PHYSICAL REVIEW E, VOLUME 64, 036301

Inertial range determination for aerothermal turbulence
using fractionally differenced processes and wavelets
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A fractionally differencedFD) process is used to model aerothermal turbulence data, and the model param-
eters are estimated via wavelet techniques. Theory and results are presented for three estimators of the FD
parameter: an “instantaneous” block-independent least squares estimator and block-dependent weighted least
squares and maximum likelihood estimators. Confidence intervals are developed for the block-dependent
estimators. We show that for a majority of the aerothermal turbulence data studied herein, there is a strong
departure from the theoretical Kolmogorov turbulence over finite ranges of scale. A time-scale-dependent
inertial range statistic is developed to quantify this departure.
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[. INTRODUCTION turbulence, but there is much work yet to be done to ascer-
tain which class of models or combination thereof is the best
The last three decades have seen a rapid advance in tkguse to answer gquestions of practical importance.

mathematical modeling of turbulence data. Encouraged Most deterministic and stochastic approaches assume ho-
partly by the fact that complex, seemingly random, behaviofnogeneity in time across all scales of interest. In this paper,
can be well modeled by simple low-dimensional determinis-We discuss methods that can be used for turbulence with
tic nonlinear systems, many researchers have hypothesiz&e-varying properties. As we show below, there is strong
that turbulence can be modeled using chaos theory. Earf§vidence to support the notion that turbulence measurements
experiments in Rayleigh-Bernard thermal convectidj, Such as we consider here exhibit time varying power law
Taylor-Couette flow between cylindefg], closed loop ther- behavior over finite ranges of scale. Because of the tempo-
mosiphong 3], turbulent boundary layers for open flow over rally localized and scgle—depencjent nature of wavelet trans-
a wall [4], and surface wave propagation in a saltwater meforms, wavelet techniques provide a natural framework for
dium 5], have in the part verified this hypothesis. However,the analysis of physical phenomena that exhibit variations
there is a lack of such clear proof in other experiments and iRCross time and within a finite range of scales. This is a
data collected from uncontrolled environments such as ifleparture from techniques that assumgriori either a self-
aerothermal data. More recent efforts in turbulence modelingimilar structure across all scales in the data or stationarity in
have shown chaos theory to be useful in interpreting Ioca%aCtaI measures as a function of tinfeee Refs[6-9] for
phenomenon and flow stability. Chaos is now generally con€x@mples of wavelet-based estimation of nontime varying
sidered to have an importafytet limited role in the model- ~ turbulence model parametgrsvhile a wavelet decomposi-
ing of turbulence but not as a theory capable of describindion of a turbulence time series, sy}, is based on using
turbulent flow in detail. Even if the turbulence is viewed as aSelf-similar analysis toolgi.e., wavelets it doesnot make
deterministic event, the high degrees of freedoimension ~ ana priori assumption thafXi} is evolving in a self-similar
of the flow makes the use of chaos theory impracticalmanner. By making a careful study of each scale as it
Hence, the treatment of turbulence as a stochastic proce§¥olves in time and of the relationships of the scales to each
prevails andsimilarly to low-dimensional chaotic modglis ~ Other, we can then evaluate how reasonable it is to use mod-
well matched for handling a prevalent notion about turbu-€!S that postulate a tight coupling across scales, e.g., time-
lence, namely, that it has certain “self-similar” or “fractal” €VOIving power law processes.
properties. Loosely speaking, this property means that cer- In this article, we use recently developed wavelet tech-
tain measures of turbulence data are invariant upon rescalifygues to estimate the parameters of fractionally differenced
the data, but the measures are quite different for stochasti€ D) processes applied to aerothermal turbulence data. There
and deterministic modele.g., invariance in distributional are & number of advantages in using the discrete wavelet
properties in the former and invariance in space-filling prop-transform(DWT) on turbulence data. _
erties in the lattér Both approaches are capable of generat- Decomposition based on scaléurbulence is known to

ing simulated series that mimic some properties of actua@xhibit fluctuations at various spatial scales, and hence the
DWT is a natural analyzer.

Decorrelation of time seriesWhile turbulence data are

*Electronic address: wconstan@insightful.com typically highly correlated, their wavelet coefficients are ap-
TAlso at Applied Physics Laboratory, Box 355640, University of proximately uncorrelated10] (see Sec. IV C for details
Washington, Seattle, WA 98195-5640. This property is crucial for obtaining viable approximate
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maximum likelihood estimates of FD parameters. 05 sin(w8)[(1—28)'(7+9)
Localized time and scale conterffach wavelet coeffi- Sy ;= ,
e . e : . ' 7l (7+1-0)
cient is localized in time, allowing us to track changes in the

characteristics of a time series at a particular scale as a func- ) ) )
tion of time. where I'(- - -) is Euler's gamma functiorf16]. When §

Separation of nonlinear trends from noisghe wavelet = 1/2, we obtain a class of nonstationary processes that are
coefficients are inherently “blind”(invariany to nonlinear ~ Stationary if{X} is differencedd=|5+1/2| times, where
polynomial trend contamination in the original time seriesd'gfereg‘c'”g by d means to form the process
[11]. Si_o(D(— 1)« (e.g., we geX;—X;_, whend=1 and

