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Theoretical and experimental study of two discrete coupled Nagumo chains
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We analyze front wavékink and antikink propagation and pattern formation in a system composed of two
coupled discrete Nagumo chains using analytical and numerical methods. In the case of homogeneous inter-
action among the chains, we show the possibility of the effective control on wave propagation. In addition,
physical experiments on electrical chains confirm all theoretical behaviors.
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[. INTRODUCTION with the dot accounting for the time derivative, grakfining
a space lattice pointjE Z) or discrete space coordinat,

In a variety of spatially extended systems arising in manybeing the coupling coefficient. Equatigft.4) is more pref-
areas of science, the competition between stationary stat@sable when the activity of the medium is provided by local-
may yield the appearance of propagating front waves ofzed units in the junctions of the space lattice. Take, for in-
kinks. These processes, defining the interfaces between d$fance, a myelinated nerve fibg2], when the membrane
ferent states of the medium, occur, for example, in soméctivity is localized mostly in Ranvier nodes coupled by my-
problems of cardiology, neurophysiology, chemistry, and€linated(passivg parts of the axon. Another example is the
physics(see, e.g., Ref$1—3)). In particular, in a wide class €&t tissue composed of a number of interacting cardiac
of systems possessing front wave solutions, a significarff!!S Suitably distributed in space and coupled with gap junc-
place is taken by reaction-diffusion systefiRD systems ions which may be approximated with nearest neighbor dif-

.. fusive coupling[6,7]. From an engineering point of view,
Al present, among RD systems, the most deeply studied iscrete RD systems, based on nonlinear electric RD lattices
the one-component Nagumo equation, which corresponds

. . r[%—11] or biological enzyme transistor circuif42], can be
the well-known FitzHugh-Nagumo system without the re-\,qeq for various information processing problems.

covery variable. There are two cases of Nagumo equation - ajthough Eq.(1.4) presents behavior qualitatively similar
considered in the literature, with respectively continuous ang Eqg.(1.1), it also displays some different propertigs3—
discrete spatial coordinates. 22]. In particular, there exists a critical value of the coupling
In the first case, this equation takes the form coefficientd=d* (m,,m,,ms), above or under which front
B propagation is possible or not.
Up = dUy+F(u), (1.9) (i) For d>d*, front wave solutions of two type&kinks
and antikink$ are possible in Eq(1.4), and do not differ

where u(x,t) is the state variable, and is the diffusion o X
qualitatively from solutions of Eq(1.1).

constant. The nonlinearity, providing the bistability of the 1~ . - .
medium, is expressed byF(u)=— (u—my)(u—my)(u ' (||).Fordsd , the propagqtlon of front waves is impos-
—m,), with 0<m,<m,<ms. It is well known (see, e.g., sible in Eq.(1.4) for any relations between parametens,

Refs.[4], [5]) that Eq.(1.1) has front wave or kink solutions M2: @ndms. This so called propagation failure phenomenon
of the formu(x,t)=U (x—ct)=U(¢&) with does not exist in the continuous case modeled by(EQ4).

Figure 1 illustrates the dependence of front waves speed
;{ ms—m, ) in Eq. (1.4) on parametem,, for a givend. In contrast with
m;+m, exp + the continuous case depicted by EG.1) and shown by
U(g)= Vad (1.2 dashed curves in Fig. 1, there is an intervahgf in which
p(m3_ml ) ' ' c=0, corresponding to the propagation failure. However, in
l1+ex & many cases, one has to consider not only a single chain, but
J2d systems consisting of different interacting chains. For ex-
ample, the sciatic nerve of animals consists of several hun-
dred fibers, with some spatially distributed electric contacts.
c= = Jdi2(my+ms—2m,). (1.3  In this context, there is a growing interest devoted to the

understanding of interfiber interactiofd3—-24.
The signs+ correspond to kink and antikink solutions, re-  The goal of this paper is to investigate the dynamics of a

and

spectively. system composed of two coupled discrete chains modeling
The discrete Nagumo equation has the form two coupled FitzHugh-Nagumo chains without recovery
variables. Our system is expressed under the normal-
Uj=d(uj_1—2uj+Uj4 1) +F(U;), (1.4  ized forms
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¢ (arb. units)

, Uj|{uj:—r,—r<ui<1+r,i¢j}

=f(—r)+d(uj_1+2r+uj; ) +hr+hv;=f(-r)>0,

uj|{uj:1+r,—rsuis1+r,i¢j}

=f(1+r)+d(u;_1—2(1+r)+Uj, 1) —h(1+r)+ho;

I:nz {arb. units) $f(l+l’)<0.

