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Theory and applications of ray chaos to underwater acoustics
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Chaotic ray dynamics in deep sea propagation models is considered using the approaches developed in the
theory of dynamical chaos. It has been demonstrated that the mechanism of emergence of ray chaos due to
overlapping of nonlinear ray-medium resonances should play an important role in long range sound propaga-
tion. Analytical estimations, supported by numerical simulations, show that for realistic values of spatial
periods and sound speed fluctuation amplitudes associated with internal-wave-induced perturbations, the reso-
nance overlapping causes stochastic instability of ray paths. The influence of the form of the smooth unper-
turbed sound speed profile on ray sensitivity to the perturbation is studied. Stability analysis has been con-
ducted by constructing the Poincameaps and examining depth differences of ray trajectories with close
take-off angles. The properties of ray travel times, including fractal properties of the time front fine structures,
under condition of ray chaos have been investigated. It has been shown that the coexistence of chaotic and
regular rays, typical for dynamical chaos, leads to the appearance of gaps in ray travel time distributions, which
are absent in unperturbed waveguides. This phenomenon has a prototype in theory of dynamical chaos called
the stochastic particle acceleration. It has been shown that mesoscale inhomogeneities with greater spatial
scales than that of internal waves, create irregular local waveguide channels in the vicinity of tlieeaxis
sound speed minimupnof the unperturbed waveguide. Near-axial rays propagating at small grazing angles,
“jump” irregularly between these microchannels. This mechanism determines chaotic behavior of the near-
axial rays.
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[. INTRODUCTION oped in the theory of dynamical chaos, being applied to

In the past decade it has been realized that the phenonproblems of long range sound propagation in the ocean, give
enon of ray chaos plays a significant role in long range sounéhsight into basic mechanisms determining ray structure
propagation in deep sdd—9]. Numerical simulations have range variations. We discuss how phenomena known in the
demonstrated that under typical conditions of deep sea ratheory of dynamical chaos, can manifest themselves in un-
trajectories are highly unstable and exhibit extreme sensitivderwater acoustics.
ity to starting parameters. Initially close rays diverge expo- In many studies on ray chaos in acoustic waveguides,
nentially with range and numerical estimations of inverseattention is confined to environmental models with periodic
Lyapunov exponents—main quantitative characteristics ofange dependendé&—5]. The reason is partly that properties
this divergence—are usually of order of a few hundreds ki-of chaotic ray dynamics in such waveguides are identiagl
lometers[6—8]. On the other hand, solving of underwater least, formally to extensively studied properties of chaotic
acoustics inverse problems aimed at monitoring of largglynamics of a nonlinear oscillator driven by an external pe-
scale features of the ocean temperature field, implies carryiodic force[1,2]. Further, periodic models are not so artifi-
ing out acoustic measurements at acoustic paths of thousan€ig! as they may look at first glance: a rather realistic envi-
kilometer long[10—13. It is quite clear that at so long ronment can be synthesized out of comparatively small

ranges chaotic properties of the ray structure can not be igdumber of periodic terms. For example, in RE] it has
nored. een demonstrated that predictions made in the scope of a

The chaotic ray motion in underwater acoustic{en-terms model can be in reasonable agreement with experi-
waveguides is analogous to chaotic dynamics of nonintemental data. .
grable Hamiltonian systems in classical mechanics. The main The objective of the present paper is to show how some

goal of this paper is to demonstrate that the methods deveknown properties of Hamiltonian chaotic dynamics reveal
themselves in periodic environmental models of underwater

acoustics. We focus here on two issues. One of them is a role

*Electronic address: ivansm@mail.ru of the ray-medium resonance phenomenon as an important
"Electronic address: viro@hydro.appl.sci-nnov.ru factor of stochastic ray instability. We consider a model with
*Electronic address: zaslav@cims.nyu.edu a smooth range-independent background sound-speed profile
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and weak inhomogeneities induced by two periodic internality and its dependence on parameters of the perturbation and
wave modes. With this example we discuss the role of raythat of the smooth background profile. This is done using ray
medium resonances in the emergence of ray chaos. Analytsimulation in an underwater acoustic waveguide with range-
cal estimations supported by numerical simulation show thaélependent perturbations due to two internal-wave modes.
for realistic values of spatial periods and sound-speed flucStability analysis is conducted by constructing the Poincare
tuation amplitudes associated with this perturbation, overlapMaps and examining depth differences of ray trajectories
ping of resonances is possible. According to the Chirikov'swith close take-off angles. It is investigateq numerically how
heuristic criterion, this overlapping gives rise to strong rayth® phenomenon of resonance overlapping affects ray dy-
chaos[14—1§. It is clear that the overlapping condition de- N@mics in realistic environmental models considered in this

pends on the parameters of both, unperturbed profile ang€Ction- o _ _
perturbation. We argue that studying of ray-medium reso- '€ eémphasis in Sec. il is on properties of ray travel

nances gives insight into strong dependence of global rajfmes under conditions of ray chaos. We study how the co-

sensitivity on a background sound-speed profile demongXistence of regular and chaotic rays manifests itself in the

strated in Ref[8]. structure of ray arrivals. The phenomenon of stickiness de-

Much of the present paper is concerned with investigatingt'©Ying the uniformity of the motion of chaotic rays, and the
of ray travel times. This is the second important issue adSCNCePt of “chaotic wave transmission” introduced in Ref.
dressed here. So far, the ray travel time has been the maESJ are shortly discussed. By numerical simulation we show
signal parameter in the underwater acoustics experimenf§at the presence of a sharp boundary between regions of

from which inversions have been performed to reconstrucP@se plane occupied by these two types of rays, lead to
ocean temperature fie[d0,11. That is why chaotic proper- &Ppearance of the gap in the distribution of ray travel times.

ties of this signal characteristic are of considerable interes! thiS section we also investigate diffusion of the action and

On the other hand, from the viewpoint of opticomechanicallf@ctal properties of travel times of chaotic rays.

analogy, the ray travel time is an analog to mechanical ac- N Sec. IV we show that the phenomenon of chaotic par-
tion, i.e., of such a characteristic of dynamical systems thalic/e acceleration known in the theory of dynamical chaos

is, typically, not measured experimentally and for this reason1°l: "as an analog in ray dynamics. The presence of the gap

has not received much attention in studies on dynamicaf! e ray travel time distribution is interpreted from the
chaos. Using numerical simulation we study how chaotic beYi€WPoint of this mechanism. In this section we discuss how
havior of ray trajectories manifests itself in the travel time Chaotic ray motion reveals itself in different features of the
dependence on the starting momentum and in the so-callddne front. , ,
time front representing ray arrivals in depth-time plane. In Sec. V we examine the ray structure in the presence of
The most part of this paper is devoted to studying of"€soscale perturbations. Here we use an environmental
environmental models describing the influence of internaf"°de! constructed on the basis of real hydrographic data. It
waves on sound transmission. The point is that the interndp démonstrated numerically that mesoscale inhomogeneities
waves are considered as a main factor responsible for eme§iVe rise to chaotic motion of near-axial rays and the basic
gence of ray chaos at long range wave propagation. At thgwechar_nsm .d_etermlnlng the stochastic instability of these
end of the paper we shortly discuss the role of the so-callefYS iS identified. _ ,
mesoscale inhomogeneities whose spatial and temporal " S€c. VI the results of this work are summarized.
scales are considerably greater than that of internal waves.
We argue that the mesoscale inhomogeneities cause chaotic  ||. RAY-MEDIUM NONLINEAR RESONANCE
behavior of near-axial rays and the mechanism determining
this chaotic dynamics has some specific features that differ-
entiate it from the mechanisms defining ray chaos due to |n this section the Hamiltonian formalism used for ray
internal waves. dynamics analysis is briefly discussed and short description
In studying ray dynamics we shall neglect the horizontalof ray-medium resonance phenomenon in terms of action-
refraction. This assumption is widely used in underwaterangle canonical variables is provided using this, actually
acoustics because the cross-range gradients of the souRflown, formalisn1,2]. As it has been indicated already, the
speed are typically two orders of magnitude smaller than themaliness of cross-range gradients of the sound speed allows
vertical gradients. That is why the sound propagation is welbne to neglect the horizontal refraction and describe the
described as two dimensiondlaving no out-of-plane scat- sound propagation as two dimensional.
tering [8,17].
The paper is organized as follows. In Sec. Il we give a 1. Basic equations for ray dynamics
brief description of the nonlinear ray-medium resonance and

discuss the role of resonance overlapping in the emergen ide with the sound speaxlbeing the function of deptt

iorf raghﬁ?f?ff' Eherf)?irturﬁ?tlr(i)nnth;ao[]y of re;or:anﬁes,dlnclti and ranger. The z axis is directed downward. The ray tra-
9 OV'S heuristic criterion of chaos emergence due 1o ctory obeys the Hamilton equations

the resonance overlapping, is presented in Sec. Il A. Thi&
theory is formulated using the Hamiltonian formalism in
terms of the action-angle canonical variables. In Sec. Il B the dz_ oH dp JH 1)

A. Perturbation theory for the resonances

Consider a two-dimensional underwater acoustic wave-

general relations are applied to study stochastic ray instabil- dr dp' dr  9z'
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with the Hamiltonian Znmin, respectively are functions of the “energy,E, and de-
[T o2 termined by the equation(z)=—E.

