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Effect of electron-beam momentum spread on cyclotron resonance maser operation
at two resonant frequencies
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We present a theoretical analysis of cyclotron resonance @pdyl) operation at two resonant frequencies
including the effects of momentum spread in the electron beam. A linear analysis of the system equations is
presented in the limit of small momentum spreads. Numerical solutions to the system equations are also given
and are in agreement with the linear theory. The results predict that for realistic momentum spreads, operation
of the CRM at the higher of the two resonant frequencies should be possible, extending its operating frequency
range. An experiment currently under development at Strathclyde University is described and modeled numeri-
cally.
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[. INTRODUCTION electron-radiation interaction. These equations are the sub-

ject of a linear analysis which yields a logarithmic dispersion

Cyclotron resonance maser€CRMs) are important relation. This relation is used to explore the regions of pa-
sources of coherent high power microwave radiafijnThe ~ rameter space where exponential growth of the lower and
radiation source of the CRM is a relativistic electron beamligner frequencies occurs. Full numerical solutions of the

gyrating as it propagates along a uniform magnetic field. Th& €ctron-radiation evolution equations extend the analysis
radiation emitted is usually contained within a cylindrical nto the nonlinear regime enabling saturation effects and

waveguide structure. When the electrons interact with eithenonlmear coupling between the lower and higher frequencies

thei X diati ith an iniected sional I{o be investigated. Finally we give details and simulations of
€ir spontaneous radiation, or with an injected signal, a €0y, ayperimental program being developed at Strathclyde

) ; > ®niversity to investigate two frequency operation of CRMs.
of the electron gyration, or the axial electron position, or

both. The bunched electrons may then emit coherently. The Il. THE MODEL
collective instability may give an exponential growth of the . . ) o
radiation field until saturation, where free energy depletion 1he notation used in our model of the CRM interaction is

of the electron bearf2,3] and/or a dephasing of the electron € Same as that used in previous publicatiehs] to which
bunching occurs. In general, for a single waveguide mode'eference can be made for further details. The resonant fre-

there exist two distinct resonant frequencies. In most circumduéncies of the CRM interaction may be determined by the

stances it is the lower resonant frequency that has the largdftersection of the waveguide and beam modes as defined by

growth rate and dominates the exchange of energy from the :“’ngkﬁFz andw=wy+kjpu|, respectively, where is
electrons to the radiation fie[d]. However, in an analysis of the waveguide cutoff frequendy is the axial component of
the steady state amplifier interaction, which assumes a unfh€ radiation wave vectoky is the relativistic cyclotron
form current electron beam source of infinite duration, it was"@gquency andv| is the axial velocity of the electrons. A
shown that allowing both the lower and higher resonant frefypical dispersion diagram shows intersections at two reso-
quency fields to evolve, it is possible to suppress the evoluf@nt frequencies in Fig. 1. The radiation at the higher reso-
tion of the lower frequency instabilitj4]. This may allow hant frequency has an axial group velocityy € dw/dk|)

the CRM to operate at the higher frequency only. When théreater than that of the lower resonant frequency and so we
CRM has electron pulses as its source, and consequently ti§8ll these resonant modes the “fast” and “slow” resonant
steady state approximation is not valid, the relative propagamodes, respectively. Solving the equations of the beam and
tion of the electron pulse with respect to the radiation emit-Waveguide modes we obtain expressions for the fast and
ted becomes important and gives rise to new regimes of Opslqw mode resonant frequencies and their corresponding
eration[5]. These regimes include super radiance, where th@xial wave vectors

radiation intensity scales as the square of the pulse current, —

and “pulse suppression” of the Iovx(/qer resonant fFr)equency. In 1XppN1i=X

. : . . . W= Oy — N
this paper we assume a steady state interaction and investi- ’ 1- ,Bﬁ
gate the effects of an electron beam momentum spread on the
operation of the two frequency CRM. This is of importanceand
to any experimental program of work designed to observe o 1-X
operation at the higher frequency. A set of equations is de- Kis S:_H 1= 2)
rived which includes the effects of momentum spread on the c 1—Bﬁ

where the “waveguide parameterX=wZ/(wjyf), B
*Email address: gordon.hunter@strath.ac.uk =v/c, y=(1-Bf) Y and subscripts f” and *s” indi-
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0] straightforward via the relationg;=e?pg and wi= /€.
Note that p; is bounded within the interval Qp;s
<2u:€3l(€3+1). The upper limit ofps restricts the maxi-
mum growth rate of the radiation and also the efficiency of

\ the device[4].

