
PHYSICAL REVIEW E, VOLUME 64, 036301
Inertial range determination for aerothermal turbulence
using fractionally differenced processes and wavelets
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A fractionally differenced~FD! process is used to model aerothermal turbulence data, and the model param-
eters are estimated via wavelet techniques. Theory and results are presented for three estimators of the FD
parameter: an ‘‘instantaneous’’ block-independent least squares estimator and block-dependent weighted least
squares and maximum likelihood estimators. Confidence intervals are developed for the block-dependent
estimators. We show that for a majority of the aerothermal turbulence data studied herein, there is a strong
departure from the theoretical Kolmogorov turbulence over finite ranges of scale. A time-scale-dependent
inertial range statistic is developed to quantify this departure.
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I. INTRODUCTION

The last three decades have seen a rapid advance i
mathematical modeling of turbulence data. Encoura
partly by the fact that complex, seemingly random, behav
can be well modeled by simple low-dimensional determin
tic nonlinear systems, many researchers have hypothes
that turbulence can be modeled using chaos theory. E
experiments in Rayleigh-Bernard thermal convection@1#,
Taylor-Couette flow between cylinders@2#, closed loop ther-
mosiphons@3#, turbulent boundary layers for open flow ov
a wall @4#, and surface wave propagation in a saltwater m
dium @5#, have in the part verified this hypothesis. Howev
there is a lack of such clear proof in other experiments an
data collected from uncontrolled environments such as
aerothermal data. More recent efforts in turbulence mode
have shown chaos theory to be useful in interpreting lo
phenomenon and flow stability. Chaos is now generally c
sidered to have an important~yet limited! role in the model-
ing of turbulence but not as a theory capable of describ
turbulent flow in detail. Even if the turbulence is viewed as
deterministic event, the high degrees of freedom~dimension!
of the flow makes the use of chaos theory impractic
Hence, the treatment of turbulence as a stochastic pro
prevails and~similarly to low-dimensional chaotic models! is
well matched for handling a prevalent notion about turb
lence, namely, that it has certain ‘‘self-similar’’ or ‘‘fractal
properties. Loosely speaking, this property means that
tain measures of turbulence data are invariant upon resca
the data, but the measures are quite different for stocha
and deterministic models~e.g., invariance in distributiona
properties in the former and invariance in space-filling pro
erties in the latter!. Both approaches are capable of gener
ing simulated series that mimic some properties of ac
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turbulence, but there is much work yet to be done to as
tain which class of models or combination thereof is the b
to use to answer questions of practical importance.

Most deterministic and stochastic approaches assume
mogeneity in time across all scales of interest. In this pap
we discuss methods that can be used for turbulence
time-varying properties. As we show below, there is stro
evidence to support the notion that turbulence measurem
such as we consider here exhibit time varying power l
behavior over finite ranges of scale. Because of the tem
rally localized and scale-dependent nature of wavelet tra
forms, wavelet techniques provide a natural framework
the analysis of physical phenomena that exhibit variatio
across time and within a finite range of scales. This is
departure from techniques that assumea priori either a self-
similar structure across all scales in the data or stationarit
fractal measures as a function of time~see Refs.@6–9# for
examples of wavelet-based estimation of nontime vary
turbulence model parameters!. While a wavelet decomposi
tion of a turbulence time series, say$Xt%, is based on using
self-similar analysis tools~i.e., wavelets!, it doesnot make
ana priori assumption that$Xt% is evolving in a self-similar
manner. By making a careful study of each scale as
evolves in time and of the relationships of the scales to e
other, we can then evaluate how reasonable it is to use m
els that postulate a tight coupling across scales, e.g., ti
evolving power law processes.

In this article, we use recently developed wavelet te
niques to estimate the parameters of fractionally differen
~FD! processes applied to aerothermal turbulence data. T
are a number of advantages in using the discrete wav
transform~DWT! on turbulence data.

Decomposition based on scale. Turbulence is known to
exhibit fluctuations at various spatial scales, and hence
DWT is a natural analyzer.

Decorrelation of time series. While turbulence data are
typically highly correlated, their wavelet coefficients are a
proximately uncorrelated@10# ~see Sec. IV C for details!.
This property is crucial for obtaining viable approxima
©2001 The American Physical Society01-1
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maximum likelihood estimates of FD parameters.
Localized time and scale content. Each wavelet coeffi-

cient is localized in time, allowing us to track changes in t
characteristics of a time series at a particular scale as a f
tion of time.

Separation of nonlinear trends from noise. The wavelet
coefficients are inherently ‘‘blind’’~invariant! to nonlinear
polynomial trend contamination in the original time seri
@11#.

As in Refs.@12,13#, we use wavelet techniques to analy
intermittent deviations from Kolmogorov inertial subran
behavior for measured temperature-based turbulence
We extend these works by~1! using higher order wavele
filters ~non-Haar wavelets! to avoid spurious estimates o
model parameters,~2! refining novel block estimation tech
niques with weighted least squares and maximum likeliho
estimators, ~3! developing an instantaneous~block-
independent! least squares estimator,~4! using simple diag-
nostic statistics as a means of identifying anomalous de
ministic structure imposed by the measurement sys
~thereby helping us to eliminate scales over which a stoch
tic fractal model is inappropriate!, and~5! developing confi-
dence intervals for the block-dependent estimators.