H n(r.z)=p~. @ An important characteristics of ray trajectories that is
Heren(r,z)=c,/c(r,z) is the refractive indexc, is some  Widely used in both classical mechanics and ray theory, is the
reference sound-speed value, and the variphpeesents an S0-called action variablerelated toE by [19]
analog to the mechanical momentum. The Hamiltorti&n

and momentunp are connected to the current ray grazing | = L % dz p(E,z)= 1 Zmaxdz‘ /:nZ—EZ, (10)
anglea by 2m Zmin
H=—-ncosa, p=nsina. (3)  where the integration goes over the period of the ray trajec-

_ _ _ ~ tory. Equation(10) defines the functiofie(l). Now the turn-
The ray travel timet is an analog to mechanical action ing point coordinatesz,, andzny, can also be regarded as

and is given by the integral functions ofl.
1 The canonical transformation fronpz) variables to the
t= _f (pdz—Hdr). (4) action-angle variabled (6) is given by the pair of equations
Co [19]
In many problems of underwater acoustics the sound dG(z,1) dG(z,1)
speed fieldc(r,z) can be modeled as a superposition of a p= a9z 0= a (12)
imooth range-independent background sound-speed profile
c(z) and a weak range-dependent perturbatiofr,z): with the generating function
_~( z
c(r,z)=c(z)+ oc(r,z). (5) G(z,1)= dz /:nz(z)—Ez. (12)
In environmental models used in underwater acou$id$ min
the condition Note, thatp and z are periodic functions of the angle

iableg, i.e.,p(l,0)=p(l,0+2 1,0)=z(1,0+2m).
| 56| <Ac<c, © variabled, i.e.,p(l,0)=p(l,0+2m), z(I,0)=2z(1,0+2)

. . . . o — 2. Resonances
is typically met, whereAc is the maximum variation of,

and the constant, is chosen to be the minimum value of
c(z). Then the Hamiltonian can be approximately rewritten

In the range-dependent environmeXt£ 0) we define the
action-angle variables using the same relatigisen in Egs.
(11) and(12)] as in the unperturbed waveguide. The Hamil-

in the form tonian equations in the new variables take the foirh
H=H+V, Y] di_ v do_ v s
where TR a—w()ﬂLﬁ, (13

c where
H=-Vn?-p?% n(z)==—=, —
P (2) c(2) w(l)=dH(I)/dI (14
sc(r,z) is the spatial frequency of the trajectory oscillations in the
V(r,z)= c . (8) unperturbed waveguide.
0

Now let us turn our attention to an environmental model

In real deep ocean acoustic waveguides only those rays th@ith periodic range dependence. In this case the perturbation
propagate at grazing angles smaller than 10°-15° survive é{(r,z(l,a)) is periodic inr anq 6 and it can be represented
long ranges(steeper rays interact with a lossy botjorwe !N the form of the Fourier series
shall consider here only such rays. Their momenta satisfy the 1
condition V= > % Ving(! )el(mi=—aen) L ¢ ¢ (15)
p<|H|~1. ) Laati
where the symbol c.c. denotes complex conjugation.

In the range-independent waveguid®=£0) with the A group of ray trajectories are captured in a ray-medium
HamiltonianH, the conservation lawi =E holds true along ~'ésonance if their action variables are closd daatisfying
the ray trajectory with the constaBtbeing an analog to the the condition
mechanical energy. The explicit expression for the momen-
tum p as a function ofE andz is p(E,z) =+ Vn?(z) — E2.
All the trajectories forvV=0 are periodic curves. The coor- with m andq being two integers. The ray trajectory trapped
dinates of their upper and lower turning pointg,§, and into the resonance can be analytically described using a

mao(lo)=9qQ, (16)
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simple perturbation theorysee, for example, Ref$1,2]). o
Here we shall use only one result of this analysis, namely, an
estimation of the resonance width.

It can be shown that action variables of the trapped rays
belong to the interval j—Al 5, <1 <lg+ Al pay, Where

Al =2V /| '] (17

with V, being the amplitude of the resonant term in sum
(15). Equation(17) defines a half-width of the resonance in
terms of action. Each trapped ray oscillates with some spatial
frequency. The width of the resonance in terms of spatial
frequency can be approximately estimated as

Aw=|0'|Al ho=2VVo|o'].

Estimationg(17) and(18) are made for each individual reso-
nance ignoring all the other resonances. That is why they

have a good sense only when perturbation is small enough FIG. 1. Sound-speed profilegeft _pane} and cycle Iengths :
ie against launch angles for rays starting from the waveguide axis

(right pane). Dashed line — profile 1, solid line — profile 2.

Depth (km)
n
& 3
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5]

w
Cycle length (km)

23
a

301

(18)

. 25
1.53 o

1 .;51
Sound speed (km/s)

5l
1.49 1.55

5 10
Launch angle (deg)

Vo

=<1, sound-speed profil€22) under assumption that the bottom is
[H(10)—H(0)]

located at 6 km depth. Note, that the interval of actidns,

In the denominator we subtract the constituent of the Ham"jrom 0 to about 0.2 km corresponds to ray trajectories that do
L . : not strike the surface or the bottofthe bottom is located at
tonian independent of, which may be arbitrary large or

small depending on a choice of the reference sound ed 6 km depth. The interval from 0.2 to 0.43 km correspond to
pending S . N0 SREEA. ¢ rface-bounce rays, but these ray do not strike the bottom.
The applicability conditions of this approach are discussed 'rf_arger values of correspond to rays reflecting off both sur-

Refs.[1,2]. Here we will only note that the main condition is face and bottom. These three intervals are echoad ie-
pendence oh presented in Fig. (@) and they are much more

(19

€

1
e<fa<<—, (20 apparent in Fig. @) where the dependence d&/dl onl is
&
shown.
where Let us stress that for purely refracted rays, propagating
without interaction with both surface and bottom, the angular
do(lg)] I, frequency w decreases with. This property is typical of
=l—]— (21

o
Qi
N

is a parameter characterizing the degree of nonlinearity.

o

o (1/km)

o I
= o
o

3. Degree of nonlinearity in a typical model of underwater
acoustic waveguide

o
=]

o
o

Consider the so-called canonical sound-speed profile, or
the Munk profile, widely used in underwater acoustics to
model wave transmission through a deep oddaf:

|

do/dl (1/km?)

|
Il
o

o
] e

c(z2)=co[1l+e(e” "+ p—1)],

n=2(z—2,)/B, (22

where cg=1.49 km/s, z,=1 km is the sound-speed axis
(depth corresponding to the minimum of sound speed
=0.0057, andB=1 km. This profile is shown by a dashed
line in the left panel of Fig. 1other curves presented in this %
figure will be discussed laterin what follows this profile

02 025 03 035 04
| (km)

005 01 015 0.45

will be used in our numerical simulations. Now, with this
example, we want to demonstrate dependencies @nd

dw/dl on the action variable which are typical for ocean-

acoustic propagation models.
In Figs. 2a) and 2b) this is done for a waveguide with

FIG. 2. Angular frequencw of ray oscillations(a) and its de-
rivative with respect to the action variablgb) as functions ofl.
The nonlinearity parameter against (c) and a closer view of this
dependence for rays propagating without reflection off the bottom

(d).
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sound-speed profiles in deep sea. It can also be formulated FIT(I)+V(I ,6,1) with V defined by Eq(15), and which arise

a slightly other form: the cycle length in underwater acoustigy, higher-order approximations of the perturbation theory. A

waveguide usually increases with th? grazing angle at Whicﬁetailed analysis of these factqreee Refs[14,16]) leads to
the ray crosses the sound-speed #sée the dashed line in more precise estimates of the const@ntin particular, for

the left panel of Fig. L .
. the so-called standard map it has been found @wat2/7
Figures Zc) and 2d) show the parametew, degree of =0.64. It is believed that the valu@= 2/ is rather univer-

npnlmeanty defined in Eq21), as a function of the actioh sal although there is no rigorous proof of that.
Figure c) shows this parameter for all three types of rays Let us emphasize an important point. Chirikov’s criteria

considered above: Figuréd presents a _porﬂo_n of the abov_e (23) and (24) not only indicate the fact of the emergence of
curve corresponding to rays propagating without reflectlonstrong chaos. They also give simple, albeit rough, quantita-
off the bottom. tive estimations characterizing a region of phase plane occu-
pied by chaotic rays. The quantitidd andA w provide es-

. . timations of intervals of actions and spatial frequencies,
If there exist several resonances centered at different spaespectively, corresponding to chaotic ray paths.

tial frequencieqat different values of ;) properties of ray
motion considerably depend on whether these resonances
overlap or not. Chaotic rays exist in any case. But in the case
of isolated resonances they typically form the so-called sto- There exists a “regular” way to describe or identify cha-
chastic layers in the neighborhood of separatrices dividingtic dynamics using phase space portrait, Poinaaegp,
the areas in the phase space occupied by trapped and ugrapunov exponent, etc. Although all of them can not be
trapped rayg2]. The action variables of rays belonging to used in a straightforward way for the underwater acoustics
such layers are close tig*= Al .. i.€., to borders of the diagnostics. The reason is evident since one cannot track rays
interval determined by Eq17). Since the stochastic layers at ranges of thousands kilometers. Temporal evolution of the
usually occupy only a small fraction of the phase space thigrriving wave fronts and intensities of signals at different
situation is called the weak chaos. depths at some fixed ranges are the main diagnostic entities
Overlapping of resonances gives rise to much more proused in the contemporary experiments. In this section we
nounced chaotic ray motion. Consider two resonances cergtart to study how chaotic motion reveals itself in ray struc-
tered at actions, andl,. The corresponding spatial frequen- ture characteristics at a given range.
cies arew;=w(l;) and w,=w(l,). The widths of these
resonances in terms of acti¢spatial frequency estimated 1. Environmental models
by applying Eq.(17) [Eq. (18)], we denote byAl; andAl, In this section effects related to resonance overlapping
(Aw; and Aw,). If the total width of both resonanceSl  will be investigated numerically using idealized models of
=(Al,+Aly) is less than the difference between the centersinderwater long-range sound propagation.