As in Refs[12,13, we use wavelet techniques to analyze Xt~ 2X;—1+ X;—» whend=2), and x| is the greatest integer
intermittent deviations from Kolmogorov inertial subrangeless than or equal tx. By inspection of Eq.(2.1), an
behavior for measured temperature-based turbulence dafaD(d,02) process approximately obeys a power law pro-
We extend these works bfl) using higher order wavelet cess, i.e.Sx(f)x|f|%, at low frequencies withv=—26 (the
filters (non-Haar wavelejsto avoid spurious estimates of error in this approximation is quite small f¢f|<1/8—the
model parameterg?) refining novel block estimation tech- range of frequencies that we are interested in for the appli-
niques with weighted least squares and maximum likelihoodtation discussed below is well below 1/8 in standardized
estimators, (3) developing an instantaneougblock-  unity). For simplicity, we assume th&{X;}=0 throughout
independentleast squares estimatd¥) using simple diag- (in practice, this assumption does not lose us any generality
nostic statistics as a means of identifying anomalous detein what we discuss below because of the differencing opera-
ministic structure imposed by the measurement systertions that are embedded in wavelet filfeds should be noted
(thereby helping us to eliminate scales over which a stochaghat an FD process is formulated in discrete ti@s opposed
tic fractal model is inappropriateand(5) developing confi-  to continuous timgso that the highest observable frequency
dence intervals for the block-dependent estimators. is the Nyquist frequency (1/2 in standardized unitdse of

The remainder of this paper is organized as follows. Indiscrete time models avoids nonphysical complications that
Sec. Il we define an FD process and discuss why it hasccur with continuous time power law models that have in-
certain advantages over other models that have been usédite variance due to an insufficient decay of the SDH as
with turbulence data. In Sec. Il we define the specific wave—~ whena>—1.
let transforms used herein, including the DWT and a related For purposes of studying turbulence data, an FD process
nondecimated transforiithe “maximal overlap” DWT) that  has certain advantages over similar models such as fractional
allows us to define an “instantaneous” estimator of FD pa-Brownian motion (FBM) and fractional Gaussian noise
rameters as a function of time. In Sec. IV we discuss waveletFGN).
transform techniques for estimating the FD parameters for Unlimited power law exponent rang&oth FBM and
turbulence data—these include a block-dependent weightellGN are stochastic power law processes in that their SDF's
least squares estimatdSec. IV A), a block-independent are approximately proportional td|“ at low frequencies;
least squares estimat¢Bec. IV B) and a block-dependent however, an FBM is limited to an exponent range 08
maximum likelihood estimator(Sec. IV Q. For block- <a<-—1 while a FGN is limited to—1<a<1. An FD
dependent estimators, we also establish confidence intervgisocess is also a stochastic power law process, but it has no
for the FD parameter related to inertial range determinationsuch limitation on its exponent range and is theoretically
In Sec. V we present an analysis of the aerothermal data thatell defined fora € R.
motivated the development of the methodology discussed in Model continuity Because FBM and FGN jointly cover
previous sections. We summarize the results in Sec. VI.  power laws ranging from-3 up to 1 (adequate to model

some—but not all—turbulent phenomeni is tempting to
Il ERACTIONALLY DIFFERENCED PROCESSES select between FBM and FGN to model various turbulent
series; however, neither model actually includes the case

The FD process was originally proposed by Granger and= —1 (known as 1f, pink, or flicker noisg and there is a
Joyeux[14] and Hosking[15] as an extension to an autore- discontinuity between the FGN and FBM models close to
gressive, integrated, moving average model in which the ore=—1 at high frequencies, which can lead to problems in
der of integration is allowed to assume noninteger values. model selection. Unfortunately, many real world phenomena

Definition 2.1 Let §e R and a§>0. We say tha{X;};.;  exhibit 1f noise[17]. An FD process has no such disconti-

(2.2

is an FD(5,0§) if it has a spectral density functiaisDF) nuity. In addition, an FD process is closed under differencing
operations with regard to its SDF; i.e., an FéD(rﬁ) process
o2 that has been subjected talth order differencing operation,
Sy(f)=—"—— |f|<1/2, (2.1)  yields an FDg—d,o?) process. An FGN or FBM process
|2 sin(f)[2° subjected to the same differencing operation will not yield

the same type of process, which is another indication that an
whereo? is the innovation variance, anglis the fractionally ~ FD process is a more flexible and tractable model.
differenced parameter. Tractable SDF and ACV.9n contrast to the FBM and
When §<1/2, an FD process is stationary; whenl/2  FGN models, an FD process has tractable forms for both its
< §<1/2, its autocovariance sequen@eCVs) is given by SDF and(when stationary corresponding ACVS; i.e., the
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Heall i-|4’8(f) FIG. 1. The squared gain functions for
0 . . - . . - o Daubechies least asymmetric eight-tap wavelet
oF } filter for levels j=1,...,4. For simplicity, the
y ; sampling period was set to unity to create the
Y \ H, (M) frequency axis and establishes the Nyquist fre-
0 . . . . . o quency at 1/2. The vertical lines identify the fre-
n . quency bands with which the wavelet and scaling
H. @) /\ N filters are associated. The scaling of the left
2,8 H,.(H (right) ordinate is representative of the DWT
28 . .
0 / . \ o (MODWT) squared gain function.
2r 1
H, 40 // H, 0
1/.16 1}8 3/I16 1/4 5/I16 3;8 7/I16 1/20
expressions for both the SDF and ACVS of the FD model L2=1 /| jo—1+]
can be readily computed without having to approximate any Gy (f)=2 cos(wf) E ( | sir?!(7rf).
=0

infinite summationgthis is not true for FGI\N
Model flexibility Both autoregressive and moving average 33
components can be added to an FD process to provide mo
flexibility in modeling high frequency spectral content, lead-
ing to the well-known class of autoregressive, fractionall . . L
in?egrated, moving average modgls]. T?]e high frequency ycoeffmlents_\NM and scaling Coeff!c'entfivtijat can be as-
content of measured data is often contaminated by exogs_omated with scales of, rgspectlvelyj,=2 and 2r;, |
enous noise sources, and thus flexible modeling of this re L+ - - - 4 (these standardized scales can be converted to

gion is appropriate. The FBM and FGN models are no hysical scalgs by multiplying ther_n by the sampling time
readily amenable to such additions as they would furthe etween contlgqous observgtlons{lht}). Implementqﬂon
complicate the SDF and ACVS. of the DWT begins by defining the zeroth level scaling co-

efficients to be the original time seri&,;=X;. The levelj
wavelet coefficientsW,; ; and scaling coefficient/; ; are

rf"'—‘he wavelet and scaling filters are used in a “pyramid” al-
gorithm [20] to transform{X;} into a collection of wavelet