The remainder of this paper is organized as follows.
Sec. II we define an FD process and discuss why it
certain advantages over other models that have been
with turbulence data. In Sec. III we define the specific wa
let transforms used herein, including the DWT and a rela
nondecimated transform~the ‘‘maximal overlap’’ DWT! that
allows us to define an ‘‘instantaneous’’ estimator of FD p
rameters as a function of time. In Sec. IV we discuss wav
transform techniques for estimating the FD parameters
turbulence data—these include a block-dependent weig
least squares estimator~Sec. IV A!, a block-independen
least squares estimator~Sec. IV B! and a block-dependen
maximum likelihood estimator~Sec. IV C!. For block-
dependent estimators, we also establish confidence inte
for the FD parameter related to inertial range determinat
In Sec. V we present an analysis of the aerothermal data
motivated the development of the methodology discusse
previous sections. We summarize the results in Sec. VI.

II. FRACTIONALLY DIFFERENCED PROCESSES

The FD process was originally proposed by Granger
Joyeux@14# and Hosking@15# as an extension to an autor
gressive, integrated, moving average model in which the
der of integration is allowed to assume noninteger value

Definition 2.1. Let dPR ands«
2.0. We say that$Xt% tPZ

is an FD(d,s«
2) if it has a spectral density function~SDF!

SX~ f !5
s«

2

u2 sin~p f !u2d
u f u,1/2, ~2.1!

wheres«
2 is the innovation variance, andd is the fractionally

differenced parameter.
When d,1/2, an FD process is stationary; when21/2

<d,1/2, its autocovariance sequence~ACVS! is given by
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2 sin~pd!G~122d!G~t1d!

pG~t112d!
, ~2.2!

where G(•••) is Euler’s gamma function@16#. When d
>1/2, we obtain a class of nonstationary processes that
stationary if $Xt% is differencedd5 bd11/2c times, where
differencing by d means to form the proces
(k50

d ( k
d)(21)kXt2k ~e.g., we getXt2Xt21 whend51 and

Xt22Xt211Xt22 whend52), andbxc is the greatest intege
less than or equal tox. By inspection of Eq.~2.1!, an
FD(d,s«

2) process approximately obeys a power law p
cess, i.e.,SX( f )}u f ua, at low frequencies witha522d ~the
error in this approximation is quite small foru f u<1/8—the
range of frequencies that we are interested in for the ap
cation discussed below is well below 1/8 in standardiz
units!. For simplicity, we assume thatE$Xt%50 throughout
~in practice, this assumption does not lose us any gener
in what we discuss below because of the differencing ope
tions that are embedded in wavelet filters!. It should be noted
that an FD process is formulated in discrete time~as opposed
to continuous time! so that the highest observable frequen
is the Nyquist frequency (1/2 in standardized units!. Use of
discrete time models avoids nonphysical complications t
occur with continuous time power law models that have
finite variance due to an insufficient decay of the SDF af
→` whena.21.

For purposes of studying turbulence data, an FD proc
has certain advantages over similar models such as fracti
Brownian motion ~FBM! and fractional Gaussian nois
~FGN!.

Unlimited power law exponent range. Both FBM and
FGN are stochastic power law processes in that their SD
are approximately proportional tou f ua at low frequencies;
however, an FBM is limited to an exponent range of23
,a,21 while a FGN is limited to21,a,1. An FD
process is also a stochastic power law process, but it ha
such limitation on its exponent range and is theoretica
well defined foraPR.

Model continuity. Because FBM and FGN jointly cove
power laws ranging from23 up to 1 ~adequate to mode
some—but not all—turbulent phenomena!, it is tempting to
select between FBM and FGN to model various turbul
series; however, neither model actually includes the casa
521 ~known as 1/f , pink, or flicker noise!, and there is a
discontinuity between the FGN and FBM models close
a521 at high frequencies, which can lead to problems
model selection. Unfortunately, many real world phenome
exhibit 1/f noise@17#. An FD process has no such discon
nuity. In addition, an FD process is closed under differenc
operations with regard to its SDF; i.e., an FD(d,s«

2) process
that has been subjected to adth order differencing operation
yields an FD(d2d,s«

2) process. An FGN or FBM proces
subjected to the same differencing operation will not yie
the same type of process, which is another indication tha
FD process is a more flexible and tractable model.

Tractable SDF and ACVS. In contrast to the FBM and
FGN models, an FD process has tractable forms for both
SDF and~when stationary! corresponding ACVS; i.e., the
1-2
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FIG. 1. The squared gain functions fo
Daubechies least asymmetric eight-tap wave
filter for levels j 51, . . . ,4. For simplicity, the
sampling period was set to unity to create t
frequency axis and establishes the Nyquist f
quency at 1/2. The vertical lines identify the fre
quency bands with which the wavelet and scali
filters are associated. The scaling of the le
~right! ordinate is representative of the DW
~MODWT! squared gain function.
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expressions for both the SDF and ACVS of the FD mo
can be readily computed without having to approximate a
infinite summations~this is not true for FGN!.

Model flexibility. Both autoregressive and moving avera
components can be added to an FD process to provide m
flexibility in modeling high frequency spectral content, lea
ing to the well-known class of autoregressive, fractiona
integrated, moving average models@18#. The high frequency
content of measured data is often contaminated by ex
enous noise sources, and thus flexible modeling of this
gion is appropriate. The FBM and FGN models are n
readily amenable to such additions as they would furt
complicate the SDF and ACVS.