Similarly, we determine the orientation of components on
the boundary of}, . This coincides with the orientation of
the u; components. Therefore, for>0, the vector field of
system(1.5 at the boundary of eacf, region is oriented
inward. Hence all trajectories of syste(i.5 with initial
FIG. 1. Dependence of the velocity of possible front waves onconditions outside(), come into this region as time pro-

parametem, for d=0.05 in the chairiEq. (1.4]] with N=50. The  ceeqds, and do not lead®,. Then, in the following, we con-
curve .originating am2=Q, .with c(m,)>0, corresponds to kinks, sider the dynamics of systerfl.5) in Q,. Note that the
and withc(mg) <0 to antikinks. vector field at the boundary @, is oriented inward every-

. where excluding the two “angle” point®y(u;=v;=0) and

Uj=f(up) +d(uj_1—2uj+Uj 1) —hy(uj—o)), O;(uj=v;=1), wherej=1,2,..N, which are the steady
states of systerfil.5). Then

i)j=f(vj)+d(vj_l—20j+vj+1)—hj(vj—uj), (15) )
O=uj<1, Osy,s1l for t>0, Vj,k=12,.N.

where the cubic functiorfi(w) is given by (2.)

fw)=w(w—1)(a—w), O0O<a<l, B. Gradient property of the system
Let us consider the function
h; and d, respectively, being the interchain and intrachain
coupling coefficientgh; is a vector withj defining a space
chain point {=1,2,...N)]. However, for the sake of simplic- U= 21
ity, we will restrict our study to the homogeneous interchain .

d

N
—(u~+1—u~)2+9(v~+1—v-)z—ijf(77)d77
~ |5 )T 5 j o

coupling case, that ih;=h, Vj. Furthermore, we impose v h )
Neumann boundary conditions to systém5): - fo flmdn+ 5 (uj—v)7). 2.2
Wo=W7, Wn+1=WN- (1.6 ysingU, system(1.5) can be rewritten in the forms
This paper is organized as follows. In Sec. Il, we discuss _ oU _ ouU
the main properties of syste(t.5) from a phase space point up=- au YT T g
J J

of view. In Sec. lll, we inquire into the existence of patterns,
high multistability, and wave propagation failure in system
(1.5). Then, in Sec. IV, we study the dynamics of the syste
resulting in wave motions. Finally, experimental results on
real system composed of two coupled bistable electric
chains are presented in Sec. V.

which show that Eq(1.5) is a gradient system. Hence the
Mattractors in thdR2N phase space can only be steady states of
%q. (1.5 [27]. Then any initial condition tends to one of the

table steady states corresponding to a local minimum of
function U.

Il. MAIN PROPERTIES OF SYSTEM (1.5) lIl. SPATIAL PATTERNS

A. Confinement of trajectories In the “physical” space{(Z,R)}, each of the stable steady

In this section we show that all trajectories of syst@n®)  states defines a Turing-like pattern with a spatial profile cor-
are confined. For this purpose, we introduce itHamily of  responding to the distribution of the steady state coordinates.

regions in phase space, For example, steady stat€% and O, correspond to stable
) homogeneous states of the medium. Let us find the maxi-
Qr={uvi—rsujsl+r,—rsv,s1+r,Vj,k=12,.N}, mum number of possible stable steady states, corresponding

to steady patterns. For this purpose, we use the invariant
with r=0 being an arbitrary parameter. Let us consider thedomains techniquésee Ref[28] for detailg.
vector field of Eq.(1.5 at the boundaries of each of such  For convenience, we define the vectow
regions. It follows from Eq(1.5) that =(Uy,Uyp,...,UN,U1,02,...,0n) ", the superscripT denoting
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the transpose operator, and the following regions in the phase A Wi
space: | \ ,
!
47 Yo v
Q2={w: 0=sw;=<q, O=<w,=<1, Vk#i}, ST, Q. b T
Ip
/ \
Ql'={w: 1-p=sw;<1, Osw,=<1, Vk#i}, o
— 04/ ) b QJI“
with 0<q,p<1. Let us show that, for parameter values &
taken from the region ¢ Y \ /
v o 1,7
2 Ay 4 k i
a ) 1 A >
2d+h<,  if as; ol T q Ip | 1 w;
o P ITC L > @
> —
s ¥
there existp and q ensuring that the vector field of system v
(1.5 at the boundaries of each of these regidd8,andQ?, k
is oriented inward from them. For example, we consider the I l \ v'
behavior ofv; components at the boundaries@f and ;. - ~t =
Taking Eq.(2.1) into account, we find Bop-------------- V] Ve
i)j|{vj:q,oswks1,k¢j}:d(vj—l_2q+vj+1)+f(Q)_hq+huj . T Q, A
AY (v,,)\ !
<d(—2q+2)+f(q)—hg+h<Q. v, ! !
(32) /7‘ A : N [ N
ol Ty, / Bo \1I v,

Let us demand the negativeness of derivat®€). It is sat-
isfied for any values of] obeying