(e, 00) A linear and numerical analysis of the coupled two fre-
quency mode interaction has been conducted in the steady
< state regime when electron momentum spread effects are ne-

Oy \ glected[4] (so that initial conditions for electron momenta

(ki 00,) are identicagl. Here, the slow mode has a larger growth rate,
» kI except for a small region of parameter space where linear
| theory and numerical simulation predict no exponential
growth of the slow mode for a range of the depletion param-
eter ;. This range corresponds to that where, due to the

O relation wi= us/e, the value of the depletion parameter of

Q=25 the fast mode is below thresholg {< uy,), but that for the
slow mode is above thresholgu{> uy,). Hence, choice of
¢ from within this region allows for a v suppression” of

Q=13 the lower frequency slow mode.

Summarizing, in total four parameters are required to de-
scribe the CRM coupled interaction between the fast and
slow modes: the axial wave vector raid; the device pa-
rameten); the CRM parameter for the fast mogde; and the

> k1 depletion parameter of the fast moge.

(b) 0 | This paper investigates the effects of an initial momentum

. o . . ) spread in the electron beam on the two frequency operation

FIG. 1. (a) Dlsper5|oq diagram shqwmg t_he m_tersectlc_)n of elec- of a CRM. The model developed is then used to predict the

tron beam and waveguide modé) Dispersion diagram illustrat- o5 4 cteristics of an experiment designed to investigate two
ing the different operating regimes for two values of the deV|cefrequency CRM operation currently under development at
parametex for =2 (Qma=4). Strathclyde University. It may be expected that a spread in
electron beam momentum would have a greater detrimental
cate the fast and slow modes, respectively. The waveguideffect on higher frequency radiation amplification than on
parameter must lie within the ranges%(e®+1)°<X<1  that of the lower frequency. The degree of spatetial)
where»s?’:k”f/k”S [5]. bunching and phase bunching required of the electrons is

The “device parameter™(), is defined as)=2/X—1  greater at higher radiation frequencies, and so the amount of

=(wfws—kakHScz)/w§ [5], and is constrained to lie within dephasing, due to a given electron momentum spread, will be
the limits 1<Q<(1+ €%)/(2€°%). greater at the higher frequency. We use an analytical and

If Q lies towards the minimum of the interval then the numerical analysis to show that, while this is true, it should

interaction is of the gyrotron type, conversely( lies to-  still be possible to achieve CRM operation at the higher of
wards the maximum of the interval then the interaction is ofthe two resonant frequencies.

the cyclotron autoresonance maser type. The equations describing the two frequency CRM inter-

Two other physically meaningful scaling parameters, de-action were derived from the coupled Maxwell-Lorentz

fined below, are the fundamental CRM paramgiganalo- ~ equations which describe the radiation and electron beam
gous to the Pierce parameter of the traveling wave tubévolution[3]. Athin annular electron beam co-propagating in

(TWT) theory [6] and determining the growth rate of the the positivez direction along a cylindrical waveguide con-

electron-radiation instability, and the depletion paramgter taining “cold” TE,,, waveguide modes is assumed. The

which describes the effects of free energy depletion of th‘%vaveguide is coaxial with a static magnetic fieBd-Byz.

electron beanh2,3]. The depletion parameter is a measure Ofthese modes are defined by the cylindrical components of
the ability of the interaction to convert the energy associateghe electric fields

with the cyclotron motion of the electrons into radiation. For

small values of the depletion parameter only a small fraction

of this transverse energy is available. Furthermore, in a ngg

single frequency interaction, linear theory shows that there is ’ 2r

a threshold value oft= uy,, above which there can be no

exponential growth of the radiation fie[8]. g i .
In a two frequency interaction we are free to choose the E$,5)27Ff,s(Zyt)DTEJFn(kJ)e'q'fvs+ c.c.