of the resonarjceﬁl =|l,—1,|, then the resonances are iso- ~ Two background sound-speed profilge) shown in the
!ated_ cherv_w_se, the resonances ova_arlap that |e_ad5 to thqigs panel of Fig. 1 and hereafter referred to as profile 1 and
interaction giving rise to chaotic motion. According to the yrqfile 2, will be considered. As it has been indicated already,
heuristic Chirikov’s criterion, the system exhibits strong hrofile 1 is the so-called canonical Munk profile defined in
chaos if the condition Eq. (22). Although both profiles look similar, rays propagat-
Al ing in the corresponding waveguides without surface and
—>Q (23)  bottom interactions have significantly different intervals of
Jl cycle lengths as it is seen in the right panel of Fig. 1. With
this example we shall demonstrate that this difference can
result in different stochastic instabilities of ray trajectories
with respect to a weak range-dependent perturbation.
Aw We consider a sound-speed perturbation in the form

5—w> Q, (24

4. Overlapping of resonances

B. Ray chaos simulation

is met[14-16. HereQ is a constant close to unity. In terms
of spatial frequencies, this criterion takes the form

J
sc(r,z)=e 378> A sin(jme ZB)cogkr +1\;),
where So=|w,— w;| andAw=(Aw,+Awy). (r.2) ;21 jsinj e =5 costiirea)

The overlap of resonances begins when their separatrices (25
touch each other. Neglecting the deformation of the separa-
trix due to the presence of the neighboring resonance yieldahere each term on the right accounts for a contribution
the simplest form of the Chirikov’s criterion wit=1. This  from an internal-wave mode with the horizontal wave num-
gives an order-of-magnitude estimate of a perturbatiorberk;, A;, and\; are random amplitudes and phases, re-
strength at which rays begin to exhibit the strong chaoticspectively,B is the same constant as in E@®2). Similar
motion. In order to obtain a more accurate result one shouldnodels ofdc(r,z) have been used in R€f8] where it has
take into account a finite width of the stochastic layer surbeen demonstrated numerically that predictions made with
rounding the separatrix as well as the influence of high-ordethe model includingJ=10 modes closely resemble results
resonances that are not explicitly present in the Hamiltoniambserved in field experiments. The model wilk=1 in
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which the Munk profile is perturbed by a single-mode inter- 7 ' ' o ' ' 0
nal wave has been used in RE3). In this Section we use
model(25) with J=2 which is convenient for demonstration ost /,
of the resonance overlapping phenomenon and its role in the
emergence of ray chaos.

The two following sets of amplitude#y; and A,, have
been selectedModel 1 A;=2.475<10 % km/s, A,=4.95
X104 km/s. Model 2 A;=8.25x10 % km/s, A,=16
X104 km/s.

In model 2 the amplitudes are greater by a factor 3.3. All
other parameters are the same for both modgls:are some ml ]
phases, the spatial periods of the perturbation hje i
=2m/k;=38.16 km andL,=2w/k,=15.9 km. It should L srodel 2 k/ [
be emphasized that both periods are integer multiplels of g
=190.8 km, i.e., the perturbation is periodic. Surface ex-
trapolated amplitudes of sound-speed fluctuations with range ** =i o o1 > %1 o o1 * o1 o o1
are: 5¢ma—0.3 m/s in model 1 andc,,,,~1 m/s in model Momentun Momentum
2. These values are typical for real underwater waveguides FIG. 3. Left panel: Phase portrait for a waveguide with back-
[8,17]. ground profile 2 and model 1 of perturbation. Middle panel: as in
the left panel but for model 2 of perturbation. Right panel: as in the
middle panel but for background profile(Munk profile).

05

o

Depth (km)

25r

w

0
Momentum

2. Manifestation of resonance overlapping
in phase portraits of rays

If the above perturbations are imposed over a rangethis interval made witlQ=1 andQ=2/7 are of the same
independent profile, rays with cycle lengths close to integeprder. On the basis of these estimations we expect that rays
multiples ofL, or L, will be captured in resonances. In the with launch angles from the interval of about 5° to 8° should
right panel of Fig. 1 the cycle length dependencies on launcEXxhibit the stochastic instability.
angle are shown for profiles 1 and 2. Throughout this paper The chaotic ray behavior can be visualized by the Poin-
only rays starting from the waveguide axes, i.e., from depthgaremap[1-5]
corresponding to minima of sound speed, are considered. We ~
restrict our attention to not very large launch angles. In par- (Pn+1,Zn+1) = T(Pn,2Zn), (26)
ticular in this section they are taken from the angular interval R
(—12°,12°). In most real oceanic waveguides such rays playhere a symbol denotes transformation of the momentum
the main role in long-range sound propagati@f]. Steeper and coordinate of a ray trajectory taken at a rangeo that
rays strike the lossy bottom and substantially attenuate oveat a rangeif+ 1)L. Figure 3 presents a set of phase portraits
long propagation distances. plotted using the Poincaraap. The left panel corresponds to

It is easily seen that there will be only one resonance irbackground profile 2 with parameters of perturbation of
the waveguide with profile 1, because the corresponding inmodel 1. This is a set of dots depicting points, (z,) cal-
terval of cycle lengthsfrom 42 to 56 km) contains only one culated for 12 rays starting from the depth of 0.94 km
integer multiples of periods of perturbation, namely,3So  (sound-channel axisat grazing angle 1°,2°,..,12°. Con-
in this case there is no resonance overlapping. sistent with our expectation, only the ray starting at the angle

Profile 2 determines cycle lengths spanning the intervabf 7° exhibits chaotic behavior and produces a thin stochas-
from 25 to 50 km. In this case there will be three resonancesc layer.
centered at rays with the cycle lengthsL, A similar phase portrait for model 2 of perturbation is
=38.16 km, 2,=31.8 km, and B,=47.7 km. Equation given in the central panel of Fig. 3. It is clearly seen that the
(18) provides estimations of widths of these resonances andverlapping of resonances gives rise to a significantly stron-
then the Chirikov’s criterion(24) can be applied to investi- ger chaos. The rays, started at angles of 5°, 6°, 7°, and 8°,
gate their overlapping. This yields that the resonance cerbelong to the interval covered by overlapping resonances,
tered at a spatial frequencyr247.7 km * remains isolated demonstrate chaotic behavior, and produce a wider stochastic
for both models of the perturbation. The other two reso-layer compared to that in the left panel. This also agrees with
nances overlap. In model 1 we have transition from nonovereur prediction made on the basis of E83).
lapping to overlapping: the ratios on the right of E¢®3) To demonstrate the role of the background profile we con-
and(24) are slightly less than unity. The Chirikov’s criterion sider the same perturbatiaimodel 2 superimposed over
is not met forQ=1 but it is met for the more realistic value profile 1. The phase portrait of the corresponding waveguide
Q=2/=. In this model we can expect a chaotic behavior ofis shown in the right panel of Fig. 3. Again 12 rays have been
rays with launch angles close to 7°. Trajectories of such raygsed with take-off angles spaced uniformly from 1° to 12°.
in phase space lie in the area where the resonances overlghis time the starting depth of 1 kithe sound-channel axis
In model 2 the overlapping is stronger and an interval offor profile 1) has been selected. It is seen that only one ray
launch angles corresponding to rays involved in the chaotiout of 12 exhibits chaotic behavior. Its launch angle 7° cor-
motion is significantly larger than in model 1. Estimations ofresponds to a cycle length in the unperturbed waveguide
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4o . Model1

o 500 1000 1500 2000 2500 3000

4]
-12 -9 -6

-3 0 3 6 9 12
Launch angle (deg)

1500 2000 2500 3000

Range (km) FIG. 5. Depth differences at 1000 km range for pairs of rays
with infinitesimally close starting momenta. Each point represents

FIG. 4. Differences in deptiupper pangl and momentum for a given launch angle the absolute difference in arrival depth for
(lower panel versus range for a pair of ray trajectories starting fromtwo rays: a ray with original momentum and one with a slightly
the point source with close launch angles. perturbed momentuntwhich is the original plus 10°). To con-

struct this plot 4096 pairs of rays were used.
close to 3.,, i.e., the stochastic layer in the right panel of
Fig. 3 is associated with the presence of a single isolated z(r)
resonance in this propagation model. As it has been indicated A(r)=|——~ (29
in Sec. Il A 4, a thin stochastic layer always exists near sepa- p(0)
ratix of even an isolated resonance.

Comparison of the left and central panels in Fig. 3 showds one of the main characteristics of local properties of dy-
a quite natural property of ray chaos: the stronger is perturnamical chaos, andp(0) is an infinitesimal difference in
bation, the larger portion of phase space is filled with chaotignomenta of rays starting from the same point. In our simu-
rays. lation 5p(0)=10"".

