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Theoretical and experimental study of two discrete coupled Nagumo chains
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We analyze front wave~kink and antikink! propagation and pattern formation in a system composed of two
coupled discrete Nagumo chains using analytical and numerical methods. In the case of homogeneous inter-
action among the chains, we show the possibility of the effective control on wave propagation. In addition,
physical experiments on electrical chains confirm all theoretical behaviors.
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I. INTRODUCTION

In a variety of spatially extended systems arising in ma
areas of science, the competition between stationary s
may yield the appearance of propagating front waves
kinks. These processes, defining the interfaces between
ferent states of the medium, occur, for example, in so
problems of cardiology, neurophysiology, chemistry, a
physics~see, e.g., Refs.@1–3#!. In particular, in a wide class
of systems possessing front wave solutions, a signific
place is taken by reaction-diffusion systems~RD systems!.
At present, among RD systems, the most deeply studie
the one-component Nagumo equation, which correspond
the well-known FitzHugh-Nagumo system without the r
covery variable. There are two cases of Nagumo equa
considered in the literature, with respectively continuous a
discrete spatial coordinates.

In the first case, this equation takes the form

ut5duxx1F~u!, ~1.1!

where u(x,t) is the state variable, andd is the diffusion
constant. The nonlinearity, providing the bistability of th
medium, is expressed byF(u)52(u2m1)(u2m2)(u
2m3), with 0,m1,m2,m3 . It is well known ~see, e.g.,
Refs.@4#, @5#! that Eq.~1.1! has front wave or kink solutions
of the formu(x,t)5U(x2ct)[U(j) with

U~j![

m31m1 expS 6
m32m1

A2d
j D

11expS m32m1

A2d
j D , ~1.2!

and

c56Ad/2~m11m322m2!. ~1.3!

The signs6 correspond to kink and antikink solutions, r
spectively.

The discrete Nagumo equation has the form

u̇ j5d~uj 2122uj1uj 11!1F~uj !, ~1.4!
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with the dot accounting for the time derivative, andj defining
a space lattice point (j PZ) or discrete space coordinate,d
being the coupling coefficient. Equation~1.4! is more pref-
erable when the activity of the medium is provided by loc
ized units in the junctions of the space lattice. Take, for
stance, a myelinated nerve fiber@2#, when the membrane
activity is localized mostly in Ranvier nodes coupled by m
elinated~passive! parts of the axon. Another example is th
heart tissue composed of a number of interacting card
cells suitably distributed in space and coupled with gap ju
tions which may be approximated with nearest neighbor
fusive coupling@6,7#. From an engineering point of view
discrete RD systems, based on nonlinear electric RD latt
@8–11# or biological enzyme transistor circuits@12#, can be
used for various information processing problems.

Although Eq.~1.4! presents behavior qualitatively simila
to Eq. ~1.1!, it also displays some different properties@13–
22#. In particular, there exists a critical value of the coupli
coefficientd5d* (m1 ,m2 ,m3), above or under which fron
propagation is possible or not.

~i! For d.d* , front wave solutions of two types~kinks
and antikinks! are possible in Eq.~1.4!, and do not differ
qualitatively from solutions of Eq.~1.1!.

~ii ! For d<d* , the propagation of front waves is impos
sible in Eq.~1.4! for any relations between parametersm1 ,
m2 , andm3 . This so called propagation failure phenomen
does not exist in the continuous case modeled by Eq.~1.1!.

Figure 1 illustrates the dependence of front waves sp
in Eq. ~1.4! on parameterm2 , for a givend. In contrast with
the continuous case depicted by Eq.~1.1! and shown by
dashed curves in Fig. 1, there is an interval ofm2 in which
c50, corresponding to the propagation failure. However,
many cases, one has to consider not only a single chain
systems consisting of different interacting chains. For
ample, the sciatic nerve of animals consists of several h
dred fibers, with some spatially distributed electric contac
In this context, there is a growing interest devoted to
understanding of interfiber interactions@23–26#.

The goal of this paper is to investigate the dynamics o
system composed of two coupled discrete chains mode
two coupled FitzHugh-Nagumo chains without recove
variables. Our system is expressed under the norm
ized forms
©2001 The American Physical Society02-1
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u̇ j5 f ~uj !1d~uj 2122uj1uj 11!2hj~uj2v j !,

v̇ j5 f ~v j !1d~v j 2122v j1v j 11!2hj~v j2uj !, ~1.5!

where the cubic functionf (w) is given by

f ~w!5w~w21!~a2w!, 0,a,1,

hj and d, respectively, being the interchain and intracha
coupling coefficients@hj is a vector withj defining a space
chain point (j 51,2,...,N)#. However, for the sake of simplic
ity, we will restrict our study to the homogeneous intercha
coupling case, that is,hj5h, ; j . Furthermore, we impose
Neumann boundary conditions to system~1.5!:

w05w1 , wN115wN . ~1.6!