Consider a uniformly sampled time serigg}} ;> with N L1
divisible by 2’ for Je N. For L an even positive integer, let Wi .= ha V. 3.4
{hy,}-¢ be a Daubechiefl9] wavelet filter with squared bt |:20 e (343

gain function
L-1

L2 jp—1+1 Vj,tEZ 911Vj-1.20+1-1 modN; s (3.4b
Hy ()=2sit(=f) >, (=0

=0

cos! (arf).

(3.)  wheret=0,... N;—1 andN;=N/2'. For an integed’ sat-
isfying 1<J’'<J, we define a level’ DWT of {X;} to be
Equation(3.1) does not uniquely define a wavelet filter, and the collection of vectoraV, ,\W,, ... W; ,V;, where W,
an additional phase criterion, such as extremal or least asyngontains theN; wavelet coefficientsV; ,, while V;, contains
metric phase, must be imposed to do (sse of the latter the N, scaling coefficientd/;, ,.
criterion means that, after an appropriate shift in time, the The pyramid algorithm rebresented by E8.4) can also
wavelet filter has approximately zero phasket {g;;}Zg  be interpreted as a cascade filter bank operation. Thus an
be a scaling filter, defined by the quadrature mirror fi|teralternative(but less efficientmethod for C()mputing/VLt is
relation to subsample what we would get by filteriXg with a single
filter, say h;,, that is the equivalent filter for the cascade
gy=(—1"thy . (3.2 filter bank. This filter is an approximate bandpass filter with
nominal pass band e[1/47;,1/27;]. The corresponding
The squared gain function for a Daubechies scaling filter iequivalent scaling filteg; ; used to create th¥, ; is a low
given by pass filter with nominal pass barfd=[0,1/47;]. Figure 1

036301-3



W. CONSTANTINE, D. B. PERCIVAL, AND P. G. REINHALL PHYSICAL REVIEW B4 036301

shows the squared gain responsksg(f) for hj, j okt

=1,...,4 andg, g for g,, corresponding to an eight-tap Wj,tE|_0 N1 Vi-1t-2-1 modn s (3.53

Daubechies wavelet filteh,, and illustrates the bandpass -

and lowpass nature of the equivalent wavelet and scaling L-1

filters. V= > 91V - 1t-2/-1 modN » (3.5b
When considering the statistical properties of DWT coef- =0

fipient;, it is useful to divide th.e Wavelgatl and scaling coeffi-Where t=0,...N—1. The collection of vectors

cients into boundary and interior coefficients. Boundary co-~ ~ L

efficients are those subject to change if the “mod” operatorV1:Wa, - - . Wy ,Vyr is the level I’ MODWT of {X,

were to be dropped in E¢3.4). These boundary coefficients where W; contains theN wavelet coefficientsV; ;, while

must be ignored, e.g., when calculating unbiased wavelé¥;, has theN scaling coefficientsV, ;. The number of

variance estimat_essee_ Eq.(4.5 _beI(_Jw]. The r_1umber of boundary coefficients irﬁvj or \~/J_ is Ej:min{(zi—l)(L

boundary coefficients iW; or V; is given by mifL; ,N;}, —1)N}.

whereLj=[(L—2)(1-2"")], and[x] is the smallest integer ~|f the sample sizeN is a power of two, the MODWT

that is greater than or equal to(for large j, L{=L—2).  coefficients and DWT coefficients are related by

The remainingM;=N;—min{L; ,N;} coefficients make up - _

the set of interior coefficients. The boundary coefficients are Wj,tZZJIZWj,ZJ'(tJrl)fl and Vj,t=2”z\7j,zi(t+1)71-

the firstN;—M; coefficients inw; or V;, while the interior 3.6)

coefficients are the lad¥l; elements in these vectors.
J T T -
A phySiCE:'d int rpr tation of th DWT based upon he DWT can thus be seen as a scaled and subsampled ver

Daubechies’ class of compactly supported wavelet filters i§|on'of1he MOD_WTj As was 'true for t.he DWT, we could
that thew, , measure thelifference(centered at a particular OPtain W by filtering X, directly with an equivalent
time) between adjacent weighted averagesXf} at scale MODWT wavelet filterh; . This filter is related to the cor-
7j. Large values for th&V; , indicate that{X} tends to have responding DWT wavelet filter blg; ;= h; /212, and a simi-
large variations over time scales of length Similar to the lar result holds for the scaling filters. The MODWT squared
wavelet coefficients, the scaling coefficientg;; are gain functions are thus given lﬁ;{j L(f)EZ‘jHJ L(f) and
weightedaveragesof {X;} on a scale of 2;. % (=216, .(f) (see Fig. 1 : :

