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Multistability in dynamical systems induced by weak periodic perturbations
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~Received 7 December 2000; revised manuscript received 16 May 2001; published 30 August 2001!

It is shown that weak resonant perturbations at subharmonic frequencies can induce multistability in a wide
class of nonlinear systems, which display the period-doubling route into chaos or possess isolated subharmonic
branches. The number of attractors induced depends on the subharmonic frequency, amplitude, and phase of
periodic perturbations, as well as an initial dynamical state of nonlinear systems. Experimental and numerical
evidences are given on the basis of a loss-modulated CO2 laser.
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Nonlinear dissipative systems being in a certain range
parameters, can possess such a fundamental property as
tistability, which means a coexistence of several attrac
for a fixed set of system parameters. The numerous exp
mental examples include electric circuits@1–3#, lasers@4,5#,
mechanical systems@3,6#, etc. As a rule, such systems a
low-dimensional ones, therefore only a small number of
tractors can exist simultaneously. Besides, the range of
rameters where multistability occurs, can be rather restric
and not always accessible in experimental conditions.
instance, a coexistence of four attractors in a loss-modul
CO2 laser was experimentally found in the narrow ranges
both the modulation amplitude and the modulation freque
@5#. Potentially, this property can be important for some s
cific applications, for instance as dynamical memory@7,8#. In
order to induce multistability, a delayed feedback@7,8# or
coupling nonlinear systems to arrays@9# can be used, which
lead to an increase of the system dimensionality and, a
result, to the appearance of multistability.

In this paper, a simple method for obtaining multistabil
is being demonstrated, which can be achieved in a wide c
of nonlinear systems displaying the period-doubling ro
into chaos and/or possessing isolated subharmonic bran
It is shown here that weak perturbations at the frequen
f d /n ~where f d is the main driving frequency,n
53,4,8,16, . . . ) caninduce up ton coexisting attractors un
der an appropriate choice of the bifurcation parameter
well as the amplitude and the phase of the resonant pe
bation. Such a perturbation increases the dimensionalit
the system by one and therefore can lead to the appear
of multistability. The experimental and numerical evidenc
are given here on the basis of a loss-modulated CO2 laser. In
the broad sense a loss-modulated CO2 laser can be classifie
as a nonautonomous system with a Toda potential@10# and
therefore can serve as one of the experimental realization
periodically forced asymmetric nonlinear oscillators.

A particular case of multistability, bistability induced b
the resonant perturbation at the first subharmonic freque
was numerically and experimentally studied on the basis
loss-modulated CO2 laser @11,12#. Similar results were ob-
tained later in a fiber laser pumped with two modulati
frequencies@13#. The appearance of bistability was theore
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cally found also in the quadratic map with additive period
forcing with a period 2@14#, where this effect was studied i
great detail. Besides, the assumption was made there tha
additive periodic forcing with a period larger than 2 can i
duce multistability in the quadratic map. The logistic map
known to be the paradigm in studying the route into cha
via period-doubling bifurcations. From this point of view
experimental and numerical evidence of the assump
made on the basis of this map in the real physical system
a matter of great importance.

Numerical simulation. Multistability was studied numeri-
cally with the help of bifurcation diagrams in the presence
periodic perturbations. The simple rate-equation laser mo
was used@4#:

du

dt
5t21~y2k!u, ~1!

dy

dt
5~y02y!g2uy,

where

k5k01kd cos~2p f dt !1kp cos~2p f dt/n1w!. ~2!

Hereu is proportional to the radiation density,y andy0 are
the gain and the unsaturated gain in the active medium,
spectively,t is a transit time of light in the cavity,g is the
gain decay rate,k is the total cavity losses,k0 is the constant
part of the losses,kd is the driving amplitude,kp is the per-
turbation amplitude,f d is the driving frequency,w is the
perturbation phase, andn53,4,8,16. The following fixed pa-
rameters were used throughout the calculations:t53.5
31029 s, g51.9783105 s21, y050.175, andk050.1731.
For all cases of the numerical simulation, the relaxation
cillation frequency of the laser wasf ro550 kHz. The param-
eterskd andkp were varied in the numerical simulations. I
what follows, the normalized bifurcation parameterm and
perturbation amplitudee were used~defined asm5kd /k1/2
and e5kp /k1/2, respectively, wherek1/2 is the first period-
doubling threshold in the absence of the resonant perio
perturbation!.