This paper is organized as follows. In Sec. II, we discu
the main properties of system~1.5! from a phase space poin
of view. In Sec. III, we inquire into the existence of pattern
high multistability, and wave propagation failure in syste
~1.5!. Then, in Sec. IV, we study the dynamics of the syst
resulting in wave motions. Finally, experimental results o
real system composed of two coupled bistable electr
chains are presented in Sec. V.

II. MAIN PROPERTIES OF SYSTEM „1.5…

A. Confinement of trajectories

In this section we show that all trajectories of system~1.5!
are confined. For this purpose, we introduce ther family of
regions in phase space,

V r5$u,v:2r<uj<11r ,2r<vk<11r ,; j ,k51,2,...,N%,

with r>0 being an arbitrary parameter. Let us consider
vector field of Eq.~1.5! at the boundaries of each of suc
regions. It follows from Eq.~1.5! that

FIG. 1. Dependence of the velocity of possible front waves
parameterm2 for d50.05 in the chain@Eq. ~1.4!# with N550. The
curve originating atm250, with c(m2).0, corresponds to kinks
and withc(m2),0 to antikinks.
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u̇ j u$uj 52r ,2r<ui<11r ,iÞ j %

5 f ~2r !1d~uj 2112r 1uj 11!1hr1hv j> f ~2r !.0,

u̇ j u$uj 511r ,2r<ui<11r ,iÞ j %

5 f ~11r !1d~uj 2122~11r !1uj 11!2h~11r !1hv j

< f ~11r !,0.

Similarly, we determine the orientation ofv j components on
the boundary ofV r . This coincides with the orientation o
the uj components. Therefore, forr .0, the vector field of
system~1.5! at the boundary of eachV r region is oriented
inward. Hence all trajectories of system~1.5! with initial
conditions outsideV0 come into this region as time pro
ceeds, and do not leaveV0 . Then, in the following, we con-
sider the dynamics of system~1.5! in V0 . Note that the
vector field at the boundary ofV0 is oriented inward every-
where excluding the two ‘‘angle’’ pointsO0(uj5v j50) and
O1(uj5v j51), where j 51,2,...,N, which are the steady
states of system~1.5!. Then

0<uj<1, 0<vk<1 for t.0, ; j ,k51,2,...,N.
~2.1!

B. Gradient property of the system

Let us consider the function

U5(
j 51

N Fd

2
~uj 112uj !

21
d

2
~v j 112v j !

22E
0

uj
f ~h!dh

2E
0

v j
f ~h!dh1

h

2
~uj2v j !

2G . ~2.2!

Using U, system~1.5! can be rewritten in the forms

u̇ j52
]U

]uj
, v̇ j52

]U

]v j
,

which show that Eq.~1.5! is a gradient system. Hence th
attractors in theR2N phase space can only be steady state
Eq. ~1.5! @27#. Then any initial condition tends to one of th
stable steady states corresponding to a local minimum
function U.

III. SPATIAL PATTERNS

In the ‘‘physical’’ space$~Z,R!%, each of the stable stead
states defines a Turing-like pattern with a spatial profile c
responding to the distribution of the steady state coordina
For example, steady statesO0 and O1 correspond to stable
homogeneous states of the medium. Let us find the m
mum number of possible stable steady states, correspon
to steady patterns. For this purpose, we use the invar
domains technique~see Ref.@28# for details!.

For convenience, we define the vectorw
5(u1 ,u2 ,...,uN ,v1 ,v2 ,...,vN)T, the superscriptT denoting

n

2-2
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the transpose operator, and the following regions in the ph
space:

V i
05$w: 0<wi<q, 0<wk<1, ;kÞ i %,

V i
15$w: 12p<wi<1, 0<wk<1, ;kÞ i %,

with 0,q,p,1. Let us show that, for parameter valu
taken from the region

Dch5H 2d1h,
a2

4
if a<

1

2

2d1h,
~12a!2

4
if a>

1

2
,

~3.1!

there existp and q ensuring that the vector field of syste
~1.5! at the boundaries of each of these regions,V i

0 andV i
1,

is oriented inward from them. For example, we consider
behavior ofv j components at the boundaries ofV i

0 andV i
1.

Taking Eq.~2.1! into account, we find

v̇ j u$v j 5q,0<wk<1,kÞ j %5d~v j 2122q1v j 11!1 f ~q!2hq1huj

<d~22q12!1 f ~q!2hq1h,0.
~3.2!

