—EAS) W)+ uOW (),
A=123..., (40)

where the probability densitp(S,t) is then given by

P(S,t)=§£ P*(N)W(N). (41)

This set of equationg38) and(39)] is then a generalization

of the set obtained earligb] to include a curl-free vector
potential. The other way to proceed from Eg6) is to fol-
low the procedure given in Ref5] where apart from the

ala wave mechanics, and therefore justifies the prediction
made about their describing interferencelike phenomena, for
which the evidence has already been repof@d8]. The
significant point to be appreciated is that these E48). and

(41) refer now to the macroscopic dimension of 10—50 cm,
characterized by the magnitude @t 10°% (typically) rather
than to the microdomain of 1 A which is characteristic of

h. This presents a severe dilemmes a visthe standard
classical-mechanicakquation of motion—initial valuepara-
digm, which does not support such an interference phenom-
ena.(It may be mentioned, however, that there does exist, to
be sure, wave and interference phenomena in classical phys-
ics, for example, waves on a string, or in any other continu-
ous medium. But the dilemma mentioned above refes only to
the equation of motion-initial value paradigm for single-
particle dynamics, which does not support interference phe-
nomena). The author has been faced with this dilemma, and
he has suggestdd?2] that topological considerations in clas-
sical mechanics may be at play. Topological properties are
global properties of a system, and cannot be captured by the
standard equation of motion-intial value paradigm, which
represents only a local evolution. He has in fact shg&2]

that the Einstein-Bohr-Sommerfeld kind of quantization con-
ditions can be obtained for a classical-mechanical system as
a consequence of their topological properties, where the role

vector potential termAg, the same equation was obtained of # is enacted by an appropriate actid®incareinvariant
[Eq. (31) of Ref. [5]]. This method does not appeal to the belonging to the classical-mechanical system. It would thus

Feynman procedure as carried out in E3p).

Ill. DISCUSSION

A. The nature of the Schradinger-like formalism

The first thing to note about the Schlinger-like formal-
ism, represented by Eg&l0) and(41) is that the wave func-

seem that the Hilbert space representation of the classical
Liouville equation captures the global topological properties
of the system configuration space, and the wave amplitude
character of the equations so obtained is a reflection of that
fact.

From the point of view of the present derivati¢fiom
gquantum mechanigst is interesting to examine the meaning

tions ¥ governed by these equations must necessarily bef the W(\) and the index. We recall that\ was taken to
amplitudes in the sense of wave mechanics, as they flowe the change in the Landau-level quantum number fingm
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to n,+ X\, induced by the inhomogeneity in the magneticring, with 8 being unity when there is complete linkage as in
field as the motion takes place along the field line. Thughe case of the standafiB effect.

W(\) has the interpretation of the transition probability am-  From Eq.(43) it follows that the value ofb would clearly
plitude for finding the particle in the state,+\ (n, being  affect the position of the interference maxima exhibiting a
the level number in the absence of inhomogeneifthis  periodicity with (e/c)(B8®/u). One can varyp by varying
transition to the statesng*=\) induced by the inhomogene- the current in the Rowland ring and look for a periodic

ity may be termed the “quantum nonadiabaticity.” change in the interference maxima.
In experiments carried out at the Physical Research Labo-
B. Observation of the curl-free vector potential ala ratory, [13] we have indeed found some evidence for the
Aharonov-Bohm in the macrodomain existence of these effects. These are at present under scru-

The set of Eqs(40) and (41) generalized as they are to tiny, and should be reported shortly.

include a curl-free vector potential, afford the possibility of

making yet another spectacular prediction, namely, the ob- IV. CONCLUDING REMARKS

servability of the curl-free vector potential in the macro- ) o i
domain, in the manner of the Aharonov-Bohm effect in the 1 he problem of charged particle dynamics in a magnetic
microdomain offi. Since Eq.(40) is one-dimensionalalong flel_d that we have s_,tudled over the last 30 years, _both th_eo—
the field line coordinatethe situation here is somewhat dif- "etically and experimentally, has been a rather interesting

ferent, however, compared to the standard Aharonov-BohrHer,‘ture- Th.e Schutinger-like formalism for its descriptio_n,
effect. From Eq(40), for \=1, we get the condition for the which we discovered 30 years back and checked experimen-

one-dimensional interference maxima tally for its prgdictions over the years has, hoyveyer, pre-
sented an enigma. Does it represent a description of the
L e classical-mechanical attributes of the system? Looking at the
f (mvs+ EAs)dSZZTmM, (42 macrodimensions of its domain, it ought to be so. But look-
0 ing at its amplitude character, which, in view of the present
derivation, descends directly from that of quantum mechan-

whereuv is the velocity of the particle along the field line. If . must imolv in it all the phvsical attributes of an ampli-
we consider the passage of electrons from an electron sour%%s’ ust imply pny P