principle scaling parameters from tpeand n parameters of

the fast or the slow modd$%]. In this paper the fast mode @

scaling is chosen, conversion to slow mode scaling being Eis=0,

_—
-

»
>

m

Frs(z,t)Dredm(k r)eis+c.c.
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where

\I’f’sz wf’st—mﬁ—k”f’sz, DTE=

1
Jm()(r,nn) V 71'(Xr,nn_ mz) ,

k, is the transverse component of the radiation wave vector,
Xmn IS the nth root of J; (k, R,)=0, andR, is the wave-
guide radius. The field is assumed to obey the slowly varying
envelope approximation (SVEA) so that F;(zt)
=|F«(zt)|€'és is a slowly varying complex envelope
function determining the andt dependence of the amplitude
and phase of the radiation field.

The product of the transverse component of the radiation
wave vector and the Larmor radius of the gyrating electrons
is assumed small, i.ek, r| <1. Experimentally, this allows
the electron beam annulus to be coincident with the maxi-
mum of the transverse mode electric field, maximizing the
coupling between electron beam and the radiation mode.

Further, it is assumed there are no space charge effects and

the electron beam phase evolution is slow with respect to the
cyclotron period. The latter allows the Maxwell-Lorentz

equations to be averaged over a cyclotron period. The effect
of beating between the two radiation frequencies is also ne-

glected by averaging the wave equations over a beat period,

which under SVEA is valid fow;=2w,. Further details of
the one and two frequency theory, including the derivation of
the evolution equations, can be found in Ré&-5]. With
these approximations the coupled Maxwell-Lorentz equa-
tions reduce to

d¢f — |,LLf

f.
de !

(A€ ?+ A€ s —c.c), (3
UL U”J

d¢s- — i

Mt
L= eps — (Are'?1+ €A ¥s —
UL U”

cc), (4

:j( n. _1)Kei¢f.
7 prfj €7

I
j
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A 9)
dz,
dA,
—ﬁS_ebS, (10)
de
— Z
j=1,... N, z;=—

— —1
dis= wp st —Kjp 2+ tan

uy 10 1y
Uy (m )02,

—_ W -
(TS A (TS S

-~ ie<uj_0>kff,sDTE‘]mfl(kJ_ Ro)
f,s™ 2 2 f,s»
4me<u|\0> kiwf,spf,s

ur=yvr, W=y,

— Kkis 1

Pt s= ki mpf,sr pf,s:U_H

(05— op) — ka,s*

Yy
ko=,
RO (o)

sz (u o>2 e
201232 4(k.Ro) |

e
Pts=
) (860meC2 k? (ujo)

_Kjr,s (Ur0)® _Pis
Kho <UHO>2, e vis'

5

pi— —
+(?pfj— GZQ)ASe' ¢s+c.c.,

dps U, Q
__J —___ id’f &—— A i¢s
d_f Uﬁj (pfpSj < Ase' Pt + Epsj e)ASe j+C.C.[,
(6)
du, - .

— = ﬁ(Afe"/’f,- + e?Ae' ?s+c.c), (7)

de qu

dU”_ Ul P
— = At + —Ase' s+ c.c. (8)

de qu

andj is the electron index numbeN is the total number of
electrons in a beat period, subscriptgind|| represent vector
components perpendicular and parallel to the waveguide
axis, r is the Larmor radius of a gyrating electrop,is the
electron relativistic factor,Ry, 6y) are the polar coordinates
with respect to the waveguide axis of the electron guiding
centers, ¢, ,v|) are the electron momentum componetg§,

is the gain length for the fast mode in absence of electron
momentum spreafdt] and subscripts 0 indicate initial values

on entering the interaction region at=0. The geometry of
the electron beamlet illustrating the geometric variables is
shown in Fig. 2. We assume that there is no cavity feedback
so that the system acts as a single pass amplifier.