Let us demand the negativeness of derivative~3.2!. It is sat-
isfied for any values ofq obeying

a

2
2S a2

4
22d2hD 1/2

,q,
a

2
1S a2

4
22d2hD 1/2

. ~3.3!

Similarly, at the boundary of regionV i
1, we find

v̇ j u$v j 512p,0<wk<1,kÞ j %5d~v j 2122~12p!1v j 11!

1 f ~12p!2h~12p!1huj

>22d~12p!1 f ~12p!2h~12p!

.0. ~3.4!

The values of parameterp ensuring the positiveness of de
rivative ~3.4! are defined by

12a

2
2S ~12a!2

4
22d2hD 1/2

,p,
12a

2
1S ~12a!2

4
22d2hD 1/2

. ~3.5!

In the same manner, we determine the orientation of com
nentsuj at boundary planes$uj5q% and $uj512p% of re-
gionsV j

0 andV j
1. By construction, the boundary of each

the regionsV j
0 consists of two parts, one of them formed b

planes$wj5q% and the other one by the boundary of regi
V0 ~see Sec. II!. Therefore, at the boundary of each of r
gionsV j

0, the vector field of system~1.5! is oriented inward.
Similarly, we obtain that trajectories of Eq.~1.5! intersect the
boundaries of regionsV j

1 inward. Let us fix an arbitrary
03660
se

e
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sequence of lengthN composed of two symbolsajP$0;1%,
and consider the intersectionJ5ùV j

aj @see Fig. 2~a!#. J be-
ing represented by the direct product of the segments of
coordinate axes, it is a convex compact set. In addition,
boundary ofJ is formed by the boundaries of regionsV j

0 and
V j

1; hence the trajectories of system~1.5! intersect this
boundary inward from regionJ. Obviously, setJ contains at
least one attractor of system~1.5!. Using the gradient prop-
erty of the system, we find that this attractor can be rep
sented only by a steady state. Since there are 2N sets or
J-type regions, there exist 2N stable steady states in the pha
space of system~1.5!.

Thus system~1.5! displays a high multistability. Since th
steady states can be encoded by arbitrary sequences o
symbols, the possible pattern profiles in$Z,R% are extremely
diverse, varying from regular to complex disordered config
rations. For illustration, we may obtain a disordered patt
on u components and a regular one onv components, as
shown in Fig. 3. Note that the existence of a wealth of ste
patterns does not allow any wavelike motion in system~1.5!.
In fact, the origin of wave propagation failure, quite typic
in discrete bistable systems, lies in the existence and stab
of patterns: the regionsV j

i ( i P$0,1%) estimate the steady
state attraction basins. Their initial conditions belonging
one of these regions, kinks or antikinks, are attracted
the corresponding steady state. Thus the param
values taken in regionDch give sufficient conditions to
observe this phenomenon.

FIG. 2. ~a! Qualitative representation of theJ set.~b! Qualitative
representation of regionsV0(g0) andV1(b0).
2-3
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FIG. 3. Formation of steady patterns in both coupled chains described by system~1.5!. ~a! Initial conditions.~b! Terminal patterns.
Parameter values:a50.4, d50.01, andh50.01 ~arbitrary units!.
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IV. TRAVELING WAVES

For illustration, in this section we treat system~1.5! as
two coupled chains divided in real space. First, we note
the results of Ref.@29# ensure the complete interchain sy
chronization of all motions for strong enough interchain co
pling

hj.
a22a11

6
. ~4.1!

Then, in theRN phase space of system~1.5!, there is an
N-dimensional~synchronization! manifold which attracts all
motions. In this manifold, motions are governed by a syst
of like Eq. ~1.4!, with F(u)[ f (u). In this case, the traveling
wave dynamics does not depend on the coefficientsh, and is
illustrated by Fig. 1. We will now consider the dynamics
the system for small enough interchain interaction.

A. Front waves, slowing down, stopping, and about turn

Let us consider a front wave or kink propagating in t
first chain~u components!, while the second chain~v com-
ponents! is in the vicinity of the homogeneous steady sta
O0 . For convenience, we call this state ‘‘unexcited,’’ becau
all elements have coordinates close to zero. We switch on
interaction, and analyze how small but nonzero coupling a
on the propagating front.
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Let us introduce the followingg family of regions in
phase space:

V0~g!5$u,v:0<v j<g,0<uk<1,; j ,k51,2,...,N%.

Then there exist such values ofg for which the trajectories of
system~1.5! intersect the boundary ofV0(g) inward from
this region. Indeed, it is satisfied at the parts ofV0(g) inher-
ited from regionV0 @see Sec. II and Fig. 2~b!#. Considering
the rest part ofV0(g) and using Eq.~2.1!, we obtain, from
Eq. ~1.5!,

v̇ j u$v j 5g,0<vk<g,kÞ j ,0<uj<1%

5 f ~g!1d~v j 2122g1v j 11!2hg1huj

< f ~g!2hg1h. ~4.2!