Sto a Faraday cup detect@, through a Rowland ringia ude theoryala wave mechanics; for instance, the conse-
torus of a high-magnetic ,permeability material wound 9uences of the existence of phasech as the interference

around by current carrying wires, so that the magnBtjc pher!omena, observat_)ility of a curl-free \{ec;tqr pote_hti@d;

field is completely confined in it, and there is only a curl-freepred'cm.)nS on the eX|stenc.e of the mu]hphc;ty of I|fet|mes'

vector potential A, ,A,) in the si)ace outsidehen Eq.(42) and their subsequent experimental confirmation, followed di-
rfz, .

yields, on carrying out integration between the source an(ﬁe.Ctly from the amp"tUde character of the equatio_ns. Like-
dete ct’or wise the observations of the curl-free vector potential, which

is completely outside the domain of classical mechanics, is

L e possible only through the agency of the phase of the ampli-

f mu ds+B8-®=2mnpu, (43)  tude. Of course, the results on the observation of the vector

0 ¢ potential are still being scrutinized and need to be confirmed
by other workers later. But, as is clear from H40), the

where ® is the flux®=JB,do enclosed in the Rowland yector potential appears in it in a significant way, and must
ring, andg is a geometrical factor that is determined by thehave its consequences.

distanceL between the gun and the detector and the mean \what then is the nature of this theory? The present deri-
radius of the Rowland ring. vation certainly establishes its connection with quantum me-
It may be mentioned that conditiod?2) for the interfer-  chanics. Its amplitude character, is, to be sure, a signature of
ence maxima follows by considering at the plate, the interguantum mechanics, as per this derivation, though it carries
ference of two waves(i) the one originating at the source ng other signature of the lattéior instance, nd:). One may
(the electron gun with the amplitude given by say that it carries some remnants of the quantum structure
exl (i/w)[od(mv+eAlc)] and (ii) the other one a scattered into the macrodomain, a kind of “quantum wings” of the
wave, scattered off the grid sitting just next to the plate, withmacrodomain of classical mechanics. On the other hand, its
the amplitude given by exp'/u)f'[,&ds(anreNc)], where  amplitude character had also been obtairtgdrom the clas-
d is the plate-grid separatiod@<<L. It is interesting to note sical Liouville equation without appeal to quantum mechan-
that in this situation, there are no two paths that encircle thécs. Thus, notwithstanding its derivation from quantum me-
flux topologically. On the other hand, we have two openchanics, its amplitude character must be regarded as
paths, one from the source to the plate, and the other frorindependent of the latter. It may be concluded that the am-
the grid to the plate detectdcorresponding to the scattered plitude character of the formalism of RES] must represent
wave from the grigl The two paths span different extents of some fundamental property of classical particle dynamics it-
the one-dimensional space with the vector potenflal self (in relation to at least the particular dynamical system
thereby leading to the conditiad?2) for the maxima arising which has not been revealed so far. It is possible that it is
out of the two waves mentioned above. Equati48) there- related to the topological structure of classical dynamics
fore, involves only a fractiorB of the total flux® in the  along the lines elucidated by the author earlier, which can be
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captured by an amplitude or Hilbert space representation. of of of
Clearly, further investigations of these equations are desir- —tv—-—-Q—=0, (A3)
. gt T aX g
able and should help understand the issues better.
Meanwhile, another incidental but important comment

may, however, be made about Eq40) and (41). Clearly now considered as a function of tieand appropriate initial

these equations have been obtained using the_lar_ge quantym . © o values, rather than being independedtas in the
numberansatz As per the correspondence principle, they Liouville equation before this transformation. This is obvi-

ought to belong to the macrodomain of classical dynam|c50usly a noncanonical transformation. The Liouville density

But they are still ampllf[ude equations. In this Sense t.hes?unctionf is thus a function of X, ¢,t) and the initial mo-

equations may be considered to represent a relationship be-enta valueg o} = 50) (©),p, £) appear as parameters

tween classical and quantum mechanics, though the classic aig =P 4 g pp para
=f(X,¢,t;{a;}). Two important steps are next carried out:

limit is not visible in terms of the Hamilton-Jacobi represen- _. _ .
tation as the standard quasiclassi@AKB) approximation First, the g_yrophase anglg is transformed to_ th(’f‘ action
yields, but rather in terms of the action-angle formalism. W hased defined by Eq(A2), a”f' second, the Liouville den-
shall dwell on this issue in detail later. sity functionf is written asf = ¢“, with ¢ as a real quantity.
This ensures the positive definitenessf,ofs well as paves
the way, at the same time, to construct a Hilbert space rep-

where the subscript parallel o is dropped, and =X is

APPENDIX: AN OUTLINE OF THE DERIVATION resentation of the Liouville equation. It should be obvious
OF EQS. (4) AND (5) FROM R. K. VARMA, that s must also satisfy the transformed Liouville equation
PHYS. REV. A 31, 3952(1989 (A3) with = (X, ®,t;a;). The importance of the transfor-