2

a 1/2
-Z—Zd—h) . (33

a2 - 1/2 a
Z— - <q<5+

a

2

Similarly, at the boundary of regiofd!, we find

i)j|{vj:1—p,0<wkél,k¢j}:d(vj—l_z(l_p)+vj+1)
+f(1-p)—h(1—p)+hy
=-2d(1-p)+f(1-p)—h(1-p)
>0. (3.4)

The values of parametgr ensuring the positiveness of de-

rivative (3.4) are defined by

(1-a)?
4

1—-a
2

12
—2d—h)

(1-a)?
4

< <1_a+
P=73

172
—2d- h) . (39

(b)

FIG. 2. (a) Qualitative representation of tlleset.(b) Qualitative
representation of regiong®(y,) andV(Bo).

sequence of lengtN composed of two symbols; € {0;1},

and consider the intersectidn= OQ?J' [see Fig. 2a)]. J be-

ing represented by the direct product of the segments of the
coordinate axes, it is a convex compact set. In addition, the
boundary of] is formed by the boundaries of regi0ﬁ§ and

le; hence the trajectories of systefi.5) intersect this
boundary inward from regiod. Obviously, set] contains at
least one attractor of syste(th.5). Using the gradient prop-
erty of the system, we find that this attractor can be repre-
sented only by a steady state. Since there dteséts or
J-type regions, there exisf‘2stable steady states in the phase
space of systerl.5).

Thus systen{l1.5) displays a high multistability. Since the
steady states can be encoded by arbitrary sequences of two
symbols, the possible pattern profiles{i\R} are extremely
diverse, varying from regular to complex disordered configu-
rations. For illustration, we may obtain a disordered pattern
on u components and a regular one oncomponents, as
shown in Fig. 3. Note that the existence of a wealth of steady

In the same manner, we determine the orientation of COMPYsatterns does not allow any wavelike motion in systérs).

nentsu; at boundary planefuj=q} and{u;=1—p} of re-

gionsQJQ andel. By construction, the boundary of each of

In fact, the origin of wave propagation failure, quite typical
in discrete bistable systems, lies in the existence and stability

the regions(}? consists of two parts, one of them formed by of patterns: the region§); (i {0,1}) estimate the steady
planes{w;=q} and the other one by the boundary of regionstate attraction basins. Their initial conditions belonging to
), (see Sec. )l Therefore, at the boundary of each of re- gne of these regions, kinks or antikinks, are attracted by
gionsQ?, the vector field of systerfl.5) is oriented inward. the corresponding steady state. Thus the parameter

Similarly, we obtain that trajectories of E(..5) intersect the

values taken in regiorD., give sufficient conditions to

boundaries of regionﬂjl inward. Let us fix an arbitrary observe this phenomenon.
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FIG. 3. Formation of steady patterns in both coupled chains described by s¢s®m(a) Initial conditions.(b) Terminal patterns.
Parameter valuest=0.4,d=0.01, anch=0.01 (arbitrary units.

IV. TRAVELING WAVES Let us introduce the followingy family of regions in

For illustration, in this section we treat systdh5 as phase space:

two coupled chains divided in real space. First, we note that /9 y)={y,v:0=<v;<7y,0<u=<1Vj,k=1,2,..N}.
the results of Ref[29] ensure the complete interchain syn- .

chronization of all motions for strong enough interchain COU-Then there exist such values pfor which the trajectories of

pling system(1.5) intersect the boundary 6#°(y) inward from
P—atl this region. Indeed, it is satisfied at the part3/8ty) inher-
h>— = (4.1 ited from regionQ), [see Sec. Il and Fig.(B)]. Considering
. 6 the rest part o°(y) and using Eq(2.1), we obtain, from
Eq. (1.5,

Then, in theRN phase space of systefi.5), there is an
N-dimensional(synchronization manifold which attracts all

. . . f U L= <p,< j,0=su.<
motions. In this manifold, motions are governed by a system ilioj= vo=u=vicri0 uj=1y

J

of like Eq. (l._4), with F(u)=f(u). In this case, t_h_e travel_ing =f(y)+d(vj_1—2y+v;41)—hy+hy,
wave dynamics does not depend on the coefficiangnd is
illustrated by Fig. 1. We will now consider the dynamics of ~ <f(y)—hy+h. (4.2)

the system for small enough interchain interaction.
The negativeness of derivatiyé.2) is fulfilled for

A. Front waves, slowing down, stopping, and about turn

2 1/2 a2 1/2

7 h

_a
’)’072

a
4

Let us consider a front wave or kink propagating in the
first chain(u components while the second chaifv com-
ponents$ is in the vicinity of the homogeneous steady state
Oy. For convenience, we call this state “unexcited,” becauseHence for Eq.(4.3) the vector field of Eq(1.5) is oriented
all elements have coordinates close to zero. We switch on thieward from these regions. Then, if the initial conditions in
interaction, and analyze how small but nonzero coupling actsystem(1.5) are taken insid&°(y,), the corresponding tra-
on the propagating front. jectory satisfies

a
—h <'y<§+ 4.3
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O<v;<7y,, O=us1, fort>0, Vjk=12..N. Chain 1 Chain 2
(4.4 » j (cells)