The negativeness of derivative~4.2! is fulfilled for

g0[
a

2
2S a2

4
2hD 1/2

,g,
a

2
1S a2

4
2hD 1/2

~4.3!

Hence for Eq.~4.3! the vector field of Eq.~1.5! is oriented
inward from these regions. Then, if the initial conditions
system~1.5! are taken insideV0(g0), the corresponding tra
jectory satisfies
2-4
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0<v j<g0 , 0<uk<1, for t.0, ; j ,k51,2,...,N.
~4.4!

Sinceg0,a/2, conditions~4.4! mean that componentsv j ,
for any t.0, stay below the ‘‘excitation threshold’’~the defi-
nition of the ‘‘unexcited’’ chain! and componentsuj may
take arbitrary values within the regionV0 .

Introducing a fixed positive parameter« with an infinitely
small value, it is easy to show that for

h<a«1O~«2!, ~4.5!

the parameterg0 satisfies the inequalityg0<«. In this case,
motions in the second chain are on the order of an infinit
small value; hence the chain evolves in the vicinity of
steady stateO0 . In spite of the smallness ofh, expressed in
Eq. ~4.5!, the dynamics of the first chain becomes quite d
ferent. Indeed, in this case,

h~uj2v j !5huj1O~«2!. ~4.6!

Then, in a first order approximation on«, the dynamics of
the first chain is defined by system~1.4! with F(u)5 f (u)
2hu. The zeros ofF(u) are given by

m150, m2,35
11a

2
7S ~12a!2

4
2hD 1/2

. ~4.7!

Thus, in the case of weak interchain coupling, the sec
chain stays in its ‘‘unexcited’’ state, while the first cha
supports the front propagation with a new velocity. Inde
according to Eq.~4.7!, we obtain

m2~h!.m2~0!5a. ~4.8!

Since the kink velocity is a monotonically decreasing fun
tion of parameterm2 ~Fig. 1!, the influence of the secon

FIG. 4. Velocity-coupling dependences~solid curves! for a kink
interacting with an ‘‘unexcited’’ state in the second chain. Param
values:N550 anda50.45. The dashed curve shows the dep
dencec(h) obtained with the perturbation analysis@Eqs. ~4.5!–
~4.7!# for d50.15. The solid lines represent numerical simulati
with d50.15, and 0.25~bold line!. Experimental results are repre
sented by crosses in the cased50.2560.02.
03660
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chain, h.0, tends to decrease the velocity of the kink
chain 1. Analyzing the diagram in Fig. 1 leads to the follo
ing possibilities concerning the dynamics of the kink:~a! the
kink is propagating with a smaller velocity, c(h),c(0); ~b!
the kink stops to propagate, c(h)50; and ~c! the kink re-
verses and propagates backward, c(h),0. Such behaviors
of the kink have been verified in numerical simulations
system~1.5!. For example, the velocity-coupling dependen
c5c(h), obtained fora50.45 and shown in Fig. 4, involve
the three possibilities successively. For comparison, co
sponding curves obtained with the first-order perturbat
analysis@Eqs.~4.5!–~4.7!# are shown by dashed lines. The
is a good qualitative~and quantitative forh→0! agreement
with direct simulation of system~1.5!. Case~a!, realized for
smallest values ofh, is illustrated in Fig. 5. The front propa
gating in the first chain forh50 with a definite velocity
becomes slower when switching on the interaction att5t0 .
This corresponds to the different angle shown in the spa
time plot ~j,t! in Fig. 5. The second chain remains ‘‘une
cited.’’ The front stops with increasingh. Hence the stopping
front results in a ‘‘kinklike’’ steady pattern in the propagatio
failure. In contrast to the description of Sec. III, the origin
this phenomenon is not caused by internal dynamics
smalld, but by the interchain dynamics with nonvanishingh.
A further increase ofh leads to the kink reversing, as show
in Fig. 6. Finally, the break of the velocity curves in Fig.

r
-

FIG. 5. Space-time plot of kink propagation in system~1.5!. The
interchain interaction is switched on at a time instantt0 . The dy-
namics of theuj andv j components is shown by the levels of gra
~the scale is not shown! with white corresponding to the ‘‘excited’
state, and black to the ‘‘unexcited’’ state. The kink corresponds
the white-black interface. The light gray in the right-hand pictu
shows the small perturbation of the second chain. Parameter va
N550, a50.45,d50.15, andh50.01.
2-5
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corresponds to interchain synchronization, that is, the sec
chain displays a kink identical to the original. As mention
earlier, the dynamics in this case is defined by the equat
for a single chain@Eq. ~1.4!#; hence the velocity of both
synchronized kinks is equal to the unperturbed caseh50.