Note that in the continuous limit the average over the beat
period may be written as
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waveguide wall relative to the mean. In this way the initial electron momen-
tum spread may be modeled using

Uy o, =1+Auj 1o (12)

for some symmetric distribution about zero NUH,LOJ_,

(AU”JOJ<1) over the electron indejx

Assuming subscript where appropriate, the equilibrium
values of the dependent variables are

A;,SOZ 0 <e_i(/’f,50>= 0 pf,,SOZEf,SO_ é\f,s

Uj o= 1+Au||,i0

FIG. 2. A schematic of an electron beamlet showing the relevant . . L
g corresponding to a uniformly distributed, unbunched beam,

geometty including momentum spread, with no initial field excitation
1 N 627 © _ fo at the beginning of the interaction regiap=0.
()= > f ' d¢fvsoj dULof (-++) Linearizing around these equilibrium values the depen-
Nr.semJo o - dent variables are
Xg(u;g,Uj0)dujo , ,
Af,s:Af,sl*

1 anSZﬂ' oo _ _
f dd’f,sof (++-)h(pt,s0)dPs 50,

=nf 27 )o — ’ ’ ’ 1
s b1 = diot D1t ProZs
(11

where subscript,s is chosen as appropriate; s is the inte- Pi=pit Pt epgo?f,
ger number of fast/slow periods in a beat perioef (

=n¢/ng) [4] and the functiongy(u, ,u;) and h(p ) are
normalized density distribution functions with the dependent
variables being functions of the initial conditioRs s, and - o .
(ULo,Ujo) OF Pt so- IN general, the relationship between the UL =1+Au otuyg,

normalized density distribution functiong(u, ¢,u)p) and

h(p; «) is not obvious, as the mapping ( ,U”)_)E . for ~ where all subscripts “1" denote small perturbations from the
each electron is obtained from the definitionpgf, and may ~ €quilibrium values subscripted “0” at;=0. Substituting for
be expressed as a function of the scaling parameters as giviiese variables into Eqé3)—-(10) we obtain, to first order

in the Appendix.

pfl,s: pf,,50+ pf,,sl )

dd’f’l o . ’ |¢), Ip, ;f
[ll. LINEAR THEORY = =ps—i(usAi, € ProePro
f

We begin with a linear analysis of the coupled system of -
Egs. (3)—(10). This is performed for the case of a finite + eusAd € Ps0e' P’ —c.c), (13
spread in the scaled momentum of the electrons.

For convenience we make the following change of vari-

. d ! s L
ables: QEl = eply—i (,quf,leld)fOelpfOZf
I _ — dz
Af=Ae % pi=¢i— 8y pi=p;— 5, P
L B B + €Al €'%s0e Pso?i—c.c), (14)
Aé = Aseiégszf d’é: s €0sZs pé =Ps— s,
where 5f,s=<5f'50) is the mean detuning of the electron di_”:((pf[p]g(ﬁ_ 5f]_1)Aélei¢f’oeipf’o?f
beam from the resonance. dz
In order to describe a spread in the electron momentum ) b el
j— ! ! 1 le Z
about the initial mean of the beanu; , o) =1, a distribution +(epd Prot 0t] — €°Q) A €' P0e' Pso® +c.c),
parameter u; , o) is introduced, which is assumed small (15
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dpg; , Q
e ((Pf[pso+ 55]_?

Af’lei ‘b]loei p;o?f

+(epgl péo*‘ Os]— f)Aélei qﬁéoei Psolt + c.c.|,

(16)
dU sl P sl . "
dil = — (uiA{, €' Proe’Pio? + eu AL ' ¢s0e!Pso?f + c.c),
Z
17
dup il ip! ze 1 ibloaieploz;
ol (piAi €' ProePro’f+ ep AL, €' Psoe' Pso*f+c.c),
Z
(18)
dA/ s P — s P
1 i{ P, Pr0e Pro?t) 4 (u, ,e Prog ™ Pro?r)
de
—(uj 7 ProeTIPiotry +i SA (19)
dA, s . 1 — st P
—=L = (Pl e Ps0e 1P 4 (U, ;0 Hsop i ePeo?r)
dz

—e(up e Yi0g1€Ps0r) + € SAL . (20)

Note that for the purposes of linearization the term;‘,m

PHYSICAL REVIEW &4 036502

’
sO

+=  h(pgo)
—= (Nst €pgy)

+2(1—ps(Psot 85))N(Pgo)
+63 T2
- (ANst 6pso)

Ns— €65t GZ(PS_ 2ps)

dpg=0.