Despite its popularity, the DWT has two practical limita- “1'-* 7~ It 9
tions. The first is the dyadic length requirement. While the
DWT can be adapted to accommodate arbitrary length se-
quences via, e.g., polynomial extensions of the scaling coef- syppose that we have a time series that can be regarded as
ficients, selecting an appropriate number of end points to fig realization of a portiorX=[Xq,X;, ... Xn_1]T of an
or the order of fit is not a trivial task. Other techniques can bEFD(é,aZ) process. In this section we discuss three schemes
used, but generally involve either complicated bookkeepingy estimating the parametérvia a wavelet transform oX.
or are too simple to accurately portray the dynamics of therne first two schemes make use of the fact that the relation-
scaling coefficients. The second limitation is a sensitivity ofghiy petween the variance of the wavelet coefficients across
the DWT to where we start recording a time series; i.e., th&cgjes is dictated b in such a manner that we can construct
decimation operation makes the DWT a non-shift-invariant, |o5st squares estimatdrSE) of & (Abry et al [21,22
transform so that circularly shifting the time series can aIterAbry and Veitch[23], and Jensef24] consider similar, es’ti—
the entire DWT. o mators. The third scheme is a wavelet-based approximation

To overcome these limitations, we can use a nondeciz, he maximum likelihood estimatdMLE) of & (Wornell
mated form of the DWT, known as _the maximum ov_erlapand Oppenheirf25], Wornell[26,27], Kaplan and Kud 28],

DWT (MOD.WT)’ that has two main advantages_l) It McCoy and Walder29], and Jensef30,31]] discuss related
handles arbitrary length sequences inherently @dircu- oy elet-based MLEs The first LSE and the MLE make use
larly shifting the time series will result in an equivalent cir- of the entire time series and hence are called “block-
cular shift of the MODWT coefficients. Additionally, the Ogependent” estimators; by contrast, the second LSE utilizes

number ofhcoefflc_lenlts_m each scaleh|_s eq]gal fjo tlhe_ numfbehr nly certain coefficients that are colocated in time, and we
points in the original time series. This refined slicing of the efer 10 it as an “instantaneous” estimatéhis estimator

data in combination with the approximate zero phase propy,qiq not change if, e.g., we were to lengthen the time series
erty of the least asymmetric filters allows us to caIcuIateb

g e repending it withX_;).
“instantaneous” statistical measures of the data across scale%/ prep g V
(see Sec. IVB . .
As in the DWT, implementation of the MODWT begins A. Block-dependent weighted least squares estimator
by defining the zeroth level scaling coefficients to be the | gt \7Vj be the MODWT wavelet coefficients for scate.
original time seriesVo,=X,. Let hy;=h;;/v2 and g;;  Here we develop a weighted LSBVLSE) of & based upon

IV. ESTIMATING FD PARAMETERS WITH WAVELETS

=gy /V2 for1=0,... L—1. The MODWT wavelet coeffi- an estimator of the variance of the interior coefficient§in
cients W, ; and corresponding scaling coefficients; are  over a range of scaleg given byJy<j<J, (the selection of
formed recursively by Jo andJ; is application dependent—see Seg. Under the
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assumption that the length of the wavelet filter is chosen of Ref.[32] discusses three methods for determinipg the

such thatl./2=| 5+ 3|, these interior coefficients are a por- simplest of which is to set;j=max{l\~/lj/2j,l}). Define
tion of a stationary process obtained by filteridgwith the

equivalent MODWT wavelet filteh; ;. Since the squared
gain function forh; ; is given byﬂj,L(f), the SDF for the

interior coefficients is given wa{j,L(f)Sx(f), and hence
their variance can be expressed as

7
—|+In
2

- i
Y(r)=In[(r)] -y 3‘), 46
whereys(- - -) is the digamma function. The properties of the
chi-square distribution dictate that

Vi(rj)zvar{wj,t}:Jj’lzlzﬂj,L(f)sx(f)df. (4.2) E{Y(m)}=In[v}(7;)] and va{Y(r,»)}=</f’(m/22i1

Using the approximation thak;;  (f) is an ideal bandpass Wherey’(---) is the trigamma function. By assuming the
filter over |f|e[1/2%1,1/2] and taking into consideration @pproximation afforded by E¢4.4), we can now formulate a
the even symmetry of SDFs, an approximation to the wavelginear regression mode¥(7)=y+ gIn(r)+e, where g,
variance is given by =In[15(7)/V%(7)]— ¥ n; 12)+In(;/2) defines a sequence of
errors, each with zero mean and variangt »;/2). If we

2, v take into account the inhomogeneity in the variance in these

vx(Tj)~2 1,2,-+1SX(f)df' 4.2 errors, we arrive at the WLSE of the slope tefirgiven by

For fractionally differenced processes, we have . 2o Zo;In(7)Y(7) - Zo;In(7)Ze;Y(7)
' ) WLSE Ew]EwJ Inz(’TJ)_[EwJ |n(Tj)]2 '
2 1/2 o, (48)
vi(r)~2|  ———df. (4.3

X\1) j+1 : f 268 .

v2* 1|2 sin(7rf)| where w;=[¢'(7;/2)]"%, and all sums are overj
=Joy, - - - J1. The weighted least squares estimate of the FD

When j=3, so that sinrf~=f, Eq. (4.3) can be approxi- parameter is then
mated by

N 1.
vi(m)~alc(8)r’t, (4.4 Swise=5 (Bwiset1). (4.9
wherec(8)=m2%(1—22°"1)/(1-25). Equation(4.4) sug-  If we ignore the possible correlation between the error terms
gests that a direct means of estimatifgs to fit a least (which we can decrease by increasiny, the variance of
squares line to the logarithm of an estimate of the waveleg,, _is given by

variance, say?/f((rj). The slope of the line, sag, that best

. ~ . . 2(1)'

fits In[vi(rj)] versus Ingj) in a least squares sense is related varl & _ j

to the FD parameter by=(8+1)/2 and the power law {Buise) Sw;Zw;In*(7)—[Sw;In(7)]*’
exponent bya=—(B+1). (4.10