Since yp<a/2, conditions(4.4) mean that components; , 10020 30 40 S0 1020 30 40 50

for anyt>0, stay below the “excitation thresholdthe defi-
nition of the “unexcited” chain and components); may
take arbitrary values within the regidng. 500

Introducing a fixed positive parametewith an infinitely

small value, it is easy to show that for _—

h<as+0(&?), (4.5
the parametety, satisfies the inequalityy<e. In this case, 1500
motions in the second chain are on the order of an infinitely
small value; hence the chain evolves in the vicinity of its 2000
steady stat®,. In spite of the smallness ¢f, expressed in

Eq. (4.5), the dynamics of the first chain becomes quite dif-

ferent. Indeed, in this case, 2500

h(uj_vj)zhuj+0(82). (4.6) 3000

Then, in a first order approximation an the dynamics of "
the first chain is defined by §ystefﬂ1.4) with F(u)="f(u) (arb. units)
—hu. The zeros of(u) are given by

9 12 FIG. 5. Space-time plot of kink propagation in systéinb). The
(1-2a) —h) (4.7) interchain interaction is switched on at a time instgnt The dy-

4 ' ' namics of theu; andv; components is shown by the levels of gray
(the scale is not showwith white corresponding to the “excited”

Thus, in the case of weak interchain coupling, the secondtate, and black to the “unexcited” state. The kink corresponds to
chain stays in its “unexcited” state, while the first chain the white-black interface. The light gray in the right-hand picture
supports the front propagation with a new velocity. Indeedshows the small perturbation of the second chain. Parameter values:

according to Eq(4.7), we obtain N=50,a=0.45,d=0.15, anch=0.01.

1+a

ml=0, m2’3: _2 -+

m,(h)>m,(0)=a. 4.8
2(N) 2(0) “8 chain, h>0, tends to decrease the velocity of the kink in

Since the kink velocity is a monotonically decreasing func-chain 1. Analyzing the diagram in Fig. 1 leads to the follow-
tion of parametem, (Fig. 1), the influence of the second ing possibilities concerning the dynamics of the kif&: the
kink is propagating with a smaller velocjtg(h)<c(0); (b)

0.06 - the kink stops to propagate(h)=0; and(c) the kink re-
0.04 d=0.25 arb. units 1 verses and propagates backwar{h)<0. Such behaviors
00k d=0.15 arb. - of the kink have been verified in numerical simulations of
_— units system(1.5). For example, the velocity-coupling dependence
2 07 c=c(h), obtained foma=0.45 and shown in Fig. 4, involves
§ -0.02} the three possibilities successively. For comparison, corre-
S 004 N sponding curves obtained with the first-order perturbation
= N analysig Egs.(4.5—(4.7)] are shown by dashed lines. There
o 006 \K\J is a good qualitativdand quantitative foh—0) agreement
-0.08} — 1L with direct simulation of systerfil.5). Case(a), realized for
o1l smallest values df, is illustrated in Fig. 5. The front propa-
gating in the first chain foh=0 with a definite velocity
-0'120 0.‘01 0;02 0'I03 0:04 0;05 0:06 0:07 04‘08 0;09 0.1 becomes slower when SWitChing on the interactiom:alo.
. This corresponds to the different angle shown in the space-
h (arb. units) time plot (j,t) in Fig. 5. The second chain remains “unex-

FIG. 4. Velocity-coupling dependencésolid curves for a kink cited.” The fr_ont S'[C.)pS.WIth increasiny Hence the stoppln_g
interacting with an “unexcited” state in the second chain. ParameteffOnt results in a “kinklike” steady pattern in the propagation
values:N=50 anda=0.45. The dashed curve shows the depen-failure. In contrast to the description of Sec. Ill, the origin of
dencec(h) obtained with the perturbation analygiggs. (4.5—  this phenomenon is not caused by internal dynamics for
(4.7] for d=0.15. The solid lines represent numerical simulation Smalld, but by the interchain dynamics with nonvanishimg
with d=0.15, and 0.25bold line). Experimental results are repre- A further increase oh leads to the kink reversing, as shown
sented by crosses in the cate 0.25+0.02. in Fig. 6. Finally, the break of the velocity curves in Fig. 4
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Chain 1 Chain 2 03
—> j (cells) :
10 20 30 40 50 10 20 30 40 50 0.25}

d=0.25 arb. units

500

¢ (arb. units)
o =)
> [

1000

1500

d=0.15 arb. units

0 0.01 002 003 004 005 006

200 h (arb. units)

FIG. 7. Velocity-coupling dependencésolid curveg for the
kink in chain 1, interacting with “excited” state in the second chain.
The dashed curve shows the dependerid® obtained with the
perturbation analysigEgs.(4.11) and(4.12)], with d=0.15. Other

2500

3000
v parameter values afd=50 anda=0.45. The solid lines represent
t numerical simulations witld=0.15 and 0.25bold line). Experi-
(arb. units) mental results are represented by crosses in the dase.25
+0.02.
FIG. 6. Kink reversing in systenil.5. Parameter values\
=50,a=0.45,d=0.15, andh=0.03. Bosv;=10=sy=1, fort>0, Vjk=12,.N.