(24)

For convenience, the continuous limit average of Ekf)

has been used where the initial spread in electron momentum
gives a normalized density distribution lofp¢ ;). From Eq.

(22), exponential growth of the fields can then be expected if
the \¢ ¢ from the solutions of Eqs(23) and (24) have a
negative imaginary part. As expected, the fast and slow
modes are uncoupled in the linear regime of radiation evo-
lution, each dispersion relation being independent of the
other mode.

For an electron beam with no momentum spread the dis-
tribution functionh(p; ;o) may be substituted by a Dirac-
delta function 8(p; ). The dispersion relation§23) and
(24) then reduce to those derived previously for a cold elec-
tron beam4].

The dispersion relations are now investigated for the spe-
cific case of uniform rectangular distributions i ¢ of half
width o ¢

1
, _Uf,sspé, 0SS0t s
h(pj ) =1 2045 s (25)
0 elsewhere.

are treated as first order as it has previously been assumed

that all spreads are small, i.e&ﬂuyﬂﬁl.

The linearized system, Eq&L3)—(20), may be solved us-
ing the method of Laplace transforms, the complex Laplace

transform being defined as

X(\)= f:x@)efiﬁfd?f. (21)

Applying the transform to the dependent variables, solving
for the transformed field variables and inverting the trans-

form we obtain a solution for the fields of

3

Afs(21)= 2, Coexplingsz), (22)

whereC,, is a complex constant and the,sn are the roots of
the dispersion relations

+=h(pse)
Ni— Ot +(pr—241) —— —dpg
- (N¢+ Psg) "
+o(l— o+ 8))h(pip)
+f (1=p:(Pso ,f)i (Pro dpl,=0 (23
— (N ¢+ Pso)

and

With these distributions, the fast and slow mode dispersion
relations(23) and(24) reduce to the logarithmic forms

)\f‘l‘O’f
A= o¢

pi(Nf—o?)
(A=) (Nf—0f) +pehi— DL U

+(1=p:61)=0, (26)

(As— 655)()\§_ 6205) +e%pehs

B eus(Z\2— €%0?) In( Ao+ €0

31— o) =
)\S_EO_S)—Fe(l ps89)=0.

Os
27

Where there is no spread(—0) then, as required, the
dispersion relations reduce to those previously derived for a
cold electron beam3, 4.

In the low efficiency limit ofp¢ 5, s s—0 the following
dispersion relations are obtained:

(\t=8)(\f—0af)+1=0, (28)

(Ns— €89)(\2— €202) + 3=0. (29)
These dispersion relations are identical in form to those ob-
tained for the Compton free electron laser when momentum
spread effects in the electron beam are taken into account,
e.g., Ref[7]. In the limit 6; <— 0 there is a threshold in the
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FIG. 3. Gain curve for the fast mogg=0.0681, u;=0.252.

spread ofp; ¢, at oy = (27/4)"6, above which no complex -0.8 . . . . .
N ' . 0 0.2 04 0.6 0.8 1

roots exist and there can be no exponential growth of the I8

fields. Furthermore, it can be shown that maximum gain oc- _

curs when the detuning is equal to the spregd= oy s. FIG. 4. Im(A;—\s) againstu; for the fast and slow mode.