Note that the increase of intrachain couplingd tends to
decrease the domain of zero velocities~Fig. 4!. In the limit
case of a continuous medium, described by partial differ
tial equations~1.1!, that is ford@1, we may expect only one
point with c50.

B. Front waves speeding up

Let us now consider a front wave or kink propagating
the first chain~u components!, while the second chain~v
components! is in the vicinity of the homogeneous stead
stateO1 . We refer to this state as an ‘‘excited’’ one, becau
all elements have a coordinate close to 1. Considering
weak homogeneous interaction (h.0) between the two
chains with such initial conditions, and processing as for
previous case, one can show that, forh.@(12a)2/4#, there
is a region in theR2N phase space which cannot be left
the trajectories of system~1.5!. It has the form@see Fig. 2~b!#

V1~b0!5$u,v: b0<v j<1,0<uk<1, ; j ,k51,2,...,N%,

with

b0[
11a

2
1S ~12a!2

4
2hD 1/2

.

Thus, for trajectories with initial conditions taken in regio
V1(b0), we obtain the restriction

FIG. 6. Kink reversing in system~1.5!. Parameter values:N
550, a50.45,d50.15, andh50.03.
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b0<v j<1,0<uk<1, for t.0, ; j ,k51,2,...,N.
~4.9!

Sinceb0.a, such a state of the second chain can be c
sidered as ‘‘excited,’’ in the sense that allv j components
have large enough values~in the vicinity of steady stateO1!.

Let us fix an arbitrary infinitely small« such that

12b0,«

and

h<~12a!«1O~«2!. ~4.10!

From Eq.~4.10!, we obtain

h~v j2uj !52huj1h1O~«2!. ~4.11!

With an accuracy up to«2, the dynamics of the first chain in
Eq. ~1.5! is defined by the single chain system@Eq. ~1.4!#
with F(u)5 f (u)2hu1h and parameters

m1,25
a

2
7S a2

4
2hD 1/2

, m351. ~4.12!

Hence the functionm2(h) is monotonically decreasing
Similarly to Eq.~4.7! discussed in Sec. IV A, and using Eq
~4.12!, we find the following behavior.~d! the kink traveling
in the first chain has a greater velocity due to the intercha
interaction, c(h).c(0). Thevelocity-coupling dependenc
for a kink with increased velocity is shown in Fig. 7. Th
solid curves~d50.15 and 0.25! was obtained from a direc
simulation of Eq.~1.5! and the dashed one (d50.15) from
the perturbation approach using Eqs.~4.11!, ~4.12!, and~1.4!.
For d50.15, one can find very fine qualitative and quanti
tive agreements between these curves for small enough,

FIG. 7. Velocity-coupling dependences~solid curves! for the
kink in chain 1, interacting with ‘‘excited’’ state in the second cha
The dashed curve shows the dependencec(h) obtained with the
perturbation analysis@Eqs.~4.11! and ~4.12!#, with d50.15. Other
parameter values areN550 anda50.45. The solid lines represen
numerical simulations withd50.15 and 0.25~bold line!. Experi-
mental results are represented by crosses in the cased50.25
60.02.
2-6
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THEORETICAL AND EXPERIMENTAL STUDY OF TWO . . . PHYSICAL REVIEW E64 036602
when the perturbation analysis is applicable. Note that
velocity curve ends up at some value ofh. Similar to the
break of the curves in Fig. 4, this corresponds to an in
chain synchronization. In contrast with the synchroniz
kinks, the terminal state here is the ‘‘excited’’ state of bo
chains, i.e., the kink disappears as a result of synchron
tion. Figure 8 illustrates such a kink, whose velocity is
creased, by switching on the interaction att0 . Note that the
dynamics of antikinks in system~1.5! is the ‘‘opposite’’ of
that described for the kinks. For example, if the kink veloc
increases when interacting with the ‘‘excited’’ chain, the a
tikink, if initially excited in the first chain, slows down o
reverses with properties~a!–~c!. If the antikink interacts with
the ‘‘unexcited’’ state, its velocity increases with proper
~d!. Using the symmetry property of functionf (u), the
velocity-coupling dependences for the antikink propagat
can be easily derived from diagrams of Figs. 4 and 7
substitutinga→12a.