(4.9
corresponds to interchain synchronization, that is, the second
chain displays a kink identical to the original. As mentionedSince 8o>a, such a state of the second chain can be con-
earlier, the dynamics in this case is defined by the equationsidered as “excited,” in the sense that al| components
for a single chainEq. (1.4)]; hence the velocity of both have large enough valué® the vicinity of steady stat®,).
synchronized kinks is equal to the unperturbed das®. Let us fix an arbitrary infinitely smak such that
Note that the increase of intrachain couplidgends to

decrease the domain of zero velociti€sg. 4). In the limit 1-Bo<e
case of a continuous medium, described by partial differené‘nd
tial equationg1.1), that is ford>1, we may expect only one
point with ¢=0. h=(1-a)e+0(s?). (4.10
B. Front waves speeding up From Eq.(4.10, we obtain
Let us now consider a front wave or kink propagating in h(v;—u;)=—hu+ h+0(s2). (4.12)

the first chain(u components while the second chaifw

componentsis in the vicinity of the homogeneous steady Wwith an accuracy up te?, the dynamics of the first chain in
stateO, . We refer to this state as an “excited” one, becausegq, (1.5) is defined by the single chain systdifiq. (1.4)]
all elements have a coordinate close to 1. Considering th@ith F(u)=f(u)—hu+h and parameters

weak homogeneous interactiomn>0) between the two
chains with such initial conditions, and processing as for the a_
previous case, one can show that, o[ (1—a)?/4], there ml,2:§+
is a region in theR?N phase space which cannot be left by
the trajectories of systeiil.5). It has the fornisee Fig. 20)]  Hence the functionm,(h) is monotonically decreasing.
. Similarly to Eqg.(4.7) discussed in Sec. IV A, and using Eq.
VH(Bo)={u,v: Bo<v;<1,0<u<1, Vjk=12..N}, (4.12, v%//e ﬁndqthe following behaviord) the kink travel?ngq
in the first chain has a greater velocity due to the interchain
interaction c(h)>c(0). The velocity-coupling dependence
2 12 for a kink with increased velocity is shown in Fig. 7. The
(1-a) —h) solid curves(d=0.15 and 0.2bwas obtained from a direct
4 ' simulation of Eq.(1.5 and the dashed one € 0.15) from
the perturbation approach using EGs11), (4.12, and(1.4).
Thus, for trajectories with initial conditions taken in region For d=0.15, one can find very fine qualitative and quantita-
VY(B,), we obtain the restriction tive agreements between these curves for small endugh

aZ 1/2
Z—h) ., my=1. (4.12

with

_ita
Bo="%—
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Chain 1 Chain 2

. J
> j (cells) > (cells)
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0 0 ——— 07—
200
200
4w 4
400 ]
t 600
600 (arb.
., 800+
S0 units)
1000
1000
1200
1200
1400
V1400
a
; (@)
(arb. units) 0.08
FIG. 8. Kink speeding up in the result of interaction with the § 0.06 —
“excited” state in chain 2. Parameter valud§=50, a=0.45,d < ]
=0.15, anch=0.02. s 0o
_ o _ L o
when the perturbation analysis is applicable. Note that the S .
velocity curve ends up at some value haof Similar to the P L s s L S S BNy s
break of the curves in Fig. 4, this corresponds to an inter- sy TP EA T R E L LS
chain synchronization. In contrast with the synchronized ’ Jll
kinks, the terminal state here is the “excited” state of both (ce S)
chains, i.e., the kink disappears as a result of synchroniza (b)
tion. Figure 8 illustrates such a kink, whose velocity is in-
creased, by switching on the interactiont@t Note that the FIG. 9. Kink propagating along a steady periodic pattern in the

dynamics of antikinks in syster(1.5) is the “opposite” of  second chairiFig. 3(b), right picturd. (a) Modulation of the kink
that described for the kinks. For example, if the kink Ve|OCityve|ocity in a space-time plotj,t) for chain 1.(b) Instantaneous
increases when interacting with the “excited” chain, the an-velocity c;(j)=1/7;, wherer; is the time of the front to come from
tikink, if initially excited in the first chain, slows down or the (j—1)th to thejth elements, during the propagation. Dashed
reverses with propertigg)—(c). If the antikink interacts with  curves correspond to the homogeneous st@gsgupper line and
the “unexcited” state, its velocity increases with property Oy (lower ling) in the second chain. Parameter valuls: 50, a
(d). Using the symmetry property of function(u), the =0.4,d;=0.1,d,=0.01, anch=0.01.