III. DISCRETE WAVELET TRANSFORMS

Consider a uniformly sampled time series$Xt% t50
N21 with N

divisible by 2J for JPN. For L an even positive integer, le
$h1,l% l 50

L21 be a Daubechies@19# wavelet filter with squared
gain function

H1,L~ f ![2 sinL~p f ! (
l 50

L/221 S L/2211 l

l D cos2l~p f !.

~3.1!

Equation~3.1! does not uniquely define a wavelet filter, an
an additional phase criterion, such as extremal or least as
metric phase, must be imposed to do so~use of the latter
criterion means that, after an appropriate shift in time,
wavelet filter has approximately zero phase!. Let $g1,l% l 50

L21

be a scaling filter, defined by the quadrature mirror fil
relation

g1,l5~21! l 11h1,L212 l . ~3.2!

The squared gain function for a Daubechies scaling filte
given by
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G1,L~ f ![2 cosL~p f ! (
l 50

L/221 S L/2211 l

l D sin2l~p f !.

~3.3!

The wavelet and scaling filters are used in a ‘‘pyramid’’ a
gorithm @20# to transform$Xt% into a collection of wavelet
coefficientsWj ,t and scaling coefficientsVj ,t that can be as-
sociated with scales of, respectively,t j[2 j 21 and 2t j , j
51, . . . ,J ~these standardized scales can be converted
physical scales by multiplying them by the sampling tim
between contiguous observations in$Xt%). Implementation
of the DWT begins by defining the zeroth level scaling c
efficients to be the original time seriesV0,t[Xt . The levelj
wavelet coefficientsWj ,t and scaling coefficientsVj ,t are
then formed recursively by

Wj ,t[ (
l 50

L21

h1,lVj 21,2t112 l modNj 21
, ~3.4a!

Vj ,t[ (
l 50

L21

g1,lVj 21,2t112 l modNj 21
, ~3.4b!

wheret50, . . . ,Nj21 andNj[N/2j . For an integerJ8 sat-
isfying 1<J8<J, we define a levelJ8 DWT of $Xt% to be
the collection of vectorsW1 ,W2 , . . . ,WJ8 ,VJ8 , whereWj
contains theNj wavelet coefficientsWj ,t , while VJ8 contains
the NJ8 scaling coefficientsVJ8,t .

The pyramid algorithm represented by Eq.~3.4! can also
be interpreted as a cascade filter bank operation. Thus
alternative~but less efficient! method for computingWj ,t is
to subsample what we would get by filteringXt with a single
filter, say hj ,l , that is the equivalent filter for the cascad
filter bank. This filter is an approximate bandpass filter w
nominal pass bandf P@1/4t j ,1/2t j #. The corresponding
equivalent scaling filtergj ,l used to create theVj ,t is a low
pass filter with nominal pass bandf P@0,1/4t j #. Figure 1
1-3
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shows the squared gain responsesHj ,8( f ) for hj ,l , j
51, . . . ,4 andG4,8 for g4,l corresponding to an eight-ta
Daubechies wavelet filterh1,l and illustrates the bandpas
and lowpass nature of the equivalent wavelet and sca
filters.

When considering the statistical properties of DWT co
ficients, it is useful to divide the wavelet and scaling coe
cients into boundary and interior coefficients. Boundary
efficients are those subject to change if the ‘‘mod’’ opera
were to be dropped in Eq.~3.4!. These boundary coefficient
must be ignored, e.g., when calculating unbiased wav
variance estimates@see Eq.~4.5! below#. The number of
boundary coefficients inWj or Vj is given by min$L j8 ,Nj%,
whereL j8[ d(L22)(1222 j ) e, anddxe is the smallest intege
that is greater than or equal tox ~for large j , L j85L22).
The remainingM j[Nj2min$L j8 ,Nj% coefficients make up
the set of interior coefficients. The boundary coefficients
the firstNj2M j coefficients inWj or Vj , while the interior
coefficients are the lastM j elements in these vectors.

A physical interpretation of the DWT based upo
Daubechies’ class of compactly supported wavelet filter
that theWj ,t measure thedifference~centered at a particula
time! between adjacent weighted averages of$Xt% at scale
t j . Large values for theWj ,t indicate that$Xt% tends to have
large variations over time scales of lengtht j . Similar to the
wavelet coefficients, the scaling coefficientsVj ,t are
weightedaveragesof $Xt% on a scale of 2t j .

Despite its popularity, the DWT has two practical limit
tions. The first is the dyadic length requirement. While t
DWT can be adapted to accommodate arbitrary length
quences via, e.g., polynomial extensions of the scaling c
ficients, selecting an appropriate number of end points to
or the order of fit is not a trivial task. Other techniques can
used, but generally involve either complicated bookkeep
or are too simple to accurately portray the dynamics of
scaling coefficients. The second limitation is a sensitivity
the DWT to where we start recording a time series; i.e.,
decimation operation makes the DWT a non-shift-invari
transform so that circularly shifting the time series can a
the entire DWT.