Comparison of the central and right panels demonstrates Figure 5 shows the absolute differentéz| = |z, —z,|, in
another feature of chaotic ray dynamics that is less expecte@srival depthsz; andz,, of two rays with starting momenta
the same perturbation superimposed on seemingly clogbat differ by dp, as a function of launch angle at 1000 km
background profiles gives rise to a strong chaos in one cagange. The calculations have been carried out for the back-
and a much weaker chaos in another. This phenomenon wagsound profile 2. Our objective here is to get some quantita-
first noticed in Ref[8]. Later on, we interpret it from the tive information on stochastic instability of ray trajectories

[ 500 1000

viewpoint of resonance overlapping. that reveals itself in appearance of randomly scattered points
in the left and central panels of Fig. 3.
3. Stochastic ray instability The plots demonstrate the intermittent character of zones

The most direct demonstration of stochastic ray motion irPf higrl sensitivity. Rays with launch angles betwees®
model 2(with the background profile)3s presented in Fig. and 5° are mu_ch less sensitive to _mhomog_eneltles _than
4. Here range dependencies of separations in depth and me€€Per rays. This fact as well as considerable increase in ray
mentum for two rays starting from the sound-channel axisSensitivity to initial conditions in the region of resonance
with slightly different initial momenta are shown. It is seen OVerlapping in model 2, is consistent with the results pre-

that both differences, in deptldz=|z,—z,|, and in momen- Sented in Fig. 3. o L
tum, 5p=|p,— ps|, for the two rays grow, on average, ex- A new property of ray sensitivity dependence on initial

ponentially with range: conditions, that could not be seen in Fig. 3, is now clearly
visible in Fig. 5 (especially in the lower panelinside re-
5z|~eM Sp|~e' 2 gions of ray instability there are small angular intervals with
L p 1

rather smooth dependence of depth differences on launch
where is the so-called Lyapunov expondf]. In the ex-  angle. This fact suggests that chaotic rays are interspersed
ample shown in Fig. 4=1/200 km *. with regular ones. In particular, it means that inside stochas-

A typical feature of chaotic ray dynamics leading to non-tic layers observed in Fig. 3 there are numerous “stable is-

uniformity of the phase space is different sensitivity of tra-lands” located in blank spots between the presented points.
jectories to initial conditions. A convenient tool for identify- This situation is general for dynamical chads-5] and it
ing regions of ray instability has been used in RES].  will be discussed more in Sec. Il B.
Following this paper we consider the depth difference of the
pair of rays whose starting momenta differ only infinitesi- 4. Sensitivity of ray travel times

mally. In other words, we stud ) ) )
y y It is natural to expect that stochastic behavior affects any

8z(r)=A,,(r)p(0), (28)  characteristic of ray trajectory. Figure 6 illustrates this state-
ment for ray travel times. This arrival time dependence on
where launch angle has been computed for 1000 km propagation
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distorted in the presence of perturbation.
Stochastic properties of ray travel times will be investi-
ezl ﬁ . gated in more detail in the following section for another
’ model revealing a more strong ray chaos.

l/’\ﬁ 5. Ray sensitivity to the background profile

Travel time (s)
i
2
3 5
St:-'aa::
——

Numerical results presented in this section shows that the
phenomenon of ray-medium resonance should play a signifi-
ensf ] cant role in underwater acoustic waveguides. In particular,
considering of this phenomenon may shed an additional light
on the effect noticed in Ref8]. In that paper it has been

671

T N B demonstrated numerically that the same weak range-
aunch angle (deg) . . . . . .

dependent inhomogeneities placed in waveguides with dif-

FIG. 6. Ray travel time versus launch angle. ferent background sound-speed profiles lead to different cha-

otic properties of ray structure. The authors argue that the
through an ocean-acoustic waveguide modeled by the backurvature at the sound-channel axis strongly influences the
ground profile 2 without(upper panel and with (lower  character of the ray behavior: the stronger the curvature the
pane) the model 2 of perturbatio(®5). 8192 ray trajectories more chaotic ray motion is. This statement agrees with our
with uniformly incremented starting momenta were evalu-results presented above. Our background profile 2 has a
ated. In accordance with results presented in the middlgreater curvature than profile 1, and comparison of the phase
panel of Fig. 3 and in the lower panel of Fig. 5 most affectedportraits in the central and right panels of Figs. 3 shows that
are rays with launch anglepy,|, from about 5° to 8°, i.e., in the waveguide with profile 2 ray chaos is stronger. To give
from the angular interval containing most part of chaoticsome explanation to a similar effect, the authors of Ref.
rays. Note that besides randomly scattered points belonginigfer to results of Duda and Bowlif21] who argue that a
to this interval there are groups of points forming segmentgormalized sound-speed curvature strongly controls caustic
of regular curves. This is another manifestation of coexistformation.
ence of regular and chaotic rays with close initial conditions Bearing in mind the role of ray-medium resonance in
(see the above comment to Fig. 5 emergence of chaos, we can interpret this in a following

Figure 7 shows the so-called time front, i.e., a plot repreviewpoint. Note, that a large curvature corresponds to a

senting ray depths against arrival times at the given range. Btrong dependence of the trajectory cycle length on the
has been computed for the same set of rays presented in Figunch angle. For example, compare the two curves shown in
6 and every point in the plot represents one ray arrival. Figthe right panel of Fig. 1. The cycle lengths corresponding to
ure 7 illustrates how the chaotic ray motion affects the strucprofile 2 (large curvaturespan the interval of almost twice
ture of ray travel times. The chaotic rays with launch angleshe size of that corresponding to profilg(small curvaturg
5°<|ag|<8° have travel times of about 672 s to 673 s.Correspondingly, the interval of spatial frequenciesfor
Comparison of plots in the upper and lower panels of Fig. 7profile 2 is also two times wider compared to profile 1. In the
shows that only segments of the time front corresponding tdimiting case of a profile with an infinite curvatule.g., a
this interval, i.e., formed by chaotic rays, are significantlybilinear sound-speed profjlethe interval of spatial frequen-

cies becomes infinite because in this case the interval of

0 - - - - - - cycle lengths begins from zef@2].
T A 1 On the other hand, it is clear that the larger is an interval
g;: i ’W}QOW | of cycle lengths, more are chances for ray trajectories to be
£l in resonance with some harmonics of the perturbation and,
3Ll hence, more chances exist for resonance overlapping and
af giving rise to strong ray chaos.
3'270 67;).5 6;1 67‘1 5 6;2 67‘2.5 6;3 673.5
o . . . Ill. TRAVEL TIME OF CHAOTIC AND REGULAR RAYS
Aof' A. Description of the model
=
?__‘__’15- Our primary concern in this section is with chaotic prop-
g erties of ray travel times. In many schemes of acoustic moni-
2:: toring of ocean structure these parameters are main observ-
. ables used for solving inverse problefig].

L L ' L L '
870 6705 671 6715 672 672.5 673 673.5

Travel time (5) Following Refs.[5,18] we consider here wave propaga-
tion in the canonical Munk waveguidgrofile 1 in Fig. 1

FIG. 7. Time fronts for a waveguide witho(ipper paneland given by Eq.(22) with a perturbation
with (lower panel model 2 of perturbations. Background profile 2

was used. sc(r,z)=2ycyz/Be ?7B cog2mr/N), (30)
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wherey=0.01 and the spatial period=10 km. The ampli-
tude of c takes its maximum value of about 5 m/s at 500 m
depth. Note that this perturbation is significantly stronger
compared to models considered in the preceding section and
chaotic properties of ray travel times that we are going to
discuss are here more pronounced.

1. Phase portrait

A phase portrait of ray motion for the model defined by
Egs.(22) and(30) is shown in Fig. 8a). Here we have used
Poincaremap(26) with sections spaced apart by Although
the perturbation is now stronger, coexistence of regular and
chaotic trajectories persists. This fundamental property of
Hamiltonian dynamics follows from the Kolmogorov-
Arnold-Moser theory16] and does not depend on how small
or strong the perturbation is. However, the portion of the
phase space occupied by regular trajectories usually de-
creases with the magnitude of perturbation. Comparison of
phase portraits presented in Figs. 3 artd) &8lustrates this
statement.

The phase portrait in Fig.(8 presents a familiar picture
of “stable islands” filled with regular curves in the “chaotic
sea” filled with randomly scattered points. The largest island
in the center of Fig. &) is formed by rays propagating at
small grazing angles. These rays are regular and it is natural
to expect that their contributions should form a regular part
of the time front. Numerical results presented below are con-
sistent with this expectation.

An important feature of chaotic behavior of the ray tra-
jectory in the chaotic sea is the so-called stickiness, i.e., the
presence of such parts in a chaotic trajectory where the latter
exhibits an almost regular behavior. This occurs when after
wandering in the phase space the trajectory approaches a
stable island and “sticks” to its border for some time that
may be fairly long[23]. This phenomenon reveals itself in
Fig. 8(b) where the Poincammap(26) of a single ray starting
from 1 km depth with an initial momentump,
=—0.137893. The density of points depicting the trajectory
is most high in the vicinity of five islandéurrounding the
large island in the centpthat we have already seen in Fig.
8(a). It means that this particular trajectory sticks to these
islands.