C. Fronts traveling along steady patterns

Let us suppose there is kink propagation in the first cha
while a steady pattern exists in the second. This situa
may occur if the intrachain coupling coefficients are diffe
ent. In particular,d1(a) is taken to provide the propagation
c(a).0 in Fig. 1~c!, andd2(a) is taken insideDch satisfy-
ing inequality~3.1! ~Sec. III! with h50. For simplicity, from
a wealth of possible configurations, we take a periodic ste
pattern with quite a large spatial scale, as shown in Fig. 3~b!
~right picture!. Then, using Eqs.~3.3! and ~3.5!, the coordi-
nate elements are grouped in small neighborhoods nea
‘‘excited’’ ( O1) and ‘‘unexcited’’ (O0) states of the secon
chain. Using the results of Secs. IV A and IV B, we m

FIG. 8. Kink speeding up in the result of interaction with th
‘‘excited’’ state in chain 2. Parameter values:N550, a50.45, d
50.15, andh50.02.
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expect that, for certain values ofhÞ0, the kink in the first
chain would slow down while traveling along the ‘‘unex
cited’’ elements, and speed up when passing the excited
ments. This has been verified numerically. We have ca
lated the instant velocity of the kink during the propagatio
Its behavior is shown in Figs. 9~a! and 9~b!. The velocity
oscillates according to the profile of the steady pattern. T
maximum and minimum limit velocity values are define
from the interaction of the kink with the excited and une
cited chains, respectively, and shown by dashed lines in
9~b!.

V. FRONTS IN ELECTRONIC EXPERIMENTS

A. Experimental setup

Our experiments were carried out on two coupled iden
cal electrical chains. Each of them is composed ofN522

FIG. 9. Kink propagating along a steady periodic pattern in
second chain@Fig. 3~b!, right picture#. ~a! Modulation of the kink
velocity in a space-time plot~ j,t! for chain 1. ~b! Instantaneous
velocity ci( j )51/t j , wheret j is the time of the front to come from
the (j 21)th to the j th elements, during the propagation. Dash
curves correspond to the homogeneous statesO1 ~upper line! and
O0 ~lower line! in the second chain. Parameter values:N550, a
50.4, d150.1, d250.01, andh50.01.
2-7
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FIG. 10. Sketch of the experimental couple
electrical lattice.
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cells ~see Fig. 10!, including a linear capacitanceC and a
nonlinear resistorRNL , whose current-voltage characterist
obey the cubic function

I NL5
V

R0
3S 12

V

a D3S 12
V

b D .

Herea andb are the roots of the characteristic, andR0 is a
weighting resistor. Intrachain diffusion coupling is assur
by linear resistorsR, while interchain diffusion coupling be
tween cells repered by the same numberj is assured by linea
resistorsR8. Using Kirchhoff laws, we can model the vol
ages evolutions, namelyU j in chain 1 andVj in chain 2, by
a set of coupled discrete equations:

dUj

dt
5

1

RC
~U j 111U j 2122U j !2

U j

R0C S 12
U j

a D S 12
U j

b D
2

1

R8C
~U j2Vj !,

dVj

dt
5

1

RC
~Vj 111Vj 2122Vj !2

Vj

R0C S 12
Vj

a D S 12
Vj

b D
2

1

R8C
~Vj2U j !. ~5.1!

In addition, the two chains satisfy Neumann boundary c
ditions. After normalization, namely settinguj5U j /b, v j
5Vj /b, d5R0(a/bR1), andh5R0(a/bR8), Eqs.~5.1! ap-
pear to be an analog simulation of system~1.5!.

The state of the system is visualized in a video line, t
is, every 64ms, the voltage of each cell of chains 1 and 2
collected as an analog luminance signal, where black co
sponds to the state close toV50 ~the unexcited state! and
white corresponds to the state close toV5b ~the excited
state!. These definitions were stated in Sec. IV. Using a p
allel to serial converter, the resulting serial video output
then mixed with video synchronization, allowing us to vis
alize the resulting composite video on a monitor. Therefo
its screen will show the evolution of each cell of both cha
03660
d

-

t

e-

r-
s

,
s

vertically, with the time growing toward the bottom, such
the whole height corresponds to a local process time of
ms. For a detailed description of the experimental setup
initial data loading, see Ref.@11#.

B. Observation of steady states

In order to check the theoretical predictions of Sec.
summarized in Fig. 3, the components are chosen suc
R5100 kV, R85330 kV, C53.3 nF, a50.64 V, and b
51.45 V. Therefore,R053.2 kV, and the parameters ap
pearing in system~1.5! are fixed to bed50.014, hj5h
50.004, anda5a/b50.44. Note that these paramete
verify condition ~3.1!. The initial conditions, loaded in the
two chains, consist of arbitrary sequences of voltages
tween 0 andb, that is 0 and 1, respectively, after normaliz
tion. From initial conditions shown in Fig. 11~a!, the real
system evolves versus time, and gives final voltage profi
as shown in Fig. 11~b!, revealing that a steady state
reached for each lattice. These figures confirm that final v
ages of every cell of both chain belong to regionsV i

0 or V i
1

~see Sec. III and Fig. 3!.