To overcome these limitations, we can use a nond
mated form of the DWT, known as the maximum overl
DWT ~MODWT!, that has two main advantages:~1! it
handles arbitrary length sequences inherently and~2! circu-
larly shifting the time series will result in an equivalent c
cular shift of the MODWT coefficients. Additionally, th
number of coefficients in each scale is equal to the numbe
points in the original time series. This refined slicing of t
data in combination with the approximate zero phase pr
erty of the least asymmetric filters allows us to calcul
‘‘instantaneous’’ statistical measures of the data across sc
~see Sec. IV B!.

As in the DWT, implementation of the MODWT begin
by defining the zeroth level scaling coefficients to be
original time seriesṼ0,t[Xt . Let h̃1,l[h1,l /& and g̃1,l
[g1,l /& for l 50, . . . ,L21. The MODWT wavelet coeffi-
cients W̃j ,t and corresponding scaling coefficientsṼj ,t are
formed recursively by
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W̃j ,t[ (
l 50

L21

h̃1,l Ṽ j 21,t22 j 21l modN , ~3.5a!

Ṽj ,t[ (
l 50

L21

g̃1,l Ṽ j 21,t22 j 21l modN , ~3.5b!

where t50, . . . ,N21. The collection of vectors
W̃1 ,W̃2 , . . . ,W̃J8 ,ṼJ8 is the level J8 MODWT of $Xt%,
where W̃j contains theN wavelet coefficientsW̃j ,t , while
ṼJ8 has theN scaling coefficientsṼJ8,t . The number of
boundary coefficients inW̃j or Ṽj is L̃ j5min$(2j21)(L
21),N%.

If the sample sizeN is a power of two, the MODWT
coefficients and DWT coefficients are related by

Wj ,t52 j /2W̃j ,2 j (t11)21 and Vj ,t52 j /2Ṽj ,2 j (t11)21 .
~3.6!

The DWT can thus be seen as a scaled and subsampled
sion of the MODWT. As was true for the DWT, we coul
obtain W̃j ,t by filtering Xt directly with an equivalent
MODWT wavelet filterh̃ j ,l . This filter is related to the cor-
responding DWT wavelet filter byh̃ j ,l5hj ,l /2

j /2, and a simi-
lar result holds for the scaling filters. The MODWT squar
gain functions are thus given byH̃j ,L( f )[22 jHj ,L( f ) and
G̃j ,L( f )[22 jGj ,L( f ) ~see Fig. 1!.

IV. ESTIMATING FD PARAMETERS WITH WAVELETS

Suppose that we have a time series that can be regard
a realization of a portionX5@X0 ,X1 , . . . ,XN21#T of an
FD(d,s«

2) process. In this section we discuss three schem
for estimating the parameterd via a wavelet transform ofX.
The first two schemes make use of the fact that the relat
ship between the variance of the wavelet coefficients ac
scales is dictated byd in such a manner that we can constru
a least squares estimator~LSE! of d ~Abry et al. @21,22#,
Abry and Veitch@23#, and Jensen@24# consider similar esti-
mators!. The third scheme is a wavelet-based approximat
to the maximum likelihood estimator~MLE! of d ~Wornell
and Oppenheim@25#, Wornell @26,27#, Kaplan and Kuo@28#,
McCoy and Walden@29#, and Jensen@30,31# discuss related
wavelet-based MLE’s!. The first LSE and the MLE make us
of the entire time series and hence are called ‘‘bloc
dependent’’ estimators; by contrast, the second LSE utili
only certain coefficients that are colocated in time, and
refer to it as an ‘‘instantaneous’’ estimator~this estimator
would not change if, e.g., we were to lengthen the time se
by prepending it withX21).

A. Block-dependent weighted least squares estimator

Let W̃j be the MODWT wavelet coefficients for scalet j .
Here we develop a weighted LSE~WLSE! of d based upon
an estimator of the variance of the interior coefficients inW̃j
over a range of scalest j given byJ0< j <J1 ~the selection of
J0 andJ1 is application dependent—see Sec. V!. Under the
1-4
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INERTIAL RANGE DETERMINATION FOR . . . PHYSICAL REVIEW E64 036301
assumption that the lengthL of the wavelet filter is chosen
such thatL/2> bd1 1

2 c, these interior coefficients are a po
tion of a stationary process obtained by filteringX with the
equivalent MODWT wavelet filterh̃ j ,l . Since the squared
gain function forh̃ j ,l is given byH̃j ,L( f ), the SDF for the
interior coefficients is given byH̃j ,L( f )SX( f ), and hence
their variance can be expressed as

nX
2~t j ![var$W̃j ,t%5E

21/2

1/2

H̃j ,L~ f !SX~ f !d f . ~4.1!

Using the approximation thatH̃j ,L( f ) is an ideal bandpas
filter over u f uP@1/2j 11,1/2j # and taking into consideration
the even symmetry of SDFs, an approximation to the wav
variance is given by

nX
2~t j !'2E

1/2j 11

1/2j

SX~ f !d f . ~4.2!

For fractionally differenced processes, we have

nX
2~t j !'2E

1/2j 11

1/2j s«
2

u2 sin~p f !u2d
d f . ~4.3!