velocity-coupling dependences for the antikink propagation

can be easily derived from diagrams of Figs. 4 and 7 byeXPect that, for certain values of%0, the kink in the first
substitutinga— 1—a. chain would slow down while traveling along the “unex-

cited” elements, and speed up when passing the excited ele-

ments. This has been verified numerically. We have calcu-

lated the instant velocity of the kink during the propagation.
Let us suppose there is kink propagation in the first chainlts behavior is shown in Figs.(8 and 9b). The velocity

while a steady pattern exists in the second. This situatiomscillates according to the profile of the steady pattern. The

may occur if the intrachain coupling coefficients are differ- maximum and minimum limit velocity values are defined

ent. In particulard,(a) is taken to provide the propagation, from the interaction of the kink with the excited and unex-

c(a)>0 in Fig. 1(c), andd,(a) is taken insideD, satisfy-  cited chains, respectively, and shown by dashed lines in Fig.

ing inequality(3.2) (Sec. II) with h=0. For simplicity, from  9(b).

a wealth of possible configurations, we take a periodic steady

pattern with quite a large spatial scale, as shown in Rig). 3 V. FRONTS IN ELECTRONIC EXPERIMENTS

(right picture. Then, using Eqs(3.3) and(3.5), the coordi-

nate elements are grouped in small neighborhoods near the

“excited” (O;) and “unexcited” (O,) states of the second Our experiments were carried out on two coupled identi-

chain. Using the results of Secs. IVA and IV B, we may cal electrical chains. Each of them is composed\ef 22

C. Fronts traveling along steady patterns

A. Experimental setup

036602-7



V. I. NEKORKIN et al. PHYSICAL REVIEW E 64 036602

R

FIG. 10. Sketch of the experimental coupled
electrical lattice.

cells (see Fig. 10 including a linear capacitanc€ and a  vertically, with the time growing toward the bottom, such as
nonlinear resistoRy, , whose current-voltage characteristic the whole height corresponds to a local process time of 20
obey the cubic function ms. For a detailed description of the experimental setup and
v initial data loading, see Ref11].
Y

B

Here « and B are the roots of the characteristic, aRglis a
weighting resistor. Intrachain diffusion coupling is assured
by linear resistorsR, while interchain diffusion coupling be-
tween cells repered by the same numfierassured by linear
resistorsR’. Using Kirchhoff laws, we can model the volt-
ages evolutions, namely; in chain 1 andv; in chain 2, by

a set of coupled discrete equations:

\%
1——
a

X

| NL ™= R_O X
B. Observation of steady states

In order to check the theoretical predictions of Sec. lll,
summarized in Fig. 3, the components are chosen such as
R=100k), R'=330k), C=3.3nF, «=0.64V, and B
=1.45V. Therefore,Ry=3.2k2, and the parameters ap-
pearing in system(1.5 are fixed to bed=0.014, h;=h
=0.004, anda=«/B=0.44. Note that these parameters
verify condition (3.1). The initial conditions, loaded in the

du; 1 U; U, U; two chains, consist of arbitrary sequences of voltages be-
T R—C(Uj+1+ Uj-1—2Uj)— R—C(l— ;) ( 1- F) tween 0 ands, that is 0 and 1, respectively, after normaliza-
0 tion. From initial conditions shown in Fig. 1), the real
1 system evolves versus time, and gives final voltage profiles,
_%(Uj_vj): as shown in Fig. 1(b), revealing that a steady state is
reached for each lattice. These figures confirm that final volt-
ages of every cell of both chain belong to regi@]% or O}
m—i V..+V._,—2V —L 1—ﬁ —ﬁ (see Sec. lll and Fig.)3 I
gt~ reVirrTVi-im2V)) RoC a B ' ‘

1 C. Front waves slowing down, stopping, and reversing
" R'C (Vi=Up. . In this section, we intend to check experimentally the the-
oretical predictions of Sec. IV A. The electrical components

In addition, the two chains satisfy Neumann boundary conkeep the previous values, excé&ptwhich is now 10 nF, and

ditions. After normalization, namely setting;=U;/8, v; intracoupling resistorR, now set to 5.6 K; thend=0.25. In
=V;/B, d=Ry(a/BR,), andh=Ry(a/BR’), Egs.(5.1) ap-  addition, the resistoR’ will act as a parameter controlling
pear to be an analog simulation of systéhb). the interchain coupling coefficiertt. We first consider the