First, we shall consider the effect of the resonant per
bation with a frequencyf d/4 @15#. In the absence of the per
turbation the system displays the usual route into chaos
©2001 The American Physical Society23-1
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period-doubling bifurcations. No other attractors were fou
up to m'3.065 ~for this case,k1/2'2.47831023), where
period-3 branch appears by a saddle node bifurcation. In
presence of the perturbation atf d/4, as the bifurcation param
eter increases, new attractors appear in succession in the
tems, which are shown in the bifurcation diagram in Fig.
This diagram was obtained by a superimposition of sev
ones generated with randomly distributed initial conditio
In order to simplify the diagram, only one of four subban
of each new attractor is shown. This means that every s
band corresponds to one attractor. For the given perturba
amplitude (e'3.5331023) the second attractor appears
m2'1.006, directly above the first original period-doublin
threshold via a saddle node bifurcation. This new isola
branch destroys the first period-doubling bifurcation~Fig. 1!
which is typical for imperfect bifurcations@16#. A similar
situation takes place above the second period-doub
threshold where, for instance, the third attractor appear
m3'2.407 and the fourth atm4'2.59, destroying the secon
period-doubling bifurcation. This means that the perio
perturbation atf d/4 acts as an imperfection in the proble
for the first and second period-doubling bifurcation poin
@17#. It is interesting to note, at the same time this pertur
tion also destroys such a global bifurcation as the ba
merging crisis, inducing three boundary crises~onsets of
which are located atmb1'3.073, mb2'3.175, andmb3
'3.527, Fig. 1! and three interior crises (m i1'3.2, m i2
'3.283, andm i3'3.634, shown in Fig. 1 by arrows! instead
of two last band-merging crises. Thus, the presence of w
resonant perturbations induces other types of global bifu
tions such as dangerous and explosive bifurcations in p
of safe bifurcations~in accordance with a classification give
in Ref. @18#!. All new attractors appear, bifurcate, and disa
pear at different values of the bifurcation parameter. The
fore, as m increases, the number of coexisting attract
passes in series from 1 up to 4 and then decreases aga
turn to one. In the region of 2.59&Dm (4)&3.073, four
attractors exist simultaneously, each of which can be at
ferent periodicity.

FIG. 1. The numerical bifurcation diagram for the laser vsm in
the presence of the resonant perturbation at the frequencyf d/4
showing a coexistence of four attractors, which are denoted by
numbers 1, 2, 3, and 4 (f d5100 kHz, e53.5331023, k1/2

52.47831023, w50).
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A more complicated picture is in the presence of the p
turbation at the frequencyf d/8, where fore'7.06231024 a
coexistence of eight attractors in the range of the bifurcat
parameter 2.9504&Dm (8)&3.0264 was found. Figure 2~a!
shows how the number of attractorsN depends on the bifur-
cation parameterm. As m increases,N passes from 1 to 8 and
then decreases to 1. Generally, all attractors appear and
appear but not simultaneously. Though, for instance, after
second and third bifurcation points, three pairs of attract
appear for only slightly different values ofm. As perturba-
tion amplitudee increases, the critical points associated w
new attractors are shifted to different values ofm, which
results in a successive disappearance of attractors. Fo
illustration, the dependence ofN on e is shown in Fig. 2~b!.

Based on the numerical results one can generalize
effect of a periodic perturbation at the frequencyf d /n
~wheren52k, k51,2,3,4, . . . ) on theperiod-doubled sys-
tems. This perturbation destroys firstk period-doubling bifur-
cations and correspondinglyk last band-merging crises giv
ing rise to the appearance of up ton coexisting attractors.
This effect is a nonthreshold one. Even extremely weak re
nant perturbations induce multistable states, though wit
very small difference between them. For small enough p
turbation amplitudee the number of coexisting attractor
passes in series from 1 up ton and decreases through boun
ary crises again in turn to one as the bifurcation param
increases. The lowest periodicity associated with each att
tor is nT (T51/f d) because of the effect of the perturbatio
at the frequencyf d /n. Each attractor undergoes the rou
into chaos via period-doubling bifurcations. With increasi
n, the range of the bifurcation parameterDm (n), where the
maximal numbern of coexisting attractors occurs, rapidl
decreases and is bounded by the range ofm between thekth
period-doubling bifurcation point and the critical point for 2k

subbands merging crisis. Asn increases, the perturbation am
plitudee needs to be decreased in order to observe the m
mal number of coexisting attractors. All coexisting attracto
appear, bifurcate, and disappear at different values of
bifurcation parameter. An increase ofe for givenm results in

e
FIG. 2. The number of attractorsN induced by the perturbation

at f d/8 vs ~a! m (e'7.0631024, f d5100 kHz, k1/2'2.478
31023, w50) and~b! e (m'3).
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a decrease of the maximal number of coexisting attractor
illustrated in Fig. 2~b! for the case of the perturbation atf d/8
@19#. As in the case of bistability induced by the perturbati
at f d/2 @11–13#, the phase of the resonant perturbation h
plays an important role in obtaining multistability, in th
sense that a change in the phase is similar to a change i
perturbation amplitude. This can lead to a change of
number of new coexisting attractors and the overlapping
different dynamical states associated with them.

