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Multistability in dynamical systems induced by weak periodic perturbations
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It is shown that weak resonant perturbations at subharmonic frequencies can induce multistability in a wide
class of nonlinear systems, which display the period-doubling route into chaos or possess isolated subharmonic
branches. The number of attractors induced depends on the subharmonic frequency, amplitude, and phase of
periodic perturbations, as well as an initial dynamical state of nonlinear systems. Experimental and numerical
evidences are given on the basis of a loss-modulatesl I@%@r.
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Nonlinear dissipative systems being in a certain range otally found also in the quadratic map with additive periodic
parameters, can possess such a fundamental property as migiccing with a period 414], where this effect was studied in
tistability, which means a coexistence of several attractorgreat detail. Besides, the assumption was made there that the
for a fixed set of system parameters. The numerous experpdditive periodic forcing with a period larger than 2 can in-
mental examples include electric circuts-3], laserg4,5], duce multistability in the quadratic map. The logistic map is
mechanical system3,6], etc. As a rule, such systems are known to be the paradigm in studying the route into chaos
low-dimensional ones, therefore only a small number of atVia period-doubling bifurcations. From this point of view,
tractors can exist simultaneously. Besides, the range of pg&xPerimental and numerical evidence of the assumption

rameters where multistability occurs, can be rather restricted'2de on the basis of this map in the real physical system, are
and not always accessible in experimental conditions. Foft Matter of great importance. , ,
d Numerical simulationMultistability was studied numeri-

instance, a coexistence of four attractors in a loss-modulate ! . . . ;
CO, laser was experimentally found in the narrow ranges ofcally with the help of bifurcation diagrams in the presence of

both the modulation amplitude and the modulation frequenc eriodic perturbations. The simple rate-equation laser model

[5]. Potentially, this property can be important for some speVas used4J:

cific applications, for instance as dynamical memahyg]. In du

order to induce multistability, a delayed feedbddk8] or — =7 Yy—ku, (1)
coupling nonlinear systems to arra\® can be used, which dt

lead to an increase of the system dimensionality and, as a
result, to the appearance of multistability.

In this paper, a simple method for obtaining multistability
is being demonstrated, which can be achieved in a wide class
of nonlinear systems displaying the period-doubling routewhere
into chaos and/or possessing isolated subharmonic branches.
It is shown here that weak perturbations at the frequencies k=kotkycog2mfyt) +kcod2mfst/nte).  (2)
fg/n (where f4 is the main driving frequency,n
=3,4,8,16. ..) caninduce up ton coexisting attractors un- . I : X
der an appropriate choice of the bifurcation parameter agwe gan and_ the unsa_ltu_rated gain In the active m_edlum, re-
well as the amplitude and the phase of the resonant pertu?peCt'Vely’T is a transit time of light in the cavityy is the

bation. Such a perturbation increases the dimensionality ¢#&in decay ratek s the total cavity losses, is the constant

the system by one and therefore can lead to the appearan@@'t Of the lossesk, is the driving amplitudek,, is the per-

of multistability. The experimental and numerical evidencesurbation amplitudef, is the driving frequencyg is the

are given here on the basis of a loss-modulated B€er. In ~ Perturbation phase, amt-3,4,8,16. The following fixed pa-
the broad sense a loss-modulated,d&3er can be classified rame_tgrs were used thfciughout the calculations:3.5

as a nonautonomous system with a Toda potefitig) and <10 °S, y=1.978X 10°s , ¥0=0.175, andk,=0.1731.
therefore can serve as one of the experimental realizations 6" &ll cases of the numerical simulation, the relaxation os-
periodically forced asymmetric nonlinear oscillators. cillation frequency of the laser wds,=50 kHz. The param-

A particular case of multistability, bistability induced by ©€t€rskq andk, were varied in the numerical simulations. In
the resonant perturbation at the first subharmonic frequency¥hat follows, the normalized bifurcation paramejerand
was numerically and experimentally studied on the basis of ®erturbation amplitude were useddefined asu=Kkq/ky
loss-modulated CQlaser[11,12. Similar results were ob- and e=Kky/ky,, respectively, wherds,, is the first period-
tained later in a fiber laser pumped with two modulationdoubling threshold in the absence of the resonant periodic

frequencieg13]. The appearance of bistability was theoreti- Perturbation. _
First, we shall consider the effect of the resonant pertur-

bation with a frequency/4 [15]. In the absence of the per-
*Electronic address: vnc@dragon.bas-net.by turbation the system displays the usual route into chaos via

dy
ac - Yo y)y—uy,

Hereu is proportional to the radiation density,andy, are
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FIG. 1. The numerical bifurcation diagram for the laserw

the presence of the resonant perturbation at the frequégidy FIG. 2. The number of attractofs induced by the perturbation

showing a coexistence of four attractors, which are denoted by that f4/8 vs (@ u (e~7.06<10°*, f4=100 kHz, k;,~2.478

numbers 1, 2, 3, and 4f{=100 kHz, e=3.53x1073, ky,  X107% ¢=0) and(b) e (u~3).