The state of the system is visualized in a video line, thatase without interchain coupling, thaths=0, and study the
is, every 64us, the voltage of each cell of chains 1 and 2 ispropagation of a kink in the first chain, starting from initial
collected as an analog luminance signal, where black correconditions where the voltage of the six first cells of chain 1
sponds to the state close Y6=0 (the unexcited stajeand  corresponds to the excited stdtehite). The voltage of all
white corresponds to the state closeMe- 8 (the excited other cells, including the cells of chain 2, corresponds to the
statg. These definitions were stated in Sec. IV. Using a parunexcited statéblack). The correspondent scree(see Fig.
allel to serial converter, the resulting serial video output is12) show then a propagating front from left to right on the
then mixed with video synchronization, allowing us to visu- first chain, while nothing occurs in the second chain; that is,
alize the resulting composite video on a monitor. Thereforethe voltages of every cell of chain 2 remain in the unexcited
its screen will show the evolution of each cell of both chainsstate. Note that the chains components values lead for both

036602-8
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lattices to an intrachain coupling coefficiethslightly larger
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FIG. 11. Steady states or spatial patterns on
both coupled chainga) initial condition, and(b)
final state. Parameter values after normalization
are a=0.44+0.01, h=0.0043t0.0003, andd
=0.014+0.001 (all in arbitrary unit$, while C
=3.3nF.

the kink velocity in the first chain becomes lower than in the

thand*, the critical value of propagation failure, whose es-case without intercoupling, that is=0 (Fig. 12, while the

timation is given by inequalitie€3.1) with h=0.
First, for small value oh (see Fig. 13, witth=0.0043,

behavior of the second chain seems to be unaffected. A com-
parison between Figs. 13 and 5 shows a good agreement

11 cell
cell cell ce
number number number number
1 1 2 L 11 22 L = g
S [HIHHHH S
0 o+ 0 T
20 204 20 204
v ¢ v v

time time time time
(ms) Chain 1 () Chain 2 (ms) Chain 1 ms)  Chain 2

FIG. 12. Kink propagation on the first chain without interchain
coupling. The second chain is in unexcited state=0.45+0.01,
h=0,d=0.25+-0.02, andC=10 nF.
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FIG. 13. The kink velocity decreases in the first lattice; the
second one stays in an unexcited state.0.45+0.01,h=0.0043
+0.0002,d=0.25+0.02, andC=10nF.
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cell cell cell cell
number number number number
1 11 22 1 11 22 1 11 22
—HHHHH > —HHHHHHHHHHH
0+ 04 0+ 0+
20 i- 20 #— 204 20 4
v v
time time time time
(png) (uus) (ms) Chain 1 (ms) Chain 2
Chain 1 Chain 2

FIG. 16. Instantaneous synchronization of kinks in both lattices
FIG. 14. Stop propagation of kink foa=0.45+0.01, h  for a=0.45-0.01, h=0.094+0.005 d=0.25:0.02, and C
=0.022+0.002,d=0.25+0.02, andC= 10 nF. =10nF.

between theoretical and experimental behaviors. Now intjyely similar behavior between experimental results and
creasingh, we obtain the screens of Fig. 14, where the frontsimulation predictions. Note, however, that for practical rea-
wave is stopped in chain 1, while cell voltages in chain 2sons the following hold
stay very close to zero, that is in the unexcited sfate (i) Quantitatively, the experimental crosses of Fig. 4 are
regionV°(yo) in Fig. 2(b) ]. For larger values oh, Fig. 15  not exactly superimposable on the simulation curve, because
shows an about turn of the front wave propagating in chairpf different experimental defects: uncertainties in component
1, that is, it now propagates backwards; however, cells ofajues, and the current-voltage characteristi®Rgf , which
chain 2 still stay in regiov°(y) also[see Figs. @) and §. differs from the cubic law. For these reasons, the crosses do
Finally, for larger values oh, as represented in Fig. 16, a not exactly agree with the simulation predictiofsolid
kink arises in chain 2, synchronized with the kink of chain 1.cyrve for d=0.25; in particular, they show a zero-velocity
All these experimental results are summarized in Fig. 4part as predicted theoretically in Fig. 4 for smaller values of

and can be compared with the simulation predicticen-  ¢(d=0.15). This discrepancy can be mainly imputed to un-
tinuous ling previously given. One can observe the qualita-

cell cell
cell cell number number
number number 1 11 2! 1 11 2
1 11 22 1 11 22
i -HHHHHHHHH o+ o+
0t 0+
204 20 .v.
v
20 v 20 'v' time time
time (i (ms) Chain 1 (ms) Chain 2
(ms) Chain 1 (ms) Chain 2 FIG. 17. When the second chain is initially in an excited state,