A common feature of periodically driven nonlinear sy
tems along with a period-doubling scenario to chaos is
existence ofnT subharmonic isolated branches~so-called
isolas! which result from saddle node bifurcations of a peri
n. Therefore, we shall consider the effect of the perturbat
at the frequencyf d /n on them by the example of period-
branch. This situation is different from the previous ca
where resonant perturbations act on the period-doubling
furcations. Here the effect of resonant perturbations
saddle node bifurcations inherent in the system is conside
The laser parameters were chosen so that two attracto
period-1 and period-3 can coexist in the absence of the p
odic perturbation. The period-3 branch appears by a sa
node bifurcation atm'2.308 ~in this case k1/254.76
31023). Figure 3 shows a bifurcation diagram of the laser
the presence of periodic perturbation at the frequencyf d/3.
As in previous cases, each subband on the figure corresp
to one attractor. One can see that the periodic perturba
splits primary period-3 branches into three branches of
same period 3, which appear via saddle node bifurcation
different values ofm (m1

(3)'2.236, m2
(3)'2.310, andm3

(3)

'2.388).
Experimental results.The experimental setup was simila

to one that was described in Ref.@12#. A CO2 laser with an
acousto-optic modulator inserted in the laser cavity was u
@12#. Two sine-wave electric signals from oscillators we
applied to the modulator providing the time-dependent ca
losses. The driving signalVd(t)5Vd cos(2pfdt) had the fre-
quencyf d and the amplitudeVd(t). In what follows,Vd can
be considered as a control or bifurcation parameter. The
turbation signalVp(t)5Vp cos(2pfpt1w) had the frequency

FIG. 3. The numerical bifurcation diagram for the laser vsm in
the presence of the resonant perturbation atf d/3 showing the split-
ting of the period-3 attractor into three ones which are denoted
the numbers 1, 2, and 3 (e51.83831023, f d5120 kHz, k1/2

54.7831023, w50).
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f d /n (n53,4, . . . ), theamplitudeVp and the phasew. The
laser responses were detected with a CdHgTe detector a
digital oscilloscope coupled to PC. The technique of stro
scopic data recording with a sampling period ofT (T
51/f d) was used. For finding new attractors, the techniq
of a short pulse of loss perturbations was used@12#.

The experimental results have confirmed the main con
sions made above. First of all, the appearance of bistab
induced by weak periodic signal at the frequencyf d /n (n
52k, k51,2,3,4) in the parameter range directly above
first unperturbed period doubling threshold was found. T
means that bistability in period-doubled systems can be
duced by any perturbations that are resonant to the m
driving frequency, even with very low frequency.

The appearance of four attractors induced by the per
bation atf d/4 is shown in Fig. 4 where experimental switc
ings between new attractors are demonstrated. They ap
in the system instead of a primary 4T limit cycle in the ran
of the bifurcation parameter above the second peri
doubling threshold. One can see that two attractors have
same 4T periodicity but different amplitudes, one attracto
a 8T limit cycle and one is in a chaotic state. In the abse
of the periodic perturbation only one attractor was found
the given laser parameters.

The splitting of the period-3 branch, induced by period
signal at the frequencyf d/3 in the bistability domain between
period-1 and period-3 branches, is shown in Fig. 5, wh
experimental switchings between new attractors are sho

y

FIG. 4. Experimental stroboscopic laser responses show
switchings between four coexisting attractors induced by the re
nant perturbation atf d/4 ( f d5100 kHz, w'0). The action of the
pulsed perturbation is shown by the arrow.

FIG. 5. Experimental stroboscopic laser responses show
switchings between new coexisting attractors induced by the r
nant perturbation atf d/3 in the bistability domain of period-1 and
period-3 branches (f d5141 kHz, w'0). For all cases the pulse
loss perturbation influences att51000.
3-3
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In the absence of the periodic perturbation, two coexist
2T and 6T limit cycles belonging to period-1 and period
branches, respectively, were found@Fig. 5~a!#. In the pres-
ence of the perturbation, the 6T limit cycle splits into 3 a
tractors, which are in different dynamical states~3T, 6T, and
chaos!. Thus this means the appearance of three attracto
the system in place of the original period-3 attractor.

In summary, it was shown that weak resonant perio
perturbations can noticeably increase the complexity
pl

03622
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driven nonlinear systems by inducing a large number of
existing attractors. Since the period-doubling cascade and
existence of isolas are universal features of nonlinear
namical systems, one can expect that the results prese
here can be applicable to a large variety of such system
different fields. The main advantage of the conside
method is its simplicity and the possibility to induce bist
bility and multistability in a wide range of modulation fre
quencies and the bifurcation parameter.
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