In Fig. 3 the negative imaginary part of the complex rootWhen Im@;—X\¢)>0 the system is in the. suppression regime
obtained from a solution of the full dispersion relatie26), where the fast mode growth rate is greater than the slow mode:
which determines the exponential gain for the fast mode, i@r=0.1; €=3; 6 5= 0.
plotted as a function of electron beam detunifgnd spread
o¢, for given values ofp; and us. Numerical solutions of the fast root\;. For values ofu;=1.0, \;=0 and there can
the logarithmic dispersion relations were obtained by usinde no exponential growth of either the slow or the fast mode.
the mathematical computer package MAPI8E As with the  For o;=0 then, u suppression of the slow mode occurs
low efficiency limit of above, it can be seen that maximum between the limits 0.5 ©;<0.97. Note that this range ¢f;
gain occurs for an electron detuning parametef@fo:. A for u suppression is extended below the minimum of that
similar plot is obtained for the slow mode and, similarly, predicted in Ref[4]. This is becauseu suppression was
maximum growth is obtained fofs~ 0. defined to start at the threshold value f@rogrowth of the

A comparison of the growth rates of the competing fastslow mode. This value here is0.68. In the region 0.5
and slow modes in the presence of electron beam momentura u;<0.68 of Fig. 4 slow mode growth exists but is less
spread is now presented. Of particular interest is the effect ahan that of the fast mode.
such a spread in thg-suppression regime where, for zero  When the effects of electron momentum spread are in-
momentum spread, the fast mode has a larger growth ratguded, o;=0.5,1.0,1.5(and we allow optimum detuning,
than the slow mode. It is assumed that the density distribus; ;= o ;) we observe that, as would be expected from the
tion of electrons in momentum Spa@(E ,UH), results in a  discussion above, the growth rates of the fields are reduced,

rectangular distributioh(p! ) in p’ space of the forn25). as |s'the range over wh'|qh suppression of the slow mode is
The relationship betweer; and o is obtained from the POssible, quickly reducing the interval to 85;=0.8. The
analysis of Appendix A. As suggested by the above analysi&eSults shown in Fig. 4 are in good agreement with growth
and the results of Fig. 3, a detunidgs= o 5 is chosen in an rates calculated via numerical integration of E(&—(10).
attempt to maximize the gain for both modes. The values for
6t s Which actually maximize these gains may be slightly
different, however the results presented are not significantly
affected. The growth rates predicted from the solutions to the dis-
The difference between the fast and slow negative imagipersion relation$26) and(27) are now compared with those
nary parts of the complex roots, lin(—\), obtained from a  obtained from a full numerical solution to E¢8)—(10). In
solution of the full dispersion relatior{®6) and(27), is plot-  carrying out this comparison, it was found necessary to arti-
ted as a function ofi; for four values of electron momentum ficially “switch off” the evolution of one of the modes in the
spread and is shown in Fig . For negative values of the full numerical solution as a mode coupling is quickly estab-
difference, the slow mode has the larger growth rate andished and the interaction departs from that of linear theory
would dominate any interaction for equal input fields. Forwell before saturation of the fast mode. With such artificial
positive values the higher frequency fast mode will domi-mode decoupling it is found there is a good agreement be-
nate. This has previously been called fhesuppression re- tween the numerical and linear models in determining the
gime [4]. For the case of no electron momentum spreadyrowth rates over a wide range of parameter space.
(0s=0), it is seen that on increasing from zero, suppres- An example of this agreement is shown in Fig. 5 where
sion of the slow mode begins to take effectzgt=~0.5. On  the growth rates for the fast mode are plotted as functions of
increasing u; further, both roots are nonzero untk; spreads; . Plot(a) shows the analytical solution of the linear
(= un) =0.68 after which there are no complex roots for thetheory and plotgb) and (c) show two numerical solutions.
slow mode §,=0) and the value plotted is entirely due to The first numerical solutiofiFig. 5b)] assumes a uniform

IV. COMPARISON WITH NUMERICAL MODEL

036502-6



EFFECT OF ELECTRON-BEAM MOMENTUM SPREAD ON. .. PHYSICAL REVIEW &4 036502

1 ‘ ‘ - TABLE I. Proposed experimental parameters for the slow mode

suppression and stimulated emission experiments.