the velocity of the wave front in the first chain is increased Hor
FIG. 15. The kink velocity becomes negative whar 0.45 #0. Parameters valuea=0.45+0.01,h=0.014+-0.001,d=0.25
+0.01,h=0.043+0.002,d=0.25+0.02, andC=10 nF. +0.02, andC=10nF.
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Chain 1 Chain 2
1.6 1.6
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g 12 g 12
o p— 1 .Hl
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= 04 S 04
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-0.2 -0.
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() (d) FIG. 18. Velocity modulation of a kink in
. . chain 1. Starting from initial condition&) and
Chain 1 cell Chain 2 cell (b), the kink on chain 1 undergoes velocity fluc-
number number tuations(c) related to the steady state pattern ex-
1 11 22 1 11 22 isting in chain 2(d). a=0.44+0.01, h=0.0043
—HHHHHHHH R +0.0003, d; =0.43+0.03, d,=0.0094+ 0.0008,
0 04+ : andC=10nF.
204 204
v v
time time
(ms) (ms)

certainties concerning the intrachain coupling coefficédnt others are in the unexcited stdtd@ack); for chain 2, all cells
(i) Experimentally, we cannot change all resistBfsfor  are in the excited state, so they belong to regit3,) in
all cells at the same timg), as it is possible in simulations Fig. 2(b). As the time increases, Fig. 17 shows that the kink
(see Figs. 5 and)6Thus the video screens of Figs. 12, 13, now propagates faster in chain 1, with respect to the base
14, 15, and 16, only start aftég. =0 (see Fig. 12 This behavior is very similar to the one
However, the agreement between the theoretical behaviopredicted by simulation and presented in Fig. 8, correspond-
for t>ty, and the experimental one is quite satisfactory. Ining to the same parameters, after the changke afft,.
addition, the main features concerning the behavior of the The evolution of the kink velocityc versus the control
system—that is stopping, about turn, and synchronization gparameter is drawn in Fig. 7, where the crosses represent
front waves when the intracouplifgincreases—correspond experimental results. Although a small quantitative discrep-

to theoretical predictions. ancy between these experimental results and theoretical pre-
dictions(continuous linekis observed, qualitative behaviors
D. Front waves speeding up are in good agreement, showing that, in real experimental

ystems, coupling a chain with a second excited one can

This part is devoted to experimental investigations relate I;i)eed up the front wave.

to Sec. IV B. The parameters of the system are the same as i
Sec. VC, that isa=0.45, Ry;=3.2kK), C=10nF, andd
=0.25. Decreasing resistoRs step by step, we control the E. Modulation of kink velocity

intercoupling parameteh, and measure its effects on the

kink propagation. That is, initial conditions are set as follow- In this section, we propose to propagate a kink in the first
ing (see Fig. 17, where=0.014 for example for chain 1, chain, while a steady state pattern is present in the second
the five first cells are in the excited statgvihite), while the  chain. This case was theoretically considered in Sec. IV C.
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Parameters of the system are fixed as=0.44, R, coupled chains. We have intensively studied the case of an
—=32K). R'=330K). and h=0.0043. but the intracou- homogeneous coupling between the chains, and showed that

pling resistorsR are now different along chain 1R=R, &N initial front wave introduced in chain 1 can either be

—3.3kQ) and chain 2 R=R,= 150 k2). These values lead slowed down, stopped, or “reversed,” according to the
to intracounlin coefficienté —043 in chain 1. andd strength of the coupling, if chain 2 is initially in the vicinity
— 0.0094 inpchgin 5 S ' 2 of the unexcited state. On the other hand, the initial front

Initial diti for both chai di i wave in chain 1 can be speeded up, if chain 2 is initially in
nitial con _|t|0ns or both chains are represgnte IN 0SCll-the vicinity of the excited state. All these properties have
lograms of Figs. 1&) and 18b): only the six first cells of

: , ; : , __been verified in an experimental electrical system composed
chalr_1 1 are in the excited state, while c_ells of cha|n_2 exhibitys wwo coupled chains of 22 cells. Our experiments confirm,
a turing like patterr(see Sec. I)l. Evolution versus time of iy particular, the possibility of controlling the dynamics of
these initial conditions showsee Fig. 1&)] a propagation  front waves in coupled chains. This may lead to a better
of a front wave in chain 1, but whose instantaneous velocityinderstanding of natural phenomena observations in a wide
appears not to be constant: the velocity is yet modulatecslass of systems possessing wave front solutions, in particu-
with transient values successively larger and smaller than thiar in models of coupled neural fiber modés.

averaged one. Note that the cell voltages in chain 2 quickly Furthermore, extending this study to two-dimensional
reach a steady state pattdiFig. 18d)], which corresponds coupled systems could offer interesting applications in the
to a periodic rectangular window, and that Igvespectively  field of image processing. In particular, although replication
large values of the kink velocity in chain 1 correspond to theto another lattice of an image initially stored in a first lattice
unexcited(excited cells in chain 2. Figure 18) being an  was already studief30,31], it may be useful to control this
experimental counterpart of Fig(#, obtained by numerical replication by means of the interlattices coupling. Moreover,
calculations, a good agreement between these results is omathematical morphology or contour detectiB®] of an

served. initial image would be improved if a coupling coefficient
between two lattices could be used to locally control contour
VI. CONCLUSION propagation, giving either image erosion or dilatation.
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