Given a time series of lengtN, we can obtain an unbi- . A o
ased MODWT-based estimate of the wavelet variance by de2nd thus the variance of th&y,sg is given by
fining 1
van dwsgh = Zvar{ﬁWLSE}- (4.1)

Monte Carlo studies indicate that E¢.10 tends to overes-

B _ timate the variability inBy_se Somewhat and thus can be
where M;=N-L;+1 is the number of MODWT interior regarded as a conservative upper bo[3].
wavelet coefficients. As a caveat, it should be noted that the
wavelet variance estimates are somewhat sensitive to the or- B. Instantaneous least squares estimator
derL of the wavelet filter used in the analysis. In particular,
studies by one of u§32] have shown that there can be a
significant bias in estimating (and hencex) if we use the
Haar wavelet filteffor which L=2). This bias can be attrib-
uted to a spectral leakage phenomenon and can be attenua
by increasing.. In practice the choicé =8 works well, so

N—-1
. 1 -
uX(TJ)E_M t EE 1 W2, (4.5
) =L~

The block-dependent WLSE we formulated above de-
pends upon the entire time seri¥g, ... ,Xy_1. For time
series whose statistical properties are evidently evolving over
H:me (such as the aerothermal data considered in Spah¥
assumptions behind this estimator are violated, and it is
we have used it in all analyses presented in this paper. problematic to use this_ estimator_ on the _entire t_imes series.

o ~p . . If, however, we can divide the time series up into blocks

The distribution for”X(ZTi)Z'S approximately Eh"’?t of aran-\yithin which we can assume that the data are the realization
dom variable given by’ vx(7;)/7;, wherey;, is a chi-  of an FD procesgwith parameters that are now allowed to
square random variable with; degrees of freedortBec. 8.4  vary from one block to the ne)twe can apply the WLSE on

036301-5



W. CONSTANTINE, D. B. PERCIVAL, AND P. G. REINHALL PHYSICAL REVIEW B4 036301

a block by block basis. In practice, each of the blocks willwhereC;( 5, o) is an approximation to the variance o ¢
contain the same number of points, so we can now considejiven by the average value of the SDF in E2.1) over the
N to be the size of each block rather than the length of thexominal pass banﬁ1/4rj,1/271] for the equivalent wavelet
entire time series. The choice bfis usually subjective and ey hj,. The esUmateSMLE of Sis obtalned by maX|m|zmg

s open 10 et 0,11 seil 0 have Sore M2t &, )it respec o, Equivalenty we can consider
9 P bprop ’ he reducednatura) log likelihood function

by formulating an “instantaneous” estimator that is indepen-

dent of N and that can be used to check for departures from 3
statistical consistency within a proposed block size. T(S|W)=M In[2(8)]+ > M:In[C!(8)], (4.16
The idea behind an instantaneous least squares estimate of ° =% ! '

S is to use only a single wavelet coefficient from each scale;
i.e., we only userz'tj to estlmateux(q-j), wheret; is the time

index of thejth level MODWT coefficient associated with I M-
time t in {Xt}{“:‘gl_ The time indext; can be meaningfully ol(6)= o Z JHL,
determinecbnly if (approximatg linear phase wavelet filters i=3 C{ (5 t=0

are used. With this substitution, the time dependent form of
Eq. (4.9 becomes [see Ref[32] for explicit details on the development of the

reduced(natura) log likelihood function using the DWT co-
) ASZIN(T)Y(7) = SIn(7) 2Y (7)) efficientd. Minimizing Eq. (4.16, which is a function ofé
= /2, i i ikeli imad
LSEt 2{AJEIn2(Tj)—[EIn(Tj)]2} alo.ne, yields the maximum likelihood .estlmafg,_E, after
(4.12 which we can compute the corresponding estlmaterﬁoby

plugging Sy, into Eq. (4.17).

WhereC (6)=Cj(d,0 )/0' and

(4.17

whereA ;=J,—Jo+1, all sums are over=J,, ... ,J;, and Under the assumption thate [ —1/2L/2], the estimator
SuLe for largeM is approximately Gaussian distributed with
yt(Tj)Em(\”/‘\/jZ'tj)_ (1/2)—In(2). (4.13  Mmeans and variance
Jq 21-1
To decrease the variability of the estimafiesshould ideally 5MLEE E M;p?— (2 Mj¢j) } , (4.18
be set to be as large as is feasible. i=Jo
) o . where
C. Block-dependent maximum likelihood estimator

Wavelet-based maximum likelihood techniques can be 6= fllZ In[2 sin(wf)]
used in harmony with an FD model as another means of = var{WJ J [2 sin( f)]2°
obtaining estimates for FD parameters. Using the DWT is
advantageous in that it is known to decorrglate long memory 2i+2 v2r; In[2 sin(7f)]
FD and related processes, forming a near independent Gauss- ~——— . 5 (4.19
ian sequence, and thus simplifying the statistics significantly Cj (Omie) I 147 [2 sin(arf) ] =OmLe

[10]. The basic idea is to formulate the likelihood function
for the FD parameter$s and o directly in terms of the
interior DWT wavelet coefficients. Let, be anM =X ;M;
point vector containing all of the interior DWT wavelet co-
efficients over a specified range of scajes]g, ... ,J;. We
can write the exact likelihood function fat and o as