C. Front waves slowing down, stopping, and reversing

In this section, we intend to check experimentally the th
oretical predictions of Sec. IV A. The electrical componen
keep the previous values, exceptC, which is now 10 nF, and
intracoupling resistorsR, now set to 5.6 kV; thend50.25. In
addition, the resistorR8 will act as a parameter controlling
the interchain coupling coefficienth. We first consider the
case without interchain coupling, that ish50, and study the
propagation of a kink in the first chain, starting from initi
conditions where the voltage of the six first cells of chain
corresponds to the excited state~white!. The voltage of all
other cells, including the cells of chain 2, corresponds to
unexcited state~black!. The correspondent screens~see Fig.
12! show then a propagating front from left to right on th
first chain, while nothing occurs in the second chain; that
the voltages of every cell of chain 2 remain in the unexci
state. Note that the chains components values lead for
2-8
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FIG. 11. Steady states or spatial patterns
both coupled chains:~a! initial condition, and~b!
final state. Parameter values after normalizati
are a50.4460.01, h50.004360.0003, andd
50.01460.001 ~all in arbitrary units!, while C
53.3 nF.
s
he

om-
ent

hein
lattices to an intrachain coupling coefficientd slightly larger
thand* , the critical value of propagation failure, whose e
timation is given by inequalities~3.1! with h50.

First, for small value ofh ~see Fig. 13, withh50.0043!,

FIG. 12. Kink propagation on the first chain without intercha
coupling. The second chain is in unexcited state.a50.4560.01,
h50, d50.2560.02, andC510 nF.
03660
-
the kink velocity in the first chain becomes lower than in t
case without intercoupling, that ish50 ~Fig. 12!, while the
behavior of the second chain seems to be unaffected. A c
parison between Figs. 13 and 5 shows a good agreem

FIG. 13. The kink velocity decreases in the first lattice; t
second one stays in an unexcited state.a50.4560.01, h50.0043
60.0002,d50.2560.02, andC510 nF.
2-9
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between theoretical and experimental behaviors. Now
creasingh, we obtain the screens of Fig. 14, where the fro
wave is stopped in chain 1, while cell voltages in chain
stay very close to zero, that is in the unexcited state@see
regionV0(g0) in Fig. 2~b! #. For larger values ofh, Fig. 15
shows an about turn of the front wave propagating in ch
1, that is, it now propagates backwards; however, cells
chain 2 still stay in regionV0(g0) also@see Figs. 2~b! and 6#.
Finally, for larger values ofh, as represented in Fig. 16,
kink arises in chain 2, synchronized with the kink of chain

All these experimental results are summarized in Fig
and can be compared with the simulation predictions~con-
tinuous line! previously given. One can observe the quali

FIG. 14. Stop propagation of kink fora50.4560.01, h
50.02260.002,d50.2560.02, andC510 nF.

FIG. 15. The kink velocity becomes negative whena50.45
60.01,h50.04360.002,d50.2560.02, andC510 nF.
03660
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t

n
f

.
,
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tively similar behavior between experimental results a
simulation predictions. Note, however, that for practical re
sons the following hold

~i! Quantitatively, the experimental crosses of Fig. 4 a
not exactly superimposable on the simulation curve, beca
of different experimental defects: uncertainties in compon
values, and the current-voltage characteristic ofRNL , which
differs from the cubic law. For these reasons, the crosse
not exactly agree with the simulation predictions~solid
curve! for d50.25; in particular, they show a zero-veloci
part as predicted theoretically in Fig. 4 for smaller values
d(d50.15). This discrepancy can be mainly imputed to u

FIG. 17. When the second chain is initially in an excited sta
the velocity of the wave front in the first chain is increased forh
Þ0. Parameters values:a50.4560.01, h50.01460.001,d50.25
60.02, andC510 nF.

FIG. 16. Instantaneous synchronization of kinks in both lattic
for a50.4560.01, h50.09460.005, d50.2560.02, and C
510 nF.
2-10
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FIG. 18. Velocity modulation of a kink in
chain 1. Starting from initial conditions~a! and
~b!, the kink on chain 1 undergoes velocity fluc
tuations~c! related to the steady state pattern e
isting in chain 2~d!. a50.4460.01, h50.0043
60.0003, d150.4360.03, d250.009460.0008,
andC510 nF.
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C.
certainties concerning the intrachain coupling coefficientd.
~ii ! Experimentally, we cannot change all resistorsR8 for

all cells at the same timet0 , as it is possible in simulation
~see Figs. 5 and 6!. Thus the video screens of Figs. 12, 1
14, 15, and 16, only start aftert0 .