=2.478<10°3, ¢=0).

period-doubling bifurcations. No other attractors were found A more complicated picture is in the presence of the per-
up to u~3.065 (for this caseky,~2.478<10 %), where turbation at the frequenchy/8, where fore~7.062<10 % a
period-3 branch appears by a saddle node bifurcation. In theoexistence of eight attractors in the range of the bifurcation
presence of the perturbationfat4, as the bifurcation param- parameter 2.9504A 1®=<3.0264 was found. Figure(®

eter increases, new attractors appear in succession in the sggows how the number of attractdisdepends on the bifur-
tems, which are shown in the bifurcation diagram in Fig. 1.cation parameter. As u increasesN passes from 1 to 8 and
This diagram was obtained by a superimposition of severahen decreases to 1. Generally, all attractors appear and dis-
ones generated with randomly distributed initial conditions.appear but not simultaneously. Though, for instance, after the
In order to simplify the diagram, only one of four subbandssecond and third bifurcation points, three pairs of attractors
of each new attractor is shown. This means that every suk&ppear for only slightly different values qf. As perturba-
band corresponds to one attractor. For the given perturbatioiion amplitudee increases, the critical points associated with
amplitude €~3.53x10 %) the second attractor appears atnew attractors are shifted to different values @f which
n,~1.006, directly above the first original period-doubling results in a successive disappearance of attractors. For an
threshold via a saddle node bifurcation. This new isolatedllustration, the dependence bfon € is shown in Fig. 2b).
branch destroys the first period-doubling bifurcatiig. 1) Based on the numerical results one can generalize the
which is typical for imperfect bifurcation§l6]. A similar  effect of a periodic perturbation at the frequenty/n
situation takes place above the second period-doublingvheren=2% k=1,2,3,4...) on theperiod-doubled sys-
threshold where, for instance, the third attractor appears dems. This perturbation destroys fikgperiod-doubling bifur-
us~2.407 and the fourth ai,~2.59, destroying the second cations and correspondingkylast band-merging crises giv-
period-doubling bifurcation. This means that the periodicing rise to the appearance of up mocoexisting attractors.
perturbation atf 4/4 acts as an imperfection in the problem This effect is a nonthreshold one. Even extremely weak reso-
for the first and second period-doubling bifurcation pointsnant perturbations induce multistable states, though with a
[17]. It is interesting to note, at the same time this perturbavery small difference between them. For small enough per-
tion also destroys such a global bifurcation as the bandturbation amplitudee the number of coexisting attractors
merging crisis, inducing three boundary cris@msets of passes in series from 1 upmicand decreases through bound-
which are located atup;~3.073, u,,~3.175, andu,3  ary crises again in turn to one as the bifurcation parameter
~3.527, Fig. 1 and three interior crisesu{;~3.2, u;, increases. The lowest periodicity associated with each attrac-
~3.283, andu;3~3.634, shown in Fig. 1 by arrowinstead torisnT (T=1/fy) because of the effect of the perturbation
of two last band-merging crises. Thus, the presence of wea#t the frequencyfy/n. Each attractor undergoes the route
resonant perturbations induces other types of global bifurcanto chaos via period-doubling bifurcations. With increasing
tions such as dangerous and explosive bifurcations in place the range of the bifurcation parametep ", where the

of safe bifurcationgin accordance with a classification given maximal numbem of coexisting attractors occurs, rapidly

in Ref.[18]). All new attractors appear, bifurcate, and disap-decreases and is bounded by the rangg tetween thekth

pear at different values of the bifurcation parameter. Thereperiod-doubling bifurcation point and the critical point fof 2
fore, asu increases, the number of coexisting attractorssubbands merging crisis. Asincreases, the perturbation am-
passes in series from 1 up to 4 and then decreases againffitude e needs to be decreased in order to observe the maxi-
turn to one. In the region of 2.59Au(“=<3.073, four mal number of coexisting attractors. All coexisting attractors
attractors exist simultaneously, each of which can be at difappear, bifurcate, and disappear at different values of the
ferent periodicity. bifurcation parameter. An increase ©for given w results in
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FIG. 4. Experimental stroboscopic laser responses showing
switchings between four coexisting attractors induced by the reso-
5 . s ‘ nant perturbation aty/4 (f4=2100 kHz, ¢~0). The action of the
0.25 1.25 2.25 3.25 4.25 pulsed perturbation is shown by the arrow.
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FIG. 3. The numerical bifurcation diagram for the laserw Ifd/n (n=34,...), thegmplltuge\{phan(éér:_? _ﬁ’_ha;e" The q
the presence of the resonant perturbatiofy& showing the split- aser responses were detected with a gTe detector and a

ting of the period-3 attractor into three ones which are denoted b)gﬁgital oscilloscope coupled to PC. The technique of strobo-

the numbers 1, 2, and 3e£1.838x10°3, f4=120 kHz, ky; scopic data recording .WiFh a sampling period of (T.
=4.78<10°3, ¢=0). =1/f4) was used. For finding new attractors, the technique

of a short pulse of loss perturbations was ugEe2l.