(see Ref[11] for detailg. In practice, the right-hand integral
can be approximated through eith@rnumerical integration

or (i) a Taylor series expansion about the midband frequen-
cies for levelsj=1,2 along with direct integration using a
small angle assumption fgr>2. The approximation above

is based upon the view that the wavelet transform forms an

e—W|T2v_v1W|/2 octave band decomposition. There is generally a large in-
L(6,0%|W)= : , (4.14  crease in computational speed when using this bandpass ap-
(2m)M2 3y [ proximation with relatively small loss of accuracy.
whereX, is the covariance matrix ofV,, and|Xy | is the V. ANALYSIS OF MEASURED AEROTHERMAL
determinant off, . Note that the dependence of the likeli- TURBULENCE DATA
hood function oné and 0'5 is throughEWI alone. Under the A. Description of the data
assumption that the wavelet coefficientsih are approxi- Here we examine a uniformly sampled 7.5 million point
mately uncorrelated, Eq4.14) can be approximated by aerothermal turbulence data $egferred to as “aero” hence-
forth). These data are a temperature related time series gath-
_ Ji Mj—1 *WJZHL 112C;(8,02)] ered by an aircraft flying at a constdpor linearly increasing
£(5,a§|W|)—_H 1T o (419 elevation and constant speed in clear air conditions. The
=Jp =0 [2mC(8,07)] measurement system is a cold-wire probe, externally at-
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Time (min)
o] 1 .I52 3.|03 4.?5 6.?6 7.:58 9.?9 10.61

025 1

02r- 1

0.15 1
8
S ol :
3 o aero
g oos 1 FIG. 2. The aero series smoothed with a
g o i MA (10 000,0 filter.
©°
o -0.05 .
<

01 1

-0.15F 1

_0.05 ! I I
0 20 40

! L 1
80 100 120 140

60
Space (km)

tached to the aircraft, that senses fluctuations in local tem:3.6) can be visualized, for example, by comparing the DWT
perature by means of a proportional change in wire currentscaling coefficientsVg, in Fig. 3 with the corresponding
The da}ta span a tote}l distance of 137.3 km with a spatial;opwT coefficientsVs, in Fig. 4.

resolution of approximately 1.83 cm. Due to the large | ot ys now consider'modeling the aero series as the real-
amount of_data in the aero series, we will use_MA() ization of an FD process. We begin by considering some
filters (movmg.average using W'”dO.WS of lenggfwvith an diagnostic statistics designed to help us ascertain if in fact an
overlap ofr points for purposes of display and comparison ED model is appropriate. If this series were an actual real-
of results. Figure 2 shows the aero series smoothed with 8ation from an ED procéss, then, to a good approximation,

MA(lO QO.O’O f||ter._ Typical of turbulenc_e data, the_ aero S€- o interior coefficients inW; should be a realization of a
ries exhibits seemingly random fluctuations at various scales !

i ) ; white noise proces832,10. To see if this is true, let us look
and times. This particular set of data seems to have a chan%? . . , .
: : - the sample autocorrelation functio@sCF's) for W, j

in some of its characteristics after about 80 km.

=1,...,11, of arepresentative sample of the aero data along
with the ACF of the data itselfFig. 5. Under the white
noise hypothesis, standard statistical theory suggests that
Figure 3 shows a DWT transform of a small segment ofroughly 95% of the sample ACF values for the wavelet co-
the aero series using Daubechies eight-tap least asymmetedficients at scaler; should fall between+2N;—n/N;,
filters, while Fig. 4 shows the corresponding MODWT. Thewheren is the ACF lag, restricted here to range from 0 to
relationship between the DWT and MODWT given in Eq. 128 [33]. The actual percentage of coefficients that fall

Xy WWWWMWWWMWM

T S e——————— -

B. FD model validation

W2{-2} L e T
FIG. 3. DWT of aerothermal data segment us-
W3(-3) bbbt s e e b ing Daubechies eight-tap least asymmetric filters.
The number in the curly brackets next to each
Wai-3} subband represents the amount of circular shift
imposed to adjust the coefficients to approximate
W5(-3} W%WW”MMWT#M@”T zero phase. A negative shift value implies an ad-
| | vance, or left circular shift, of the coefficients.

we(-3) Ll L X T |I.l L. .|..|I L -"w||"| AL

vea |.|.|||||I||I||||I|||HHHHHH||I|||||||||H||||HH||||HH

0 20 40 60 80
m
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Xt WMWMWWWWW

Wi1{-4)
W2(-11}
W3{-25} NIRRT - —
Wa4{-53} v " - A " FIG. 4. MODWT of aerothermal data seg-
' ' i ' o ' ' ment using Daubechies eight-tap least asymmet-

T R v ——— b Aot ric filters.
We{-221}
Vs{-189) WM

0 20 40 60 80

m

within these limits is shown to the right of each plot. The fairly close to 95%. Thus, in keeping with an FD model, the
ACF of the aero segment itself shows a persistent positiv®WT effectively decorrelates the aero segment over scales
correlation typical of an FD process; however, the ACF's forr, and higher, so this ACF-based diagnostic suggests just
Wi, ..., Ws exhibit correlation well outside the white noise applying the FD model over these scales.