As noted in Ref[1], the adiabatic equation of motid) mation to the action phas@ lies in the fact that wherb
for the dynamics along the field line, can be obtained from= (1/x)/L dt appears as an exponent in the form

the Lagrangiartz%mvﬁ—,uﬂ, through the stationarity of exd (i/u)fLdt] it is reminiscent of the Feynman Kkernel,
the action where nowu appears in place df. This is indeed the origin

of u appearing in the role of in Egs.(4), and the adiabatic
b, (1 . potential ) appearing in the location of potential in the
S=f dt(—sz—,uQ). (Al)  Schrainger equation.
o \2 A Fourier series expansion @f with respect tod,

One may define an action pha®ethrough . .
/ b ? Y=2, Pp(nye "®, (Ad)

n

1 1 171
_ - T2 =" Zm2
O=Sp= ,uf dt2 mo f Qde= ,uf 2 mo=dt+ ¢, is employed in the finite-time representation of the equation
(A2) for ¢, yielding an equation of the form

where ¢=— ['Q dt is the gyrophase of the particle in the PO t+ )= Wi Ly o . (AB)
magnetic field; whergu is taken here to be thiaitial value
of the gyroaction that is aexactconstant of motion, rather This is clearly of the Feynman path-integral form although
than just an adiabatic invariant. not exactly. It is, therefore, dealt with in a different way as
One starts in Ref5] from the classical Liouville equation given in Ref.[5], leading finally to the Schidinger-like
for an ensemble of charged particles in an inhomogeneougquation(4) of the text. Furthermore, if one uses the expres-
static magnetic field. The ensemble chosen is taken to bsion (A4) in the relationf= ¢, an integration of this over
what has been termed as a “coherent system of trajectoriesthe unobservable action phase, yields the convolution
by Synge[15] and a “family” by Dirac [16]. This corre- s w*(1)W(l) on the right-hand side of Eqé5) or (42) for
sponds to & function in the initial momenta values, and a the probability density P(X,t)=[d®f(X,®,t), where

distribution in the position coordinatésr vice versa The  w(x,|,t), which is governed by Eq(40), is related to
Liouville equation is thus transformed to the initial momenta -

p g 2 Y(X,1,t) in a manner given in Ref5].
valuese; (from the “current momentaf' which are by defi- . It may be noted that the set of equatiqdsbear the same
nition, the exact constants of motion. The correspondlngre|

) ationship to the adiabatic equation of motidh, as the
termsa;df/de; in the Louville equation thus disappear from guantum-mechanical Schiimger equation does to the clas-

it, and «; appear as parameters in the Liouville density func-sical equation of motion. The meaning of the mode number
tion. These are taken to {®, with the initial momentum \ appearing in Eq(4) is now clear from Eq(Ad). It is
parallel to the magnetic fielP”, the canonical angular interesting to note that the mode numbéere is the same as
momentum for the assumed axisymmetric field, @, the X\ of Eq. (40), which has been identified in the derivation of
initial gyroaction value and the energyall assumed to have this paper as the change in the Landau quantum number from
S-function distributions. The Liouville equation is then left n, to n,+\, as a consequence of the magnetic-field inhomo-
with the terms corresponding to the conjugate position coorgeneity. It is quite fascinating to see that this changa the
dinates, namelyX, the “parallel” coordinate ¢, the gy- Landau quantum number should appear as a Fourier index
rophase, and, of course, the timeand is given as related to the serie@4) in the derivation of Ref[5].
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If one wishes to reconstruct the Liouville density function be the most dominant term in the summati®y or (41) as
f as a solution of the Louville equation from the solutionsthe transition tan,* 1 would be the most dominant. Transi-
W(n) of the Schrdinger-like equations, one can do so by tions to n,+2n,+3,... corresponding toA=2,3, ...
backtracking the various steps used to obt&itm) from f.  would be progressively smaller and smaller in magnitude. It
If, however, we regard EqA4) not just as a Fourier series is interesting to note how the Fourier indaxn Eqg. (A4) in
expansion but also as an asymptotic expansion in the spirit ahe derivation of Ref[5], has come to be identified as the
the work of Kruskal[3], (see also Rosenbluth and Varma change in the Landau-level number in the derivation of the
[14]) thenW (n) have magnitudes /2" ~1¥ (1), with e as  present paper.

the adiabaticity parameter defined by E8). So the most It may also be mentioned that the derivation of R6}.is
dominant term correspondste= 1, and others fall off asl" exact(except for neglecting the higher-order terms in an ex-
for n=2. pansion of the forn{16) in Ref.[5]) representing, as it does,

In the context of the derivation of the same equati@®  the transformation of Liouville equation to Eqgl). There-
in the present paper, the represents the change in the fore, while the system of Eq4) and(5) do appear analogous
Landau-level quantum number fromy to n,+X\,(n,>1) as  to the Schrdinger theory, they are not obtained just through
a consequence of the magnetic-field inhomogen@tyany an analogy, but as a consequence of an exact derivation,
other nonadiabatic perturbatipnThus ¥ (\),A=1, would particularly including the probability connectidb).
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