However, the agreement between the theoretical beha
for t.t0 , and the experimental one is quite satisfactory.
addition, the main features concerning the behavior of
system—that is stopping, about turn, and synchronization
front waves when the intracouplingh increases—correspon
to theoretical predictions.

D. Front waves speeding up

This part is devoted to experimental investigations rela
to Sec. IV B. The parameters of the system are the same
Sec. V C, that is,a50.45, R053.2 kV, C510 nF, andd
50.25. Decreasing resistorsR8 step by step, we control th
intercoupling parameterh, and measure its effects on th
kink propagation. That is, initial conditions are set as follo
ing ~see Fig. 17, whereh50.014 for example!: for chain 1,
the five first cells are in the excited state 1~white!, while the
03660
,

or,

e
of

d
in

-

others are in the unexcited state~black!; for chain 2, all cells
are in the excited state, so they belong to regionV1(b0) in
Fig. 2~b!. As the time increases, Fig. 17 shows that the k
now propagates faster in chain 1, with respect to the cash
50 ~see Fig. 12!. This behavior is very similar to the on
predicted by simulation and presented in Fig. 8, correspo
ing to the same parameters, after the change ofh at t0 .

The evolution of the kink velocityc versus the control
parameter is drawn in Fig. 7, where the crosses repre
experimental results. Although a small quantitative discr
ancy between these experimental results and theoretical
dictions~continuous lines! is observed, qualitative behavior
are in good agreement, showing that, in real experime
systems, coupling a chain with a second excited one
speed up the front wave.

E. Modulation of kink velocity

In this section, we propose to propagate a kink in the fi
chain, while a steady state pattern is present in the sec
chain. This case was theoretically considered in Sec. IV
2-11
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Parameters of the system are fixed asa50.44, R0

53.2 kV, R85330 kV, and h50.0043, but the intracou
pling resistorsR are now different along chain 1: (R5R1

53.3 kV) and chain 2 (R5R25150 kV). These values lead
to intracoupling coefficientd150.43 in chain 1, andd2

50.0094 in chain 2.
Initial conditions for both chains are represented in os

lograms of Figs. 18~a! and 18~b!: only the six first cells of
chain 1 are in the excited state, while cells of chain 2 exh
a turing like pattern~see Sec. III!. Evolution versus time of
these initial conditions shows@see Fig. 18~c!# a propagation
of a front wave in chain 1, but whose instantaneous velo
appears not to be constant: the velocity is yet modula
with transient values successively larger and smaller than
averaged one. Note that the cell voltages in chain 2 quic
reach a steady state pattern@Fig. 18~d!#, which corresponds
to a periodic rectangular window, and that low~respectively
large! values of the kink velocity in chain 1 correspond to t
unexcited~excited! cells in chain 2. Figure 18~c! being an
experimental counterpart of Fig. 9~a!, obtained by numerica
calculations, a good agreement between these results is
served.

VI. CONCLUSION

In this paper we have studied the dynamics of t
coupled discrete Nagumo chains. Unlike to the case o
single discrete Nagumo chain, where no control exists c
cerning wave front propagation and its unique velocity,
have shown that the coupling coefficienth is very efficient to
discrimine different behaviors of the front waves in bo
o

n

ys

a-

A

s
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coupled chains. We have intensively studied the case o
homogeneous coupling between the chains, and showed
an initial front wave introduced in chain 1 can either
slowed down, stopped, or ‘‘reversed,’’ according to t
strength of the coupling, if chain 2 is initially in the vicinity
of the unexcited state. On the other hand, the initial fro
wave in chain 1 can be speeded up, if chain 2 is initially
the vicinity of the excited state. All these properties ha
been verified in an experimental electrical system compo
of two coupled chains of 22 cells. Our experiments confir
in particular, the possibility of controlling the dynamics o
front waves in coupled chains. This may lead to a be
understanding of natural phenomena observations in a w
class of systems possessing wave front solutions, in part
lar in models of coupled neural fiber models@2#.

Furthermore, extending this study to two-dimension
coupled systems could offer interesting applications in
field of image processing. In particular, although replicati
to another lattice of an image initially stored in a first latti
was already studied@30,31#, it may be useful to control this
replication by means of the interlattices coupling. Moreov
mathematical morphology or contour detection@32# of an
initial image would be improved if a coupling coefficien
between two lattices could be used to locally control cont
propagation, giving either image erosion or dilatation.
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Plank, I. Schafferhofer, V. Pe´rez-Muñuzuri, and V. Pe´rez Villar,
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