2. Chaotic sea as a result of resonance overlapping

This phase portrait can be interpreted from the viewpoint
of resonance overlapping discussed in Sec. Il. Equdtién
defining resonant values of the action for mo¢&Q0) trans-
lates to

ma(l)=2m/\. (31)

PHYSICAL REVIEW B4 036221

Z (km)

(a)

z (km)

(b)

FIG. 8. Poincaranaps of rays in the waveguide with the Munk
profile and the perturbation given in E@0). (a) Phase portrait of a

) o o field excited by a point source set at 1 km degt).Phase portrait
The functione (1) for the Munk profile is shown in Fig.(@). of a single ray starting at 1 km depth with the momentpg

Ray trajectories(on the phase planein the unperturbed = -0.137892.(c) Resonant ray trajectories in the unperturbed
waveguide corresponding to the resonant valued afe  waveguide superimposed on the phase portrait constructed for the

shown in Fig. &) by thick-solid lines. They are superim- perturbed waveguidéhe same map as in upper pan@rajectories

posed on the Poincammap, the same as in Fig(é#. The  corresponding to larger values of action embrace that corresponding

trajectories with larger values of embrace trajectories to smaller values of action.
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i.e., within the area in Fig. @) formed by randomly scat-
tered points. Here we are studying stochastic range variations
of action variables of these rays. The limiting values of ac-
tions corresponding to boundaries of the chaotic layer can be
approximately estimated ad,;;=0.06 km and I,

‘1 2w

os\\i =0.35 km.

[ =4 Figure 1@a) presents the difference in action variables
O'A\K against range for two trajectories starting from 1 km depth
03 = / with the slightly different initial momentgp,=0.19 andp,

&

mo {1/km)
bed h
o,

O_Zx\ =0.19001. It is clearly seen that up to 1000 km range the

m= difference grows, on average, exponentially and the inverse
Lyapunov exponenk ~1=120 km. Beyond 1000 km range

3/

0 . L L

o o1 o0z 03 o0& 05 08 07 08 08 the difference becomes of order of.—Imin and then it
I (km) a
saturates.
FIG. 9. Dependencies ohw(l) on the action variablé for the In Fig. 10b) range dependencies of actions for 500 rays
unperturbed Munk profilerg=1,2 . ..,7). starting at 1 km depth with initial momenta spaced uniformly

within the interval from 0.2 to 0.205 are shown. It is clearly
corresponding to smaller values. The resonant valuek of S€€N how this bunch of trajectories is widening with range

have been found by solving E€1) as it is illustrated in Fig.  Until, at about 700 km, it fills the whole space betweégp,
9. The straight horizontal line in Fig. 9 indicates the angula@d Imax- At longer ranges the width of the bunch remains
frequency of the perturbatiot80), 27/\. Intersections of ~constant, approximately equal tGyax—Imin- Figure 1Qb)
this line with other curves depicting the functiomss(1) for ~ 9ives a visual representation of diffusion of action.
different integerm, occur at resonant values of the action
satisfying condition(31). B. Chaotic wave transmission
To make some conclusion on resonance overlapping we )
have estimated resonance widths in terms of action using Eq. Finiteness of the waveguide length leads to the problem
(17). This estimation shows that the large chaotic area in th&alled in Ref.[18] the problem of “chaotic transmission.

Poincafemap is a result of overlapping of the first two reso- |N€ 0rigin of this phenomenon lies in nonuniformity of the
nances corresponding to two innermost solid curves in Figphase space. The latter is not ergodic and different rays have

8(). All the other resonances do not overlap. However, jtdifférent fractal properties depending on propagation range.

should be mentioned that the perturbation theory described 'N€ Poincaremap constructed by means of ray trajecto-
in Sec. 11 A3 is here of limited use. The point is that the "€S evaluation at very long ranges, allows one to understand

paramete defined in Eq(19) for perturbation(31) is about Which_ parts of the phase space are filled with regular or
0.1. Forl<0.45 km this value is not small compared do chaotic rays. But ranges of real interests for underwater

[see Figs. &) and 2d)] as it is required by the left inequality acoustic are not very large. Acoustic paths lengths in experi-
in Eq. (20). This inequality completely fails neat ~ MeNts on long-range sound propagation vary from a few
—0.2 km wherea vanishes. Nevertheless, we see that thd'undreds to a few thousands kilome{do,12. A typical

overlapping criterion(24) gives a reasonable prediction of cycle Iength of ray trajectory oscillations is of order ofafgw
the argg o?the phag(e p)la%e occupied by chaoptic sea dozens kilometef20,27. It means that the number of oscil-
' lations seldom exceeds 150—-200 and in many experiments is

only of order of ten. Therefore some trajectories with starting

parameters belonging to the “chaotic sea” have no chance to
The Poincaremap presented in Fig.(8 shows that rays exhibit chaotic behavior at real acoustic paths.

starting from a point source located at 1 km depth with start- This point is illustrated in Fig. 11 where the ray travel

ing momenta from the interval 0.¥3py|<0.28 should be time is plotted against the starting momentum at ranges of

predominantly chaotic and wander inside the chaotic layer1500, 3000, and 5000 km. Three successive magnifications

3. Diffusion of action

FIG. 10. Diffusion of actions
in the perturbed Munk profilela)
Difference in action variabled,;
andl ,, for two trajectories starting
from 1 km depth with initial mo-
menta 0.19 and 0.190 01(b)
Bunch of 500 ray trajectories with
starting momenta equally spaced
within the interval from 0.2 to

100 200 300 400 500 600 700 200
r (km) 0.205.
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1500 km 1500 km 3000 km 5000 km
998.5] *Mur !w’.‘WE /\/\/\f—_ 25
5
E)' %_2.5
'g|99| 8
5
3325
25
-0.1355 -0.1345 -0.13505 -0.13495 i
Momentum 805 9975 1000 1995 1997.5 2000 3325 3330 3334
Travel Time (s)
FIG. 11. Travel times versus starting momentum at ranges of ]
1500 km(upper row, 3000 km(middle row, and 5000 knlower FIG. 12. Time fronts at 1500 knileft column, 3000 km
row). The plots in each column corresponds to the same interval offMiddle column, and 5000 kml(right column in the unperturbed
starting momenta. (upper row and perturbedmiddle row waveguides. The lower

row of plot represents results computed for fans of rays from a
of this dependence are shown for each range. At 1500 km thearrow interval of starting momenta-(0.14<p,<—0.13). Points
randomly scattered points are interspersed with segments ggpresent ray arrivals in the perturbed waveguide, thick-solid lines
regular curves. At longer ranges the magnification by a factofepresent arrivals in the unperturbed waveguide.
of 100 does not reveal smooth curves.

This situation is similar to that encountered in the prob-already know, remain regular in the presence of perturbation
lem of chaotic scatterin¢24]. In the chaotic transmission (30). So, it is not surprising that axial tails of arrival patterns
problem an inhomogeneous waveguide plays the role of thin the perturbed and unperturbed waveguitt#s upper and
chaotic scatterer, and characteristics of this scatterer depemdgiddle rows of plots in Fig. 12look very much alike. Much
not only on inhomogeneities but on range as well. more surprising is that the earlier portion of the time front

It should be emphasized that different ray trajectoriesproduced by chaotic rays remains, to some extent, similar to
have different asymptotes at long range. This important asthat in the unperturbed waveguide. Let us discuss this point
pect of the chaotic transmission phenomenon is connected in more detail.
the stickiness. This phenomenon, shortly discussed in Sec. When the perturbation is absent, the time front has the
[INA1 and illustrated in Fig. &), leads to appearance of folded accordion shape and consists of segments of smooth
long almost regular portions of a chaotic trajectory when thdines (see the upper row of plots in Fig. 1Zach segment is
trajectory sticks to borders of some stable islands. formed by rays with the same identifié¢= =N, where= is

If the trajectories of the problem follow the Gaussian typethe sign of the launch angle arid is the number of ray
process then their distribution can be described by a diffuturning points(i.e., points of the trajectory where the grazing
sion type equation with uniform asymptotes @&r 4, angle changes signRays with the identifiers-N and —N
wherer 4;; is the diffusional length. However, the presence ofproduce two neighboring intersecting segments. Rays with
islands changes the uniformity property so that differentpositive and negative identifiers form two piecewise lines of
bunches of rays can have different intermediate asymptotesccordionlike shape with some relative shift along the time
at long ranges. The role of islands is crucial for the appearaxis.
ance of jets of almost coherently propagating trajectories This property remains valid for chaotic rays. This is illus-
(from the chaotic sgahat can occur and survive at very long trated in Fig. 13 where magnified fragments of two time-
acoustic paths. The concept of chaotic transmission has beémnts from Fig. 12 computed for 3000 km range are pre-
introduced to attract the attention to the fact that even chaotigented in the same plot. All arrivals with= —115 andJ
rays can be distinguished by their different asymptotic be=—116 are shown for both perturbed and unperturbed
havior as a result of the non-Gaussian character of chaotiwaveguides. Crosses and asterisks depicting arrivals in the

dynamics. range-independent model form two smooth segments. Points
and circles depicting arrivals with the same identifiers in the
C. Timefronts for unperturbed and perturbed waveguides perturbed waveguide form two sets of randomly scattered

points in the neighborhood of two similar smooth segments.
Loosely, chaotic rays produce a dispersed version of the pat-
Figure 12 presents time fronts at three different rangesern typical of the range-independent waveguide.

computed for a point source located at 1 km depth, i.e., at the Another manifestation of this property of ray dynamics in
axis of the unperturbed sound-speed profile. Starting morange-dependent waveguides was demonstrated in[Ref.
menta, p,, of sample rays have been uniformly distributed where properties of eigenrays, that is, the rays that pass
over the interval-0.2<p,=<0.2. The corresponding interval through the given point of the waveguide, were studied nu-
of launch angles spans from11.5° to 11.5°. The latest part merically. It turned out that groups of chaotic eigenrays with
of the arrival pattern is formed by axial rays that, as wethe same identifier tend to form clusters of arrivals with sur-

1. Range dependence of the time front
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n

Depth (km)

Fractal dimension

e Travel time (s) -

FIG. 13. Fragments of the time fronts at 3000 km range formed
by rays with identifiers equal te- 115 and— 116 in the perturbed 17 - = = o
(points and circlesand unperturbedasterisks and crosses Range (km)

prisingly small time spreading within each cluster. Looking_ FIG. 14. Fractal dimen_sion of travel time dependence on start-
at Fig. 13 we see that in our case this property of eigenray§9 momentum as a function of range.

should also take place. Indeed, it is natural to expect that all

the eigenrays at 3000 km range arriving at a depth of, say,

2.5 km with identifier— 115 will be located at a segment of L(A):Z Itiv1—til, (32)
horizontal linez=2.5 km inside the area filled with circles.