a decrease of the maximal number of coexisting attractors as The experimental results have confirmed the main conclu-
illustrated in Fig. 2b) for the case of the perturbation&{/8  sions made above. First of all, the appearance of bistability
[19]. As in the case of bistability induced by the perturbationinduced by weak periodic signal at the frequerfgyn (n
at fy/2 [11-13, the phase of the resonant perturbation here=2k k=1,2,3,4) in the parameter range directly above the
plays an important role in obtaining multistability, in the first unperturbed period doubling threshold was found. This
sense that a change in the phase is similar to a change in thgeans that bistability in period-doubled systems can be in-
perturbation amplitude. This can lead to a change of theluced by any perturbations that are resonant to the main
number of new coexisting attractors and the overlapping ofiriving frequency, even with very low frequency.
different dynamical states associated with them. The appearance of four attractors induced by the pertur-

A common feature of periodically driven nonlinear sys- pation atf 4/4 is shown in Fig. 4 where experimental switch-
tems along with a period-doubling scenario to chaos is théngs between new attractors are demonstrated. They appear
existence ofnT subharmonic isolated branchéso-called  in the system instead of a primary 4T limit cycle in the range
isolag which result from saddle node bifurcations of a periodof the bifurcation parameter above the second period-
n. Therefore, we shall consider the effect of the perturbationjoubling threshold. One can see that two attractors have the
at the frequencyf4/n on them by the example of period-3 same 4T periodicity but different amplitudes, one attractor is
branch. This situation is different from the previous casea 8T limit cycle and one is in a chaotic state. In the absence
where resonant perturbations act on the period-doubling bief the periodic perturbation only one attractor was found for
furcations. Here the effect of resonant perturbations onhe given laser parameters.
saddle node bifurcations inherent in the system is considered. The splitting of the period-3 branch, induced by periodic
The laser parameters were chosen so that two attractors gignal at the frequench/3 in the bistability domain between
period-1 and period-3 can coexist in the absence of the perperiod-1 and period-3 branches, is shown in Fig. 5, where
odic perturbation. The period-3 branch appears by a saddigxperimental switchings between new attractors are shown.
node bifurcation atu=~2.308 (in this case kqi,=4.76
% 10~ 3). Figure 3 shows a bifurcation diagram of the laser in

the presence of periodic perturbation at the frequeh¢$. 200 s 6T_J200 31|
As in previous cases, each subband on the figure corresponds % 100| 2T (a) {100| 6T (b)
to one attractor. One can see that the periodic perturbation =] 3 Frarr——
splits primary period-3 branches into three branches of the a 0 0
same period 3, which appear via saddle node bifurcations at @200 3T 6T 1200
different values ofu (u{®~2.236, u{~2.310, andu$® - = |

Experimental resultsThe experimental setup was similar 0 0
to one that was described in R¢L2]. A CO, laser with an 0 1000 2000 0 1000 2000
acousto-optic modulator inserted in the laser cavity was used TIME (number of periods T)

[12]. Two sine-wave electric signals from oscillators were

applied to the modulator providing the time-dependent cavity F|G. 5. Experimental stroboscopic laser responses showing
losses. The driving signaly(t) =V cos(2rfqt) had the fre-  switchings between new coexisting attractors induced by the reso-
quencyfy and the amplitud&/y(t). In what follows,V4 can  nant perturbation aty/3 in the bistability domain of period-1 and
be considered as a control or bifurcation parameter. The peperiod-3 branchesf{=141 kHz, ¢~0). For all cases the pulse
turbation signaV,(t) =V, cos(2rft+¢) had the frequency loss perturbation influences &t 1000.
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In the absence of the periodic perturbation, two coexistinglriven nonlinear systems by inducing a large number of co-
2T and 6T limit cycles belonging to period-1 and period-3existing attractors. Since the period-doubling cascade and the
branches, respectively, were foufigig. 5a)]. In the pres- existence of isolas are universal features of nonlinear dy-
ence of the perturbation, the 6T limit cycle splits into 3 at-namical systems, one can expect that the results presented
tractors, which are in different dynamical stat83, 6T, and here can be applicable to a large variety of such systems in
chaog. Thus this means the appearance of three attractors idifferent fields. The main advantage of the considered
the system in place of the original period-3 attractor. method is its simplicity and the possibility to induce bista-

In summary, it was shown that weak resonant periodidility and multistability in a wide range of modulation fre-
perturbations can noticeably increase the complexity ofjuencies and the bifurcation parameter.
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