When j >3, so that sinpf'pf, Eq. ~4.3! can be approxi-
mated by

nX
2~t j !'s«

2c̃~d!t j
2d21 , ~4.4!

wherec̃(d)[p22d(1222d21)/(122d). Equation~4.4! sug-
gests that a direct means of estimatingd is to fit a least
squares line to the logarithm of an estimate of the wav
variance, sayn̂X

2(t j ). The slope of the line, sayb, that best

fits ln@n̂X
2(tj)# versus ln(tj) in a least squares sense is relat

to the FD parameter byd5(b11)/2 and the power law
exponent bya52(b11).

Given a time series of lengthN, we can obtain an unbi
ased MODWT-based estimate of the wavelet variance by
fining

n̂X
2~t j ![

1

M̃ j
(

t5L̃ j 21

N21

W̃j ,t
2 , ~4.5!

where M̃ j[N2L̃ j11 is the number of MODWT interior
wavelet coefficients. As a caveat, it should be noted that
wavelet variance estimates are somewhat sensitive to th
der L of the wavelet filter used in the analysis. In particul
studies by one of us@32# have shown that there can be
significant bias in estimatingd ~and hencea) if we use the
Haar wavelet filter~for which L52). This bias can be attrib
uted to a spectral leakage phenomenon and can be atten
by increasingL. In practice the choiceL58 works well, so
we have used it in all analyses presented in this paper.

The distribution forn̂X
2(t j ) is approximately that of a ran

dom variable given byxh j

2 nX
2(t j )/h j , wherexh j

2 is a chi-

square random variable withh j degrees of freedom~Sec. 8.4
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of Ref. @32# discusses three methods for determiningh j , the
simplest of which is to seth j5max$M̃ j /2

j ,1%!. Define

Y~t j ![ ln@ n̂X
2~t j !#2cS h j

2 D1 lnS h j

2 D , ~4.6!

wherec(•••) is the digamma function. The properties of th
chi-square distribution dictate that

E$Y~t j !%5 ln@nX
2~t j !# and var$Y~t j !%5c8~h j /2!,

~4.7!

wherec8(•••) is the trigamma function. By assuming th
approximation afforded by Eq.~4.4!, we can now formulate a
linear regression modelY(t j )5g1b ln(tj)1ej , where ej

[ ln@n̂X
2(tj)/nX

2(tj)#2c(hj /2)1ln(hj /2) defines a sequence o
errors, each with zero mean and variancec8(h j /2). If we
take into account the inhomogeneity in the variance in th
errors, we arrive at the WLSE of the slope termb given by

b̂WLSE5
(v j (v j ln~t j !Y~t j !2(v j ln~t j !(v jY~t j !

(v j (v j ln2~t j !2@(v j ln~t j !#
2 ,

~4.8!

where v j[@c8(h j /2)#21, and all sums are overj
5J0 , . . . ,J1. The weighted least squares estimate of the
parameter is then

d̂WLSE5
1

2
~ b̂WLSE11!. ~4.9!

If we ignore the possible correlation between the error ter
~which we can decrease by increasingL), the variance of
b̂WLSE is given by

var$b̂WLSE%5
(v j

(v j (v j ln2~t j !2@(v j ln~t j !#
2 ,

~4.10!

and thus the variance of thed̂WLSE is given by

var$d̂WLSE%5
1

4
var$b̂WLSE%. ~4.11!

Monte Carlo studies indicate that Eq.~4.10! tends to overes-
timate the variability inb̂WLSE somewhat and thus can b
regarded as a conservative upper bound@32#.

B. Instantaneous least squares estimator

The block-dependent WLSE we formulated above d
pends upon the entire time seriesX0 , . . . ,XN21. For time
series whose statistical properties are evidently evolving o
time ~such as the aerothermal data considered in Sec. V!, the
assumptions behind this estimator are violated, and i
problematic to use this estimator on the entire times ser
If, however, we can divide the time series up into bloc
within which we can assume that the data are the realiza
of an FD process~with parameters that are now allowed
vary from one block to the next!, we can apply the WLSE on
1-5
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a block by block basis. In practice, each of the blocks w
contain the same number of points, so we can now cons
N to be the size of each block rather than the length of
entire time series. The choice ofN is usually subjective and
thus open to question, so it is useful to have some mean
verifying that a particular choice is appropriate. We can do
by formulating an ‘‘instantaneous’’ estimator that is indepe
dent ofN and that can be used to check for departures fr
statistical consistency within a proposed block size.

The idea behind an instantaneous least squares estima
d is to use only a single wavelet coefficient from each sca
i.e., we only useW̃j ,t j

2 to estimatenX
2(t j ), wheret j is the time

index of the j th level MODWT coefficient associated wit
time t in $Xt% t50

N21. The time indext j can be meaningfully
determinedonly if ~approximate! linear phase wavelet filter
are used. With this substitution, the time dependent form
Eq. ~4.9! becomes

d̂LSE,t5
DJ( ln~t j !Yt~t j !2( ln~t j !(Yt~t j !

2$DJ( ln2~t j !2@( ln~t j !#
2%

11/2,

~4.12!

whereDJ5J12J011, all sums are overj 5J0 , . . . ,J1, and

Yt~t j ![ ln~W̃j ,t j

2 !2c~1/2!2 ln~2!. ~4.13!

To decrease the variability of the estimatesDJ should ideally
be set to be as large as is feasible.