A time spread of this cluster will be about 0.25 s and there

will be no overlapping with neighboring clusters. with t; being travel times of rays with starting momenmig

The lowermost row of plots in Fig. 12 presents contribu-uniformly spaced apart b (pgj+1—Po;=A) over the in-
tions to the above time fronts from rays with starting mo-terval —0.14<pg;<—0.13. The computations have shown
mentap, from a narrow interval—0.14<p,<—0.13 that thatL~A "9 wered is some positive constant from the in-
corresponds to launch angles fronB.3° to —7.45°. These terval 1<d<?2. It confirms our assumption about a fractal
plots demonstrate a great difference between redthiék-  structure of the timefront. The constahis a fractal dimen-
solid lineg and chaotiqscattered poinjstime fronts. In the  sion and its range dependence is shown in Fig. 14.
range-independent waveguide arrivals are spread in a smooth
and predictable way and cover one or tWaepending on
range segments of the time front depicted by solid lines.

In the presence of perturbation arrivals of rays with the An interesting and somewhat unexpected feature of the
same starting momenta are spread over several segmentstidfie fronts depicted in the middle row of plots in Fig. 12 is
the time front. It should be emphasized that chaotic nature ofhe presence of gaps between travel times of regular and
their dynamics reveals itself in the fact that rays with closechaotic rays. These gaps are also clearly seen in Fig. 15
starting parameters “jump” to different segments in a ran-where travel time dependencies on starting momenta and his-
dom manner. This situation is in sheer contrast with that inograms(relative number of arrivals per a small fixed time
the unperturbed waveguide, where trajectories with the samiaterva) representing travel time distributions are shown.
identifier have starting momenta within a fixed angular inter-
val and rays with starting momenta outside this interval have 1500 km 5000 km
different identifiers. TR iy T

D. Travel time gap

o
©

2. Fractal properties of the time front fine structure

IOMomenlumo
U
\\

NS

Fractal properties of rays can be characterized in different -
ways. Here we restrict our attention to the ray travel time and by
examine the same interval of starting momentd&).14<p,
< —0.13 presented in Fig. 11 and in the lower row of plots in 005
Fig. 12. As it has been already mentioned, the magnification
presented in Fig. 11 do not reveal a smooth curve in the
travel time dependence on the starting momentum at 3000
and 5000 km ranges. It suggests that the function under con-
sideration has a fractal structure.

To obtain a quantitative characteristic of this structure we
have computed “lengthsL of curves that can be constructed
by connecting points presented in the left column of plots in  FIG. 15. Upper row: travel time versus starting momenta. Lower
Fig. 11. The “length”L has been defined as the sum row: histogram of ray travel times.

!
©
o

Histogram

0
997.5 1000 33275 3334

Travel time (s)
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FIG. 16. Travel time as a function of starting momentum at four
different ranges.

Note, that in the unperturbed wavegui@ee the upper row
of plots in Fig. 12 the ray travel time are spread in a smooth
way without any gaps.

A qualitative explanation of this effect is as follows. In
range-independent waveguides with sound-speed profiles
like those presented in Fig. 1 signals propagating through FIG. 17. Upper panel: Typical dependence of the Hamiltoklan
near-axial rays arrive at the given range later than signalsn depth,z. Lower panel: Plot schematically representing wave-
going through steep rays. It is a typical feature of underwatefront variations with range. Thick solid and dashed curves depict
acoustic waveguideg8,12]. The point is that most parts of wave fronts corresponding to rays with starting momenta of differ-
steep ray paths lie far from the sound-channel axis, i.e., ift Signs.
water layers with comparatively large sound speeds. There-
fore in the range-independent waveguide the travel time  pears already at 300 km range.
the given range decreases wjthy|, wherea, is the launch A more detailed investigation of characteristics of the gap
angle. and their dependence on the parameters of the problem will

The presence of perturbation changes the situation. In thise considered elsewhere. Here we just notice that in the time
phase plane shown in Fig(é the starting positions of rays front computed for the model considered in the preceding
emitted by a point source at 1 km depth lie on the straightection and shown in Fig. 7 the gap is not so apparent as in
line z=1 km. Rays with starting momenta|p,] Fig. 12. Nevertheless we can see a comparatively low den-
<0.13 (ag|<7.45°) belong to the stable island. They aresity of arrivals at times of about 672 s. This is also seen in
regular and form axial tails in the chaotic time fronts that arethe travel time dependence on the launch angle presented in
very close to corresponding parts of regular time frontsFig. 7. This portion of the time front is formed by rays with
shown in the upper row of plots in Fig. 12. But this is no launch angles close to 8°. As we know, this angle corre-
longer true of rays withpy|>0.13 (ag|>7.45°), i.e., with  sponds to one of the two borders between regular and chaotic
starting parameters from speckled regions of “chaotic sea.tays. At the other border, corresponding to starting angles of
Beyond this border we are entering an interval correspondingbout 5° and travel times of about 672.9 s, the gap is prac-
to predominantly chaotic rays. The latter have trajectoriesically absent.
sampling larger depth intervals compared to that of unper-
turbed rays with the same launch angles. Therefore an aver- IV. RAY CHAOS IDENTIFICATION
aged sound speed over the chaotic ray path is greater than
that for the unperturbed regular ray with the same initial This section consists of the main conclusive theoretical
conditions. This causes decrease of arrival times of chaotipart of the article: identification of presence the chaotic/
rays. In this sense, the existence of the gap is a consequen@@nchaotic rays on the basis of the analysis of the time front
of a sharp boundary between initial conditions of chaotic andlistributions. We shall start from an auxiliary material.
regular rays. It should be pointed out that the gap is not
empty, but the density of arrivals inside this area is much less
than in neighboring parts of the time front.

Studying of evolution of the travel time dependence on Let us come back to the Munk profil@2) for the poten-
the starting momentum with distance shows that the gap agial of the ray dynamics. For a given “energyi a ray “par-
pears already at ranges of a few hundred kilometers. It isicle” bounces between pointg{,z,) as it is shown in the
seen in Fig. 16, where plots depicting travel times versusipper panel of Fig. 17. The spatial frequency of the bounces
starting momenta are shown for several ranges. The gap afescillations is

A. Phase diagram and wave-front evolution
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H(l) meaning that the larger Isi.e., the larger i$, the smaller is
w(H)= T>0’ (33 arrival time. In other words the higher is a ray trajectory
cycle in the upper panel of Fig. 17, the faster a signal propa-
gates along this ray.

while its derivative is negative .
g Now let us add a perturbation.

dw(l) de(H) d?H(l) . .
= = B. Stochastic ray acceleration
T ® dn 92 0 (34

Consider the energii (actionl;) corresponding to the
boundary of the stable island on phase plane. It follows from
the overlapping criteri@24) that chaotic dynamics occurs in
a domainH>H. (I>1.) or w<w.=w(H;). More pre-
cisely, dependence of the frequensyH) onH (or I) is not
monotonic as it follows from Fig. 2. That makes a possibility
of chaotic dynamics in a finite domaid.<H <<H 5 Or I
<I<Iax- A possible situation of a localized chaos is shown
in Fig. 8(c) where the strong chaotic behavior is limited by
the central island, i.eH, (or I;), and by some outer value

as it follows from Fig. 2b) for the main part of the interval
of accessible values df or H. In Egs. (33) and (34) we
consider dependence of on H instead of the action. It
follows from Eq.(34) that the largefor highe) is the energy
level H in the upper panel of Fig. 17, the greater is the
interval of bounces of a rayz(,z,) and the longer is the
spatial cycle(period of oscillations At the same time, the
mean sound speed increases with the growtH.dDn phase
plane €,p) an unperturbed ray trajectory is a circlewer
panel of Fig. 17. The distribution of ray depths taken at the
same range in the lower panel of Fig. 17 will be calleddi
“‘phase diagram.” Consider now all trajectories that have
values of the energh in the interval H,,H,) and the same
valuez=z, at the range ;=0. The thick line that connects
on the phase diagramall positions of rays with different v
value of their momenta and energies but with the same range t(L,Hp)= 2 Atj(H;,L), (37)
r is called thewave front i.e., phase diagram provides a =1

wave front on phase plane. In the lower panel of Fig. 17 we . L
show by thick lines three wave-fronts locations at ranges whereAt; is a propagation time over a cycle