r g)l; Stimulated

o (c) A Suppression emission
Magnetic guiding field 0.28T 029T
Electron beam current 395A 36 A
Electron beam energy 367 keV 466 keV
Relativistic Lorentz factor {) 1.72 1.91
Beam pitch factor &) 0.15 0.30
Fast mode frequency 17.3 GHz 17.0 GHz
Slow mode frequency 8.0 GHz 8.5 GHz
TE,, cutoff frequency 6.72 GHz 6.72 GHz

3 4 Wave number ratio €°) 3.6 3.0
Device parameter(}) 1.52 1.4

FIG. 5. A comparison between growth rates as calculated via the fundamental CRM parametep] 0.048 0.068

Free energy depletionu() 0.71 0.252

linear theory and numerical integration fop;=0.0681u¢
=0.1,6; s=0,6>=3. (a) Linear theory,(b) rectangular distribution

overp; of width o, (c) rectangular distribution over, | of widths the u suppression regime. The momentum spreads were cal-
gL=0- culated numerically from electron beam modeling work of
_ the thermionic cathode to be used in the experiment. This
rectangular distribution ip; of half width o of the form  work predicts that the momentum spread may be attributed
(25 and it is seen that the growth rates of this numericalmainly to the velocity spread of the beam of which the axial
model agree very well with that of linear theory. The secondvelocity spread is estimated to be not more thah% [10].
numerical solutionFig. 5c)] is for a uniform rectangular The experimental interaction was modeled for different val-
distribution in bothu, anduy of equal widtho, =o7. These ues of spread for the transverse component of the electron
spreads in ¢, ,o)) correspond to a spread im; via the ~ momentum and it is seen that suppression of the slow
relation(A9) of Appendix A. A rectangular distribution func- mode persists. For larger transverse momentum spreads the
tion in (u, ,u;) does not, however, map into the uniform growth rate of the fast mode interaction is reduced and a
longer interaction region is required to reach saturation.
However, if the spread in the axial momentum component is
increased from 1% to 2—3%, it has been observed that the
fast mode intensity is sharply reduced. This result, and the
V. EXPERIMENTAL PARAMETERS expression for the scaled momentum spread in(&8), sug-
Jests that the sensitivity of the system to axial momentum
spread increases as the device paramélettends towards

rectangular distribution iaf as used in the linear theory. The
difference between Figs(& and 5c) is attributed to this.

The work presented above attempts to model more reali
tically two frequency CRM amplifier experiments under de-
velopment at the University of Strathclyde. Using these re-
sults it is hoped to find regions of parameter space where it is
possible to observe the predicted higher frequency CRM op-
eration. In this section we give numerical solutions to the
scaled Eqgs(3)—(10) demonstrating the effects of momentum
spread on the two frequency interaction of the experiments.
The equations are solved with initial conditions correspond-

-2
|ng to an ampllfler conflguratlon with initial fields given by 107}

o

A, S(zf—O) A¢ 50, whereAf <« are constants; the electrons <"
are initially distributed evenly in phase with zero bunching
so that(exp(—i¢r«))=0 [4]; and the electron momentum 7
spread distribution functiog(u, ,u)), of Eq. (11), is now 10 F{f °
assumed to be a Gaussian in bothandu; with correspond-
ing widths o, . The real input—output radiation power is
calculated via the complex Poynting vecf®l, the definition
of the fields and the scaling used in E¢). - (10).

The experimental parameters are given below in Table | FIG. 6. Two mode evolution in thg-suppression regime with
along with the corresponding scaled parameters. electron beam momentum spre& o), =0, (b) ‘T\I_l% o,

Figure 6 shows the effect of momentum spread on the=10%, (c) o=1%, o, =20%, p;=0.048u=0. 71€2=3.60Q
resonant §; s=0) operation of the two frequency CRM in =1.52: A;,=0.0222(=400 W) , As,=0.0203( 400 W).
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10' , , 10' , , found to be in good agreement with those calculated via a
numerical integration of the system equations. The numerical
simulations have allowed a study of the nonlinear behavior

10° | 1 10°t : of the CRM, in particular the effect of momentum spread on
the u suppression and “stimulated emission” regimes of op-
eration for forthcoming experiments. The simulations predict

107k 107 that, with modest beam quality, it should be possible to gen-
erate significant output at the higher resonant frequency in
» » both regimes of operation.
10 ¢ 10 ¢
[ D
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f APPENDIX

FIG. 7. Stimulated emission at the high frequency interaction By expressing the physical parameters of the system in
point for various momentum spreads) o), =0, (b) 0y=0.5%,  terms of the scaled parameters
0,=5%, (c) 0j=1%, o, =10%: input power~400 W (Ag]|?