C. Block-dependent maximum likelihood estimator

Wavelet-based maximum likelihood techniques can
used in harmony with an FD model as another means
obtaining estimates for FD parameters. Using the DWT
advantageous in that it is known to decorrelate long mem
FD and related processes, forming a near independent Ga
ian sequence, and thus simplifying the statistics significa
@10#. The basic idea is to formulate the likelihood functio
for the FD parametersd and s«

2 directly in terms of the
interior DWT wavelet coefficients. LetWI be anM5( jM j
point vector containing all of the interior DWT wavelet co
efficients over a specified range of scalesj 5J0 , . . . ,J1. We
can write the exact likelihood function ford ands«

2 as

L~d,s«
2uWI ![

e2WI
TSWI

21WI /2

~2p!M /2uSWI
u1/2

, ~4.14!

whereSWI
is the covariance matrix ofWI , anduSWI

u is the

determinant ofSWI
. Note that the dependence of the like

hood function ond ands«
2 is throughSWI

alone. Under the

assumption that the wavelet coefficients inWI are approxi-
mately uncorrelated, Eq.~4.14! can be approximated by

L̃~d,s«
2uWI ![ )

j 5J0

J1

)
t50

M j 21 e2W
j ,t1L j8
2

/[2Cj (d,s«
2)]

@2pCj~d,s«
2!#1/2

, ~4.15!
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whereCj (d,s«
2) is an approximation to the variance ofWj ,t

given by the average value of the SDF in Eq.~2.1! over the
nominal pass band@1/4t j ,1/2t j # for the equivalent wavele
filter hj ,l . The estimated̂MLE of d is obtained by maximizing
L̃(d,s«

2uWI) with respect tod. Equivalently we can conside
the reduced~natural! log likelihood function

l̃ ~duWI ![M ln@s̃«
2~d!#1 (

j 5J0

J1

M j ln@Cj8~d!#, ~4.16!

whereCj8(d)[Cj (d,s«
2)/s«

2 and

s̃«
2~d![

1

M (
j 5J0

J1 1

Cj8~d!
(
t50

M j 21

Wj ,t1L
j8

2
~4.17!

@see Ref.@32# for explicit details on the development of th
reduced~natural! log likelihood function using the DWT co-
efficients#. Minimizing Eq. ~4.16!, which is a function ofd
alone, yields the maximum likelihood estimated̂MLE , after
which we can compute the corresponding estimate fors«

2 by

plugging d̂MLE into Eq. ~4.17!.
Under the assumption thatdP@21/2,L/2#, the estimator

d̂MLE for largeM is approximately Gaussian distributed wi
meand and variance

sd̂MLE

2
[2F (

j 5J0

J1

M jf j
22

1

M S (
j 5J0

J1

M jf j D 2G21

, ~4.18!

where

f j[2
4s«

2

var$Wj ,t%
E

0

1/2

Hj ,L~ f !
ln@2 sin~p f !#

@2 sin~p f !#2d
d f

'2
2 j 12

Cj8~ d̂MLE!
E

1/4t j

1/2t j ln@2 sin~p f !#

@2 sin~p f !#2d̂MLE
d f ~4.19!

~see Ref.@11# for details!. In practice, the right-hand integra
can be approximated through either~i! numerical integration
or ~ii ! a Taylor series expansion about the midband frequ
cies for levelsj 51,2 along with direct integration using
small angle assumption forj .2. The approximation above
is based upon the view that the wavelet transform forms
octave band decomposition. There is generally a large
crease in computational speed when using this bandpas
proximation with relatively small loss of accuracy.

V. ANALYSIS OF MEASURED AEROTHERMAL
TURBULENCE DATA

A. Description of the data

Here we examine a uniformly sampled 7.5 million poi
aerothermal turbulence data set~referred to as ‘‘aero’’ hence-
forth!. These data are a temperature related time series g
ered by an aircraft flying at a constant~or linearly increasing!
elevation and constant speed in clear air conditions. T
measurement system is a cold-wire probe, externally
1-6
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FIG. 2. The aero series smoothed with
MA ~10 000,0! filter.
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tached to the aircraft, that senses fluctuations in local t
perature by means of a proportional change in wire curr
The data span a total distance of 137.3 km with a spa
resolution of approximately 1.83 cm. Due to the lar
amount of data in the aero series, we will use MA(q,r )
filters ~moving average using windows of lengthq with an
overlap ofr points! for purposes of display and compariso
of results. Figure 2 shows the aero series smoothed wi
MA ~10 000,0! filter. Typical of turbulence data, the aero s
ries exhibits seemingly random fluctuations at various sc
and times. This particular set of data seems to have a ch
in some of its characteristics after about 80 km.

B. FD model validation

Figure 3 shows a DWT transform of a small segment
the aero series using Daubechies eight-tap least asymm
filters, while Fig. 4 shows the corresponding MODWT. T
relationship between the DWT and MODWT given in E
03630
-
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~3.6! can be visualized, for example, by comparing the DW
scaling coefficientsV6,t in Fig. 3 with the corresponding