=0, r,>0, andrz>r,. They are parts of th&ont spirals _ _

that rotate clockwise. By thick-dash curves we show similar Alj=2mlw(E;) 38

wave fronts that rotate counterclockwise. Each time wherst two full bounces of a ray in Fig. 12. We assume that the

the spiral a(_:quires a full c_irc_le_, the wave front in the phase(_:.nergy E; of the ray does not change its value along the
diagram gains more multiplicity values. It corresponds torgnge intervalAL ; and

appearance of two more breaking points in unperturbed time

fronts like those shown in Fig. 1@op row) or Fig. 7 (top). v

Dash-curves wave fronts are similar to the described ones E ALj=L. (39

but slightly different since the potential shape in the upper =1

panel of Fig. 17 is asymmetric. The outer points of the fronLl_

are closer to final point since they move slower than interna,

points due to Eq(34). The described way of the wave-front

evolution on phase diagram is equivalent to the wave-front v

observation data as it is shown in Fig(tép). 2 ALi~p(AL)=L (40)
Let us consider arrival timgL,H) depending on the po- [

sition of a point on the phase diagram. For the fixeghdH

it follows from Egs.(4) and(10) and

Hmax or Imax- i . X i
The dynamics in the stochastic sea can be presented in

fferent ways and one of them is to consider an arrival time
t(L,Hg) with an initial energyH,>H_. as a sum of slightly
correlated additives

he chaotic ray dynamics means that due to the large number
aw,

t(L,H)=i prdz—HL =L(Iw—H). (35) 2, (ALj=(AL)?~w((AL)?) (41)
Col|Jo Co =1

if v>1. Consequently, the distribution function far_; is

After diff tiati f Eq.(35) with t td and ly-
er differentiation of Eq.(35) with respec and apply focused close o the value

ing Eq.(14) we obtain

dt(L,H) L do ALONAL(HO)l HOZ(HmaX_HC)/2 (42)
dl CoI di 36 and its width can be of ordekLo/v*2 In Sec. V we shall
see that chaotic behavior of near-axial rays due to mesoscale
In correspondence to E¢34) inhomogeneities may require a different method of descrip-
tion and in this case relation87)—(42) need some modifi-
dt(L,H)/dI<0 cation.
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As a result of this consideration, we can conclude that a 4. Phase jump

ray with a starting energy close to. propagates in the sto-  Another manifestation of the strong phase mixing is seen
chastic sea area in such a way that its en¢igyrows from iy Fig. 14 in extreme sensitivity of the number of turning
H¢ to the valueHy,, with @ maximum of the distribution points to the starting momentum. The jumps in number of
function somewhere dty,>H,. It follows from the preced- turning points meanphase jumpsi.e., jumps of the angle
ing Sec. IV A that a ray wittH>H_ has a shorter arrival variable#, of order 2. These irregular jumps lead to irregu-
time. In analogy to the so-called stochastic particle accelerdarity of the time front in perturbed waveguidésee Figs. 7
tion [15] this phenomenon can be namschastic ray ac- and 12. An interesting and surprising phenomenon is that in
celeration spite of these random jumps, some regular structures are ap-
Criterion of chaog24) is valid for the domain outside of parent in the time front. In the presence of perturbation we
the large island in the center of Fig(éB Rays(particles  see a fuzzy version of the accordionlike shape of the time
diffuse outside into the direction corresponding to actibns front typical of an unperturbed waveguide. A similar stability
greater than. This yields a gap in ray intensitiéaumbers ~ Of portions of the time fronts formed by steep rays has been
of rays atl nearl,. That is exactly what is observed in Fig. observed in numerical simulatiofi8] and field experiments
12: the gap in the number of rays for the same interval of12]
actions leads to a gap in travel time distribution since chaotic
rays are accelerated compared to nonchaotic rays. V. CHAOTIC RAY DYNAMICS IN A DEEP SEA
WAVEGUIDE WITH MESOSCALE INHOMOGENEITIES

C. Diagnostics of ray chaos Although there are a variety of factors aﬁecting long-
) . _range sound transmission through the real ocean, in under-
Here we would like to formulate what kind of properties \ater acoustics it is believed that in many cases the fluctua-
of the time front are respon5|b|e for the chaotic ray dynamlCE[ions of the Signa| propagating in the deep sea at a carrier

and how one can identify the phenomenon of chaos. frequency of order 100 Hz are mainly determined by sound-
. speed variations induced Ky internal waves andii) me-
1. Time front gap soscale inhomogeneiti¢$3,17,28§.

Appearance of the gap in the time front indicates the pres- The internal waves are characterized by horizontal Spatial
ence of chaotic rays. Moreover, other types of weaker gapgcales ranging from hundreds of meters to tens of kilometers
can appear at shorter arrival times. and vertical scales of tens of meters. Their temporal scales
are on the order of hours. The word mesoscale denotes
sound-speed inhomogeneities whose horizontal scales range
from tens to hundreds kilometers, and which evolve on time

A maximum of the number of the arrival rays appearsscales of one month. The corresponding vertical scales are
right before the arrival gaffig. 15, lower row. We suppose from 100 m to 1 km{27].
that the presence of this maximum is related to the phenom- The idealized environmental models discussed in the pre-
enon of stickines§23,25 to the first resonance islands set in ceding sections are aimed at studying internal-waves related
the domain of the chaotic dynamics. The stickiness to thenechanisms of stochastic ray instability. In contrast, in the
corresponding set of islands can be also seen from the Figiresent section we focus on ray behavior in the environment
8(c) of the phase plane. The sticky trajectories perform alwith mesoscale range variations and demonstrate numeri-
most regular dynamics without escape to the stochastic sazlly that even in the absence of internal waves, these inho-
for a fairly long time. As a result, an analog to the stochastianogeneities alone can give rise to ray chaos. On the other
acceleration is declined and a local maximum appears in theand, it turns out that there exists a difference between
arrival time distribution. However, the issue of manifestationmechanisms leading to chaotic ray dynamics for the two
of the stickiness in ray travel time distribution requires atypes of inhomogeneities.
further investigation.

2. A maximum in the arrival time distribution

A. Ocean mesoscale variability measured
3. Fuzziness and the front splitting during the acoustic engineering test

As it is seen from Fig. 12Zmiddle and lower rowsthere A particular model of the deep see environment used in
is a tendency of splitting of fronts into few close fronts with this section has been constructed on the basis of real hydro-
a simultaneous fuzziness of the front structure. Typically,graphic datagcombined with the historical dgtaneasured in
chaos occurrence can be interpreted as the strong phase mike North Pacific Ocean in 1994 during the acoustic engi-
ing. We mean the phase of the ray trajectory represented hyeering tes{AET) [12,13. In this experiment sound trans-
the angle variableg. As a result, clockwise moving set of mission over 3000 km range was investigated and the nearly
fronts and counterclockwise moving set can intersect eachoncurrent temperature and salinity measurement were car-
other at the same phase point what is impossible for regulaiied out along the acoustic paths. Much of the variability
dynamics without special conditions. This intersection pro-produced by internal waves has been smoothed out from the
vides occurrence of satellite fronts after a shorter timehydrographic data and after some processing the model of
(range than without chaos. sound-speed field with mesoscale spatial variations was ob-
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o) (km/s) known that most of the small-scale variability in the environ-
ment occurs in the upper part of the waveguide, near or
] above the sound-channel aXik7,22. A detailed visualiza-
8000 km tion of the refractive index variability at depths ranging from
an z=0 km (sea surfaceto z=1 km is presented in Fig. 19.
In this figure, local extrema of the refractive index spread in
an irregular way are clearly seen at depths of 500—-800 m.
Although the sound-speed fluctuations in the vicinity of
the sound-channel axis are rather sni@llL—0.5 m/§ they
can strongly affect near-axial rays propagating at small graz-
ing angles. For these rayg|<n~1 and the Hamiltoniaf2)
can be approximated Hy,2]

1.48151.52
—T T

2 (km)

2

‘ H=%+U(r,z) (43
FIG. 18. Sound speed profiles at 3000 km range. Profiles are
plotted every 300 km with a sound-speed offset 0.2 km/s. with the “potential”
tained. This model representing typical features of the deep U(r,z)=[1-n?(r,2)]/2. (44
sea acoustic waveguide, has been used in our numerical
simulations described below. At each cross section of the waveguitleas a function of

The sound-speed profile evolution within 3000 km rangehas a shape of some potential well with a minimum at the
interval is shown in Fig. 18. Note that the depth of thesound-channel axis. Due to the mesoscale inhomogeneities
sound-channel axigthe minimum of the sound-speed pro- this minimum is not sharply defined. Moreover, at small val-
file) is gradually increasing with range. In this figure, we seeues ofU usually there are a few local minima. Each mini-
only largescale features of the sound-speed field while thenum forms a local waveguide channel and, as we shall see
details with lesser spatial scales, are not discernible. It is welbelow, ray trajectories can be trapped in such microchannels.
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FIG. 19. (Color) The refractive index in the upper part of the waveguide at a range interval of 3000 km.
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: FIG. 21. The time front at 3000 km range.

FIG. 20. Trajectories of three rays in the configuratiopper

row of plotg and phasélower row of plotg spaces. The rays start fo|qed accordion shape that we have already seen in Figs. 7
from the point set at 750 m depth with starting momepéa-0.2 544 12 This shape is typical of unperturbed waveguides with
(left column), po=0.07 (central columi, andpy,=0.015(right col- smooth sound-speed profilef8,12. In the perturbed
umn. waveguides such shapes are observed in the portions of the
time fronts formed by regular raysee the lower panel in
Fig. 7 and the middle row of plots in Fig. 12As we go to
large travel times the structure of the time front becomes
frregular and this fact suggests that the late arrivals formed

Furthermore, irregular “jumps” of trajectories between dif-

ferent channels lead to chaotic behavior of near-axial rays.
So, the properties of mesoscale inhomogeneities diffe

from that of environmental models studied in Secs. Il and III.by near-axial rays are predominantly chaotic.