limits, evidently due to energetic deterministic patterns. This [ et us now look at a second diagnostic statistic, but based
is particularly apparent in the ACF's fak, andWs, which upon the interior MODWT coefficients ir\7vl- . Figure 6

exh|b|t_ a strong (SNR 0.5) S|nu§0|dal beating p?‘“e_rf‘.a”d shows an example of unbiased wavelet variance estimates for
pure sine wave pattern, respectively. These periodicities are

one 2® point block in the aero series. As can be deduced
suspected to be due to an exogenous factor unrelated to aero- . . .
thermal turbulence such as a periodic autopilot correction o om Eq.(4.4), a_multlscale linear pattern in a Iog—Iog_ plot of
harmonic resonance of the probe armature, inducing a loc&l'® Wavelet variance versug would be consistent with the
vibration (and corresponding recorded temperature fluctuaP'€sence of an FD process; however, this figure shows that
tion) in the cold wire probe instrumentation. As a result, such linear patterns appear only over a quite limited range of
these deterministic components render an FD model inapprécales. If we segment the log scaled wavelet variance curve
priate over those scales. For scatg@nd 7, the percentages [Nto regions over which a linear relationship appears to hold,
of sample ACF values falling within the limits are still half to we obtain a different FD parametes over scalest;

two thirds of the nominal value of 95%, but the values are— 74, 75— 77, and7g— 7;;. These patterns change with dif-
nonetheless quite small in magnitudec@.08 for 75 and  ferent blocks, indicating both time varying and scale depen-

<0.14 for 75); for scalesrg and above, the percentages aredent power law behavior.

1 1
g 0 ||||||I|||I|I|I|||||||||||||||I|||I|||II|II|||||||||I|I|I|I|||I|I||||||||||I|||II|II|II|||||U| 2 oy, \l.W...,u,.,5ﬁ.rl.Iﬁ.,.,,..,..,,,...A,..,...,,.n,,.........,.Jrl.ﬁ.,,,,..,.,,..Iﬁ.IL.IW,L 2

| -1
~ ! l * ) | ®
2 o .lruI.|_.|,..,|.,..A.ﬁ..,.-,,.I..Iul.,l.II|I..r.[.l.,r,l.,,,.l...,,.,,,I.Il.ln,ll,I|_I..II.II-,..Ill,Il.n,,.._.L ° 2 o |"*'|‘r|r'|"|"I"|l|"|"'I'|'1""l'I'l""rI|"l‘I"|"|"|"|"l"l|'|"|"'|'|"""|"r'l"|"|"|"|"|"r g

-1 -1
< ! ] 0 ®
2 o hllll|lII|'I"'""""'""I'I'|||||||||||I|I||||I'I'I""' ,,,,,,, , ""I'l'l'llf|||||||||||||'I'I"'"""""""'I'|~| b 2 o |'""‘“luu||||w--""'""""'""'--||||||m-"-'"""""""”"-lu|||||w"'“ @

-1 -1 FIG. 5. Biased autocorrelation functions of a
o ! | " o | 2 219 point segment of the aero series and of DWT
- z 2 o & coefficients forw, ... W;.

o
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o | | &2 o ! | R
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FIG. 6. The unbiased MODWT wavelet vari-
ance ;/f((rj) of a representative portion of aero
using Daubechies least asymmetric eight-tap
wavelet filter. The confidence intervals are based
on a chi-square distribution assumption where the
degrees of freedom are calculaté) using a
large sample approximation to the mean and vari-
ance off/i(rj) for scalesrq, ...,ms and(2) un-
der an assumption that the SDF is flat over the
nominal passbands in which the wavelet coeffi-
cients are associated fot, ...,7;. See Ref.
[32] for details of wavelet variance confidence
intervals and their development.

" T N T
10° 10
%, (m)

Using the collection of diagnostics shown in Figs. 5 andcontiguous nonoverlapping blocks of size 10 000 and 20 000,
6, we can demonstrate the methodology described in thieespectively. Due to the sampling variability present in the

paper by fitting separate FD models to the aero series ovgfayelet variance estimates, we smoothedagt-SF with a
0~1

two finite ranges of scales, namely;— g and 79— 71, ) . . . 0L
each spanning approximately three octaves of frequeltties MA (20,19 filter (the choice of th|_s pgrueular f||t_er IS some-
but such smoothing is helpful in making it

simplify our discussion and accompanying figures, we do noyvhat arbitrary,

consider triads of higher scales easier to see how evolves in time over the two groupings
of scales. Note the apparent wide range of¢s>" and
C. Block-dependent WLSE ag'itt, which roughly span values appropriate for stationary

Using Eq.(4.9) and the relationy= — 2, the ayy, ¢ Were \é\:ggﬁ n;)lljse euSFt’St?harl[ogsstﬁt;g;%Jagi)?bme)\:v%lgeﬂ?'isseh;hls
calculated for the aero series over scalgs g and g y sugg o . 9 b
B Ei For simplicity. we define the term-SE g 2" adequate description of this aerothermal turbulence data
™1 (Fig. 7). Fo plicity, Jood1 as might be incorrectly construed from conventional Fourier-

mean the WLSE of the power law exponent over scalegased method¢see Sec. V| To quantify this effect we
~ WLSE ~ WLSE

Tio, - - T31- The agg™ and ag ;- were estimated over define the inertial range percentage as
Time (min)

20 1.39 278 417 5.56 6.94 833 9.72 1111
T T T T T T T

— T - T 0.59 m - 2.35 m (smoothed)
—_ Ty T 4.69 m - 18.77 m (smoothed)

FIG. 7. Theags>F and ag'i7F of the aero se-
ries smoothed with a M&0,19 filter. The con-
fidence limits are for the smoothed estimates
shown and are constant since the number of

White

Pink scales over which the estimates are made is con-
stant.
Kolmogorov
Walk
25 4
_3 1 1 1 1 1 1 1
0 18.33 36.67 55 73.33 91.67 110 128.33 146.67

Space (km)
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Time (min)
20 1 .?9 2'.78 4'.1 7 5.l56 6'.94 8.?3 9.I72 11.11
151 Ty Tg 059 m-235m _

White FIG. 8. Thea, g, for the aero series. As a

means of comparison with Fig. 7, a
MA (10 000,0 filter was used to smooth the re-
Pink sults.