MODWT coefficientsṼ6,t in Fig. 4.
Let us now consider modeling the aero series as the r

ization of an FD process. We begin by considering so
diagnostic statistics designed to help us ascertain if in fac
FD model is appropriate. If this series were an actual re
ization from an FD process, then, to a good approximati
the interior coefficients inWj should be a realization of a
white noise process@32,10#. To see if this is true, let us look
at the sample autocorrelation functions~ACF’s! for Wj , j
51, . . .,11, of a representative sample of the aero data al
with the ACF of the data itself~Fig. 5!. Under the white
noise hypothesis, standard statistical theory suggests
roughly 95% of the sample ACF values for the wavelet c
efficients at scalet j should fall between62ANj2n/Nj ,
wheren is the ACF lag, restricted here to range from 0
128 @33#. The actual percentage of coefficients that f
s-
rs.
ch
ift
te
d-
FIG. 3. DWT of aerothermal data segment u
ing Daubechies eight-tap least asymmetric filte
The number in the curly brackets next to ea
subband represents the amount of circular sh
imposed to adjust the coefficients to approxima
zero phase. A negative shift value implies an a
vance, or left circular shift, of the coefficients.
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FIG. 4. MODWT of aerothermal data seg
ment using Daubechies eight-tap least asymm
ric filters.
e
tiv
fo
e
hi

d
a

ae
o

oc
ua
lt
pr

o
r

re

he
ales
just

sed

s for
ed
f

that
e of
rve
ld,

f-
en-
within these limits is shown to the right of each plot. Th
ACF of the aero segment itself shows a persistent posi
correlation typical of an FD process; however, the ACF’s
W1 , . . . ,W5 exhibit correlation well outside the white nois
limits, evidently due to energetic deterministic patterns. T
is particularly apparent in the ACF’s forW4 andW5, which
exhibit a strong (SNR.0.5) sinusoidal beating pattern an
pure sine wave pattern, respectively. These periodicities
suspected to be due to an exogenous factor unrelated to
thermal turbulence such as a periodic autopilot correction
harmonic resonance of the probe armature, inducing a l
vibration ~and corresponding recorded temperature fluct
tion! in the cold wire probe instrumentation. As a resu
these deterministic components render an FD model inap
priate over those scales. For scalest6 andt7, the percentages
of sample ACF values falling within the limits are still half t
two thirds of the nominal value of 95%, but the values a
nonetheless quite small in magnitude (,0.08 for t6 and
,0.14 for t7); for scalest8 and above, the percentages a
03630
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e

fairly close to 95%. Thus, in keeping with an FD model, t
DWT effectively decorrelates the aero segment over sc
t6 and higher, so this ACF-based diagnostic suggests
applying the FD model over these scales.

Let us now look at a second diagnostic statistic, but ba

upon the interior MODWT coefficients inW̃j . Figure 6
shows an example of unbiased wavelet variance estimate
one 216 point block in the aero series. As can be deduc
from Eq.~4.4!, a multiscale linear pattern in a log-log plot o
the wavelet variance versust j would be consistent with the
presence of an FD process; however, this figure shows
such linear patterns appear only over a quite limited rang
scales. If we segment the log scaled wavelet variance cu
into regions over which a linear relationship appears to ho
we obtain a different FD parameterd over scalest1

2t4 , t52t7, andt82t11. These patterns change with di
ferent blocks, indicating both time varying and scale dep
dent power law behavior.
a
T

FIG. 5. Biased autocorrelation functions of
219 point segment of the aero series and of DW
coefficients forW1 , . . . ,W11.
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FIG. 6. The unbiased MODWT wavelet var

ance n̂X
2(t j ) of a representative portion of aer

using Daubechies least asymmetric eight-t
wavelet filter. The confidence intervals are bas
on a chi-square distribution assumption where t
degrees of freedom are calculated~1! using a
large sample approximation to the mean and va

ance ofn̂X
2(t j ) for scalest1 , . . . ,t5 and ~2! un-

der an assumption that the SDF is flat over t
nominal passbands in which the wavelet coef
cients are associated fort6 , . . . ,t11. See Ref.
@32# for details of wavelet variance confidenc
intervals and their development.
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Using the collection of diagnostics shown in Figs. 5 a
6, we can demonstrate the methodology described in
paper by fitting separate FD models to the aero series
two finite ranges of scales, namely,t62t8 and t92t11,
each spanning approximately three octaves of frequencie~to
simplify our discussion and accompanying figures, we do
consider triads of higher scales!.

C. Block-dependent WLSE

Using Eq.~4.9! and the relationa522d, theâWLSE were
calculated for the aero series over scalest62t8 and t9

2t11 ~Fig. 7!. For simplicity, we define the termâJ0 ,J1

WLSE to

mean the WLSE of the power law exponent over sca
tJ0 , . . . ,tJ1. The â6,8

WLSE and â9,11
WLSE were estimated ove
03630
is
er

t

s

contiguous nonoverlapping blocks of size 10 000 and 20 0
respectively. Due to the sampling variability present in t

wavelet variance estimates, we smoothed allâJ0 ,J1

WLSE with a

MA ~20,19! filter ~the choice of this particular filter is some
what arbitrary, but such smoothing is helpful in making
easier to see howa evolves in time over the two grouping

of scales!. Note the apparent wide range ofâ6,8
WLSE and

â9,11
WLSE, which roughly span values appropriate for stationa

white noise up to nonstationary random walk noise. T
clearly suggests that a single~Kolmogorov! exponent is not
an adequate description of this aerothermal turbulence
as might be incorrectly construed from conventional Fouri
based methods~see Sec. V F!. To quantify this effect we
define the inertial range percentage as
es
of

on-
FIG. 7. Theâ6,8
WLSE andâ9,11

WLSE of the aero se-
ries smoothed with a MA~20,19! filter. The con-
fidence limits are for the smoothed estimat
shown and are constant since the number
scales over which the estimates are made is c
stant.
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FIG. 8. The âLSE,t for the aero series. As a
means of comparison with Fig. 7,
MA ~10 000,0! filter was used to smooth the re
sults.
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p51

