PHYSICAL REVIEW E, VOLUME 64, 036214
Long-wavelength instabilities of three-dimensional patterns
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Long-wavelength instabilities of steady patterns, spatially periodic in three dimensions, are studied. All
potentially stable patterns with the symmetries of the simple-, face-centered- and body-centered-cubic lattices
are considered. The results generalize the well-known Eckhaus, zigzag, and skew-varicose instabilities to
three-dimensional patterns and are applied to two-species reaction-diffusion equations modeling the Turing
instability.
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I. INTRODUCTION in the stability theory for convective rolls, are generic in the
sense that they destabilize roll-like states in all continuum
Formation of structure via spontaneous symmetry-Systems with Euclidean symmetry in two dimensions.
breaking bifurcations is a topic of much current intefgst Calculations of this type provide useful information even
Despite this, little work has been done on pattern formatiorfbout systems that do not strictly satisfy all the hypotheses
in three dimensions, i.e., in systems that are translation inused to construct the theory. The Turing instability is a case
variant in three dimensions. The recent experimental discovl Point. Actual experiments on Turing structures involve
ery of the Turing instabilitf2,3] provides one motivation for concentration gradients of the feed chemicals, which neces-
extending the existing theory for two-dimensional patterns tg>1ly break both the homogeneity and the isotropy of the
three dimensions. The Turing instability arises in reaction-SyStem. Th's s the case, _for e_xample, in the experiments
diffusion systems and the characteristic wavelength of théeported_m Refsl2] and[3] in which the feed gradient was
pattern that is produced istrinsic, i.e., it depends only upon lmpo_sedln the_ p'a”_e"f the observed patterns and hot per-
the reaction rates, concentrations, and diffusivities of th endicular to it as in subsequent experiments. Despite this

chemicals involved, and not upon any externally impose he hexagons that were predicted for a homogeneous system

length scale. Thus if the dimensions of the experimental apwere stil f_ound..Thus a StUdY of the corresponding problem
three dimensions should likewise produce useful results.

paratus are much larger than the intrinsic length scale, th fact. b the ch teristic lenath le of the inst
instability can develop free from the influence of boundarie n fact, because the charactenstic fength scale ot the insta-
and produce truly three-dimensional patterns. Other syste lity is so much smaller than all the external dimensions, the
exhibiting pattern formation in three dimensions includeamhorS of Refiz] and[3] conclude_ that the observed struc-
block copolymer melt$4] and parametric oscillators in op- tures must in fact pe three-dlmenS|onaI anq that thg top-view
tics[5]. In the former a polymer consisting of long blocks of hexagonal pattern is gctually a two-dimensional projection of
different monomers starts in a spatially uniform state. As2. body-centered-cubithcg structure. More recently, two-
time progresses, the different monomer types self-segrega mensional black-eye_patte_rns in reactlon-d!ﬁusmn systems
into distinct domains, frequently with spatial periodicity. ave a!so been explained in terms of sections of a three-
glmensmnal bce structurg8]. The block copolymer melts

Both systems produce spatial structures that are similar t ) . A
those predicted by the general theory for three-dimensionawvest'gauad in Ref[4] do not suffer from these limitations

atterns on spatially periodic cubic lattidés7]. This analy- of the theory.
gis focuses (E)n they\ﬁciniw of a steady state instabil?{y in Itis important, therefore,_t_hat_the methods u_sed to study
generic systems with translation invariance in three dimenpattern formation anq stapmty in two dimensions be ex-
sions, and determines the types of spatially periodic patterntgnded to the three-d_lmens_lonal case. For patterns on a spa-
with the symmetry of the different types of cubic lattices andt'a".y periodic three-dimensional lattice the equivariant bifur-
their stability properties with respect to perturbations oncat'on. t.heory approaqh has _Ied to an almost complete
these lattices, but other types of perturbations have not bequscrlptlon of the possible stationary patterns on the simple-

considered. In particular the stability properties of the pre-CUbiC (s9, face-centered-cubitfcc), and bcc lattices and

dicted stable states with respect to long-wavelength pertuIt_helr stability properties with respect to all perturbations on

bations remain unknown. In two dimensions such perturbaEhese lattice$6,7]. Near onset these patterns are described

tions are known to be important in so far as they are involvecpy (rea) functions of the form
in the various instabilitiegsuch as the Eckhaus, zigzag, and