0CWLSE,’(

Kolmogorov
Walk
-251 E
3 L L L L ! L L
0 18.33 36.67 55 73.33 91.67 110 128.33 14667

Space (km)

D. Block independent(instantaneoug LSE

100 < . -
L3g.9,= P pgl U(Var{“Jo:lep} _|“Jow‘1vp+5/3|)’ Instantaneous LSE’s af over scalesg— 7 were calcu-
(5.2 lated for the entire 7.5 million point aero series using Eq.
(4.12. Figure 8 shows theags™" smoothed with a
. . . o . MA (10 000,09 filter. These estimates follow the same pattern
whereU(- - -) is the unit step function and; ; , is the o ~ WLSE L . ,
WLSE exhibited by theag g~ shown in Fig. 7 but with a bit more
13,.3, represents the percent- \4riapility. These variabilities are not captured by the block
age of unsmoothe&‘J"(’)EflE that falls within tvar{&‘J"(’)EJle}l/z dependent estimators and illustrate the importance of using
of the Kolmogorov exponenta= —5/3). Using Eq.(5.1), time dependent estim_ators for a more accurate portrayal of
the inertial range percentages for the WLSE curves weréhe (turbulencg dynamics.
found to bel {'s>*=8% andlg’; "= 45%. Most of the iner-

ay, 5, at blockp in time. The

tial range percentage is achieved where there is a moderate E. Block-dependent MLE

coupling of ags>" and a1y~ over (approximately 20—80 Figure 9 shows the maximum likelihood estimatesaof

km. for the aero series smoothed with a 28,19 filter. These
Time (min)

20 1.89 2.78 417 5.56 6.94 8.33 9.72 1111
T T T T T T T

— T - T 0.59 m - 2.35 m (smoothed)
—_ Ty T 4.69 m - 18.77 m (smoothed)

White

FIG. 9. Theays- andagy s of the aero series
smoothed with a MA20,19 filter.
Pink

Kolmogorov
Walk
-251 1
3 L L L L ! L L
0 18.33 36.67 55 73.33 91.67 110 128.33 14667

Space (km)
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FIG. 10. Averaged estimated SDF for aero se-
ries and the theoretical SDF’s for an FD process
and pure power lawPPL) model of fully devel-
oped Kolmogorov turbulence with an infinite in-

Sl ] ertial range. The FDP and PPL curves are pur-
v 10
: : ' : : : : : posefully offset from the average SDF of aero
s : § § § : : : : _ ] series so that their log-log SDF slopes may be
f : : f : f : f : easily compared over a broad range of scale. The
1L : : : : § . : § : v ] vertical divisions represent the octaves over
§ : : : § § } § § : which the wavelet coefficients at scale are
10°; LN e nominally associated.
107H - - aéro (ave;age) 4
— FDP (5 =5/6)
— PPL(x=-53) |

107 - 14 . . L, . . L
10 10

estimates are noticeably more coupled in the spatial range dfirbulence data: block independéintstantaneoys.SE, and
20—80 km than are they, sg shown in Fig. 7. Outside of block dependent WLSE and MLE. The block dependent
this spatial range, however, both tad'SSE and the aYLE WLSE and MLE verify the presence of time varying power
show a strong departure from Kolmogorov turbulence. Thid@W Processes with an estimated power law exponent span-

change in process dynamics is somewhat discernible in th@ing from white noise to nonstationary red noise and appli-

smoothed plot of the aero serié&g. 2). The resulting iner- cable overfinite ranges of scale. Additionally, averaged
tial range percentages for therye are |2A§E:9% block-independent LSE’s were shown to match well with

~IWLSE) and |ME= 2205 (~|WLSE/D). bIock-d_epencjent WLSE'’s. The LSE’s are an effective means
(=165™) 911 6 (=lo1r™72) of obtaining instantaneous estimates of FD parameiars
through the approximatiom=—24, the power law expo-
' nentg and are consequently very useful in detecting changes
Finally, for contrast, let us look at a common way o ana-in a system whose dynamics fluctuate rapidly as a function
lyze turbulence data through an estimate of its SDF. Converpf time or scale. For the block dependent WLSE, we
tionally, power law exponents are estimated directly from anntroduced methods for calculating the variance of FD pa-
estimate of the SDF for the data. For example, the slope ofymeter estimates and corresponding confidence intervals.
the SDF on a log-log scale provides a direct estimatecof g4, 4 specified range of the FD parameteand under a
Figure 10 shows the SDF of the entire aero series, compute]%{rge sample assumption, we showed that the block-

by partitioning the aero series intd®point blocks, forming o _ .
a spectral estimate for each block and then averaging thi€Pendent MLE estimatofy, e is approximately Gaussian

spectral estimates together. The average SDF portrays d&stribuj[ed with zmearﬁ, and we dgveloped the variance of
strong Kolmogorov turbulence slope af< —5/3 over many ~ the estimator ¢ ). To summarize the departure of the

octaves. This global approach masks the fact that there agtimates fronfully developed Kolmogorov turbulence, we

significant deviations from the 5/3 law locally in_time and introduced the inertial range percentage statistic, which
hence does not accurately portray the dynamicstoiVe  qyantifies the time and scale dependent intermittency of Kol-
could, of course, track the power law estimate of each block,,qorov turbulence. The collection of results supports the

as time unfolds, but we would then need some scheme fQLica ey of using stochastic FD models for aerothermal tur-
partitioning the frequencies into regions over which a smgltaDulence data

power law is applicable. If we use a partitioning scheme that
is essentially the same as what our wavelet methodology
yields, the work of McCoyet al. [29] shows that wavelet-
based estimates af have better mean square error proper-
ties than do those based upon the SDF.

F. Comparison to Fourier techniques
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