P

U~var$âJ0 ,J1 ,p%
1/22uâJ0 ,J1 ,p15/3u!,

~5.1!

whereU(•••) is the unit step function andâJ0 ,J1 ,p is the

âJ0 ,J1
at blockp in time. TheI J0 ,J1

WLSE represents the percen

age of unsmoothedâJ0 ,J1

WLSE that falls within 6var$âJ0 ,J1

WLSE%1/2

of the Kolmogorov exponent (a525/3). Using Eq.~5.1!,
the inertial range percentages for the WLSE curves w
found to beI 6,8

WLSE58% andI 9,11
WLSE545%. Most of the iner-

tial range percentage is achieved where there is a mode
coupling of â6,8

WLSE and â9,11
WLSE over ~approximately! 20–80

km.
03630
re
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D. Block independent„instantaneous… LSE

Instantaneous LSE’s ofa over scalest62t8 were calcu-
lated for the entire 7.5 million point aero series using E

~4.12!. Figure 8 shows theâ6,8
WLSE,t smoothed with a

MA ~10 000,0! filter. These estimates follow the same patte

exhibited by theâ6,8
WLSE shown in Fig. 7 but with a bit more

variability. These variabilities are not captured by the blo
dependent estimators and illustrate the importance of u
time dependent estimators for a more accurate portraya
the ~turbulence! dynamics.

E. Block-dependent MLE

Figure 9 shows the maximum likelihood estimates ofa
for the aero series smoothed with a MA~20,19! filter. These
FIG. 9. Theâ6,8
MLE andâ9,11

MLE of the aero series
smoothed with a MA~20,19! filter.
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FIG. 10. Averaged estimated SDF for aero s
ries and the theoretical SDF’s for an FD proce
and pure power law~PPL! model of fully devel-
oped Kolmogorov turbulence with an infinite in
ertial range. The FDP and PPL curves are p
posefully offset from the average SDF of ae
series so that their log-log SDF slopes may
easily compared over a broad range of scale. T
vertical divisions represent the octaves ov
which the wavelet coefficients at scalet j are
nominally associated.
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estimates are noticeably more coupled in the spatial rang
20–80 km than are theâWLSE shown in Fig. 7. Outside o
this spatial range, however, both theâ6,8

WLSE and theâ6,8
MLE

show a strong departure from Kolmogorov turbulence. T
change in process dynamics is somewhat discernible in
smoothed plot of the aero series~Fig. 2!. The resulting iner-
tial range percentages for theâMLE are I 6,8

MLE59%
('I 6,8

WLSE) and I 9,11
MLE522% ('I 9,11

WLSE/2).

F. Comparison to Fourier techniques

Finally, for contrast, let us look at a common way to an
lyze turbulence data through an estimate of its SDF. Conv
tionally, power law exponents are estimated directly from
estimate of the SDF for the data. For example, the slope
the SDF on a log-log scale provides a direct estimate ofa.
Figure 10 shows the SDF of the entire aero series, comp
by partitioning the aero series into 216 point blocks, forming
a spectral estimate for each block and then averaging
spectral estimates together. The average SDF portra
strong Kolmogorov turbulence slope ofa'25/3 over many
octaves. This global approach masks the fact that there
significant deviations from the25/3 law locally in time and
hence does not accurately portray the dynamics ofa. We
could, of course, track the power law estimate of each bl
as time unfolds, but we would then need some scheme
partitioning the frequencies into regions over which a sin
power law is applicable. If we use a partitioning scheme t
is essentially the same as what our wavelet methodol
yields, the work of McCoyet al. @29# shows that wavelet-
based estimates ofa have better mean square error prop
ties than do those based upon the SDF.

VI. DISCUSSION

In this paper we have introduced three wavelet-ba
techniques to estimate FD model parameters for aerothe
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turbulence data: block independent~instantaneous! LSE, and
block dependent WLSE and MLE. The block depende
WLSE and MLE verify the presence of time varying pow
law processes with an estimated power law exponent sp
ning from white noise to nonstationary red noise and ap
cable over finite ranges of scale. Additionally, average
block-independent LSE’s were shown to match well w
block-dependent WLSE’s. The LSE’s are an effective me
of obtaining instantaneous estimates of FD parameters~or,
through the approximationa522d, the power law expo-
nents! and are consequently very useful in detecting chan
in a system whose dynamics fluctuate rapidly as a func
of time or scale. For the block dependent WLSE, w
introduced methods for calculating the variance of FD p
rameter estimates and corresponding confidence interv
For a specified range of the FD parameterd and under a
large sample assumption, we showed that the blo

dependent MLE estimatord̂MLE is approximately Gaussian
distributed with meand, and we developed the variance
the estimator (sd̂MLE

2 ). To summarize the departure of th

estimates from~fully developed! Kolmogorov turbulence, we
introduced the inertial range percentage statistic, wh
quantifies the time and scale dependent intermittency of K
mogorov turbulence. The collection of results supports
efficacy of using stochastic FD models for aerothermal t
bulence data.
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