Results of ray tracing presented below show how this differ- This expectation is consistent with the results presented in

ence reveals itself in ray dynamics. Fig. 22 where the travel time of the near-axial ray is shown
versus the starting momentum. This plot is similar to those
B. Chaotic and regular rays presented in Fig. 11 where the same dependencies are shown
In our numerical simulations we have studied ray trajec{Or chaotic rays in the waveguide with periodic inhomogene-
tories leaving a point source set at 750 m depth and propdly (30) superimposed on Munk profil@2). The lower panel
gating in the range-dependent environment presented in Figh Fig. 22 presents the number of ray turning points as a
18 and 19. The qualitative difference in behavior of nearfunction ofp,. We have already seen a similar dependence in
axial and steeper ray paths is shown in Fig. 20. Here thg]g. 14.. In poth cases the e_xt'reme senslltlwty to initial con-
trajectories of three rays are shown in configuratiopper ditions is ewdent: a tiny variation of stgrtmg momentum _of-
row of plotg and phasglower row) spaces. The steep ray ten causes a S|gn|f|cant change of traje_ctory shape. '_I'hls re-
with the starting momentum,= 0.2 (left column reveals a sult gives an evidence thaj[ the trajectories pf near-axial rays
weak sensitivity to range variations of the sound-speed praProPagating at small grazing angles are highly unstable. A
file. The most part of its trajectory lies at large depths where

the sound speed does not vary with range. A less steep tra- 2027.1
jectory with py=0.07 (middle column is more sensitive to o 2Tt
range variations in the environment. It gradually shifts to @ s0o6s)
larger depths following the variation of the sound-channel gm_
axis seen in Fig. 18. However, this trajectory is still not af- £ ¢ Ik
fected significantly by mesoscale inhomogeneities. In con- A ]
trast, the behavior of the near-axial ray with= 0.015(right 2022805 004 -003 002 001 0 001 D002 003 004 005
column is almost completely determined by the mesoscale
inhomogeneities: at every range the ray is trapped in one of 2%
local channels existing in this range, the ray “jumps” from g0
one channel to another highly irregularly. ool
It is natural to expect that the coexistence of chaotic and 2 ss0l
regular rays should manifest itself in the time-front structure 3 gl T
as it was the case for the idealized periodic environmental S g

models considered in Secs. Il and IIl. %005 o0a —003 00z 001 0 001 00z 003 004 005

The time front evaluated at 3000 km range is plotted in Staring momentum
Fig. 21. It has been computed by tracing 20 000 fan rays with  FIG. 22. Upper panel: Travel time dependence on the starting
starting momenta uniformly incremented within the intervalmomentum for near-axial rays. Lower panel: Number of turning
from —0.2 to 0.2. The early portion of the time front has the points as a function of starting momentum for near-axial rays.
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FIG. 23. (Color) Upper panel: Two ray trajectories starting from the point source at 750 m depth with initial mopen€a015(red
and py=0.01502 (blue). Lower panel: A closer view of the trajectories in the range of 650—950 km. The spatial distribution of the
“potential” U is shown by colors. The dark brown color corresponds to minimbl @f,z), i.e., it indicates sound-channel axes of local
waveguides formed by mesoscale inhomogeneities. The yellow color corresponds to large valuasibé intermediate values df are
marked by red.

. . . unperturbed term and a rapidly varying weak perturbation. In
detailed numerical analysis of ray paths has demonstrate her words, near-axial rays cannot be treated in the scope of

that trajectories which are initially neighbors, move apart atthe perturbation theory described in Sec. I

an exponential rate. The Lyapunov exponetsefined by We suppose that the basic mechanism determining sto-

Eq. (27) and representing the quantitative characteristic of . . . .
. o . . chastic behavior of near-axial ra related to the presence
this stochastic instability, varies from 1/100 1/km to 1/35 St V! X! yS 1S pres

1/K of irregular local waveguide channels in the depth interval of
m. 00-800 m. This is illustrated in Fig. 23 where the trajecto-

The results of the ray tracing demonstrate that mesoscaf?es of two rays with starting momengg,=0.015(the same

inhomogeneities give rise to ray chaos similarly to what can, ... . : -
. . _trajectory as in the er right plot in Fig. 2@nd
appear due to the internal waves. However, the mechanlsmsJ y ! upp ight plot in Fig. P Po2

of chaotic behavior are different for the two types of pertur- ; a(')éoc%gr%zs ?Lﬁos\,\r,‘ot\évg'slgnfze l;tphpir p:) m;lo\(/)vek;e(raa;hag gﬁ;h
bations. This issue is a subject of the following section. J P P 9

then separate abruptly. The lower panel graphs these trajec-
tories in the range of 650—950 km. The spatial distribution of
the “potential” U(r,z) are shown by colors. Dark colors
correspond to small values &f, while light colors denote

In the preceding sections we have discussed stochastic ralye larger values. Until 750 km range both trajectories propa-
instability due to overlapping of different ray-medium reso- gate in the same local channel formed by mesoscale inhomo-
nances. This mechanism implies that a range-dependent payeneities, but beyond this range one of the trajectories is
turbation “responsible” for emergence of ray chaos is weaktrapped into another channel located at larger dépthuzzy
[see conditiong19) and (20)]. For near-axial rays the fluc- dark stripe at depths of about 750.mlthough at 850 km
tuations of the “potential”’U in the vicinity of the sound- the ray returns back to its former channel, beginning from
channel axis are of order of its mean value and the Hamil750 km range the two trajectories follow different paths. Our
tonian (43) cannot be split infto a sum of a smooth numerical simulations show that this situation is typical and

C. Mechanism of stochastic instability of near-axial rays
and gaps in travel times
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“jumps” of ray trajectories between neighboring local chan- wider this interval is, more ray-medium resonances can exist
nels play an important role in emergence of stochastic instafor the given perturbation, and these resonances have more
bility. So, the mechanisms leading to chaotic dynamics of thehances for overlapping and giving rise to strong ray chaos.
near-axial and steep rays are different. Another important issue addressed in this paper is chaotic
In spite of this difference, the numerical simulations dem-properties of ray travel times. These characteristics of the
onstrate that the dynamics of near-axial rays have commowave field have received much attention in underwater
features with the ray behavior observed in the preceding se@coustics because they are considered as main observables in
tions for steeper rays in idealized environmental models. Thechemes of acoustic monitoring of ocean strucfui@11].
most typical and important of them is the coexistence ofWWe have examined extreme sensitivity of ray travel times to
chaotic and regular rays. Starting momenta of rays can bstarting momenta and their fractal properties. In our numeri-
divided into some intervals corresponding to the predomi<cal simulations it has been shown that in the presence of the
nantly regular and predominantly chaotic rays. perturbation giving rise to ray chaos, there appear gaps in the
In Sec. lll it has been observed that the presence of @y travel time distribution that are absent in the unperturbed
boundary between such intervals causes a gap in ray travelaveguide. We argue that the presence of such gaps is re-
times. A similar phenomenon occurs for near-axial rays. Thdated to coexistence of chaotic and nonchaotic rays. It has
gaps are seen in the time front in Fig. 21 as the intervals obeen shown that this phenomenon has a known analog in
low density of points. The gaps are more apparent in theheory of dynamical chaos. It is the so-called stochastic par-
travel time dependence on the starting momentyy, ticle acceleratiorf15]. A similar effect for chaotic rays that
shown in the upper panel of Fig. 22. There are clusters ofeads to appearance of gaps in the travel time distribution, we
rays whose travel times differ considerably from that ofhave called the stochastic ray acceleration.
neighboring rays. An example of such a cluster is repre- Besides the variations in the environment induced by in-
sented by rays witlp, close to 0.2. There is a gap of about ternal waves we have considered the influence of the so-
0.1 s between travel times of these rays and their neighborsalled mesoscale inhomogeneities with significantly larger
Looking at the lower panel of Fig. 22 we see that the gap irspatial scales. These inhomogeneities form local waveguides
travel times corresponds to a gap in the number of ray turnnear the sound-channel axis and near-axial rays can be
ing points, i.e., rays with close times have similar “topolo- trapped in these channels and make irregular “jumps” from
gies.” one channel to another.
It turns out that while the mesoscale inhomogeneities only
VI. CONCLUSION slightly affect steep rays that remain regular, they give rise to
chaos of near-axial rays propagating at small grazing angles.
In this paper we have considered properties of chaotic rayhe most important feature of chaotic dynamics of near-axial
dynamics in deep sea propagation models. The most part @fys is that it cannot be analyzed in the scope of perturbation
the paper is devoted to studying of the waveguides withheory based on smallness of perturbation. It requires the
smooth range-independent sound-speed profiles perturbed Bgyvelopment of new approaches capable to describe how the
weak inhomogeneities with periodic range variations. Param«jumps” between different microchannels reveal themselves

eters of the perturbations have been chosen to model env ray travel times and other characteristics of the ray struc-
ronmental variations induced by internal waves. ture.

It has been demonstrated that the overlapping of nonlinear
ray-medium resonances gives rise to ray chaos. Chirikov’s ACKNOWLEDGMENTS
criterion [14,16 has been applied to examine this mecha-
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