=3.2910"%). Fast mode outpu®) | Aq|},,,~0.23(~ 250 kW), (b) 5 01 ‘
|Af]2,2,~0.01 (=12 kW), (C) |A|2,4,~0.001 (=1 kW). ke=2 (] ( L ke=—,  (AD)
c —20e%+1 e

the CARM Ilimit, (21— Q0. This is in agreement with
other CARM studies where performance is known to depend

on the axial momentum spread when operating in the CARM W=, L ws= . ,
regime, e.g., Refl11]. V(e®—2Qe3+1) V(e®—20e%+1)
Stimulated emission of radiation at the high fast mode (A2)
frequency, given only an injected signal at the lower slow
mode frequency4], was studied with an electron beam mo-

(20-1) (2-Q)

mentum spread into the nonlinear regime. This stimulated <,3||o>:(62_6+1)(6+1) . /(Q_l , (A3)
emission is greatest for a harmonic interaction, i.e., wéen (e?+e+1)(e—1) Q+1
is an integer.
A cold beam interacting with input intensitieldy;| 2 T
~3.29x10 % (=400 W) and|A;y|? = 0 is shown in Fig. On= ¢ ("~ 2¢€ ) , (A4)
7(a). The lower frequency saturates |#?~0.52 (~600 (€+e+1)(e—1)
kW) and the higher frequency has a maximum |6§|2
~0.23 (~250 kW). (yo)=(€*+e+1)(e—1)
When momentum spread is introduced the output intensi-
ties are seen tolreduc.e_ as expected from Fi@y. ahd 7c). \/ wied(Q+1)
The maximum intensitie§for a momentum spread af, (= 2830+ 1) (20— pr(E+1))

=10% andoy=1% Fig. 70)] are |A{?=0.46(=500 kW)
and |A|2=0.001(=1 kw). It should be noted that by in- (AS)
creasing the input intensity at the lower frequency=d

kW, output at the higher frequency may be increase®t 1 4 py using the definition g , it is possible to obtain the

kW. functional relationps ¢(u, ,uy)

VI. CONCLUSIONS

2.3 3 3
— vy €e(eQ—-1) [(Quie—ps(e’+1))(Q+1)
An analysis of the cyclotron resonance ma&eRM) op- pi== pie P

erating at two resonant frequencies and including the effects up pr(e¥+1) pni(€°=20€%+1)

of electron momentum spread has been presented. The linear 1 &0+1 6021

analysis yielded a logarithmic dispersion relation to give the __ € ) __ € ( ) (AB)
linear growth rates for both resonant frequencies. These were uj pi(€6+1)  pi(8—2Q€%+1)’
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— 7 (£-9) e(zﬂfe3—pf(e3+1))(9+1)_1 E(Q+1) €2(Q%-1)

== = —~ : A7
Ps uj pr(e3+1) wi(e8—2063+1) U pr(3+1) pi(—20e+1) &7
where
eE+1 E(e+1)2(0—-1
7:\/“?f P meEDAO-D n8)
2ure’—pe(e’+1) (€6—2Q0€e’+1)(2use’—pi(€°+1))
|
An estimate of the spreadi_if,S can then be made by as- Oe3—1 eE(0-1)
suming the small spreads i , . Assuming the maximum = (1) UL”Lpf(es_l) o (A9)
range of values is given bﬁﬁfﬂax)%lJr o)., Whereoy
<1 and are positive definite, then we may substitute for
Hmax) into Egs.(A6) and (A7) and expand to first order in (E-Q) 2(0-1)
o). - Thus, an estimate of the spreadips, defined asr; o5~ 3 oLt ————0. (A10)
eni(e’—1) pi(e’—1)

is given by
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