skew-varicose instabilitigsthat restrict the possible wave- R _E iK% |

length of the pattern. These instabilities, originally identified lﬂ(X)—i:l zeh +e.etnlt, 1.9
*Email address: timcall@math.Isa.umich.edu where |ki| =k, i=1,... N and N=3, 4, and 6, respec-
TEmail address: knobloch@physics.berkeley.edu tively. The shorthand n.l.t. represents terms that are nonlinear
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in the complex amplitudes; ; these satisfy appropriate am- invariant under translations in one direction, a different in-
plitude equations and thereby specify the possible patternsstability can take place. This is the zigzag instability and it
In this paper we extend these calculations to examine thbreaks the translation invariance of the pattern along the roll
stability properties of patterns with wave numbers that differaxis. The skew-varicose instability can be thought of as a
from the optimum wave number selected at onset, focusingombination of these two fundamental instabilities; for this
on phaseinstabilities. As in one- and two-dimensional pat- instability the associated displacement vector is neither par-
terns these instabilities limit the wavelength of stable spay)ie| nor perpendicular t&’. In contrast, a square pattern in
tially periodic patterns, leadingn two dimensionsto the 5 plane is two-dimensional in a nontrivial way, because it
so-called Busse balloon. The instabilities arise either as Breaks translation invariance two independent directions.
result of the destabilization of neutrally stable translationgch patterns have two neutral directioiereafter phase
modes by long-wavelength perturbations or due to longgyirectiong and consequently their stability properties are de-
wavelength symmetry-breaking bifurcations. Because 0fcrihed by apair of coupled phase equations. As a result a
their long-wavelength nature both types of instabilities aresquare pattern also undergoes two types of instability, but
easily identified. In one dimension the stability limit is pro- this time both are associated with the destabilization of a
vided by the well-known Eckhaus instability. This instability neytral mode. Despite this difference in their origin we fol-
is identified as follows. Near onset the evolution of an am-gyy cystomary terminology and refer to these as the Eckhaus
plitude z(t) of a mode with wave numbek in a left-right  instapility (present for <const<q?) and the zigzag insta-
symmetric system is described by the amplitude equation bility (present forg<0) [10]. For hexagons, analysis of the
. type described in Ref$11] and[12] shows that the region of
z=[\=o(k—ko)’Jz+ a2zt -, 12 stgbility in theg-\ plane—theBusse ballooa-is completely
closed by long-wavelength instabilities alone. This result is
articularly significant in those cases in which the hexagons
o not lose stability to rolls with increasiny, since nothing
beyond long-wavelength theory is required to bound the
Busse balloon. We show here that this property is shared by
S(k—kg)2<\. the hexagonal prism and bcc states present in models of the
Turing instability. For these and other three-dimensional pat-
Only some of these wave numbers, however, can appear &/ns, the possibilities for instability are yet richer and these
stable patterns. To see which wave numbers, consider a mo@ke described here in detail. It should also be mentioned that
of wave numbek=k.+q, with g small, corresponding to a additional instabilities, the so-called amplitude instabilities,

where is the bifurcation parametefN|<1) andé>0 and
a<0 are real, model-dependent coefficients. This mode ha
a linear growth rate. — 8(k—k¢)?2, and thus the trivial state
is unstable to any mode with

space-dependemmplitude of the critical mode may be present. These include the cross-roll and oblique
_ cross-roll instabilities of rolls. These instabilities select a
z(x,t)=re'd, stable wave number by destroying the existing pattern and

regrowing a new one with a different orientation and a more

Equation (1.2 implies that at equilibrium r®=—(\  favorable wavelength. Such amplitude instabilities may un-
—&9°)/a. Note that|\|<1 implies that|q|<1. Thisdis-  der appropriate circumstances provide a more stringent limit
torted state is linearly unstable with respect to perturbationson the range of stable wave numbers than the phase insta-
with wave numberk’,|k'|<|q| if sq><\<35qg® [1], i.e., bilities alone[11].
when A\>0 the trivial state is unstable to modes wit The traditional methods for studying this problem in two
< /8 but if \/35<g?<\/ & these modes are themselves un-dimensions, such as the Newell-Whitehead-Segel approach
stable on an even longer time scale. Thus only states wit[13], lead to envelope equations that break the isotropy of the
q?<\/35 are stable. For largeq the instability shifts the whole system. This is a consequence of rigorous adherence
locations of the maxima and minima of the pattern, therebyto asymptotics, which can only describe roll structures that
altering its wave number. The long term result is a sloware near a straight roll pattern with the same orientagion
distortion of the pattern until it becomes stable with respecerywhere However, recently Gunaratnd4] introduced a
to long-wavelength perturbations, i.e., until the system adnew procedure characterized by a strict adherence to symme-
justs its wave number to one within the acceptable rangery (in this case isotropyat the expense of retaining certain
q2<\/38. This usually occurs via phase slips that occur atformally small terms. Gunaratne demonstrated by numerical
locations where the amplitud#x,t) passes through zef6]. simulations that his procedure allows substantial changes in
Only at the band centeg&0) is the one-dimensional pat- orientation of the patterns over large distances and that it
tern stable for all supercritical. provides a better qualitative description of the modulation of

The above description applies equally to Rayleigm@e  roll patterns than the traditional asymptotic procedure, at
rolls and Taylor-Couette vortices, which are two-dimensionaleast when compared with experiments and direct numerical
fluid states but in which the transverée., boundegldimen-  simulation of pattern-forming systems. Of course this is be-
sion is “trivial.” These states are therefore effectively one- cause the calculations are never in fact performed in the
dimensional and the Eckhaus instability they undergo is asymptotic regime. But the point remains that even in the
consequence of the destabilization of a neutral mode correasymptotic regime the traditional theory is unable to describe
sponding to translation of the pattern in the direction of itschanges in roll orientation over arbitrarily large distances. In
wave vector. For patterns, such as rolls in a plane, that arthis paper we therefore adopt Gunaratne’s approach and gen-
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eralize it to three-dimensional perturbations. In fact this apandz is now a function of aslow) spatial variablex. As
proach is ideally suited to three dimensions and because @&mphasized by Gunarath&4] the operatof] is rotationally
respects isotropy, it allows a relatively straightforward analy-invariant. To see what we mean by this, consider the ampli-

sis of the resulting modulation equations. tude equation for a roll pattern with wave number in ke

_In Sec. Il we briefly describe Gunaraine’s approach andyjeciion, say. Such a pattern is described byARe’*1 .
introduce his “covariant” derivativél; . In Secs. Il, IV, and This orientation is arbitrary, of course, and we would like to

v we solye the r.esulting modulation. equat?ons for Fhe threerequire that a rotation of this state through an ar@jlehich
cubic lattices of interest and determine which solutions may i3k X should b h
, should be another

be expected to be stable in each of these cases. In the btkes the amplitude\, into A,e

case stable small amplitude solutions are present only whesplution to the envelope equation. Hefek;=Rgk;—ky,

the quadratic terms in the amplitude equations are smaliwhereR, is the rotation matrix. This is equivalent to the

This is the case, in appropriate parameter regimes, for theequirement

two models of the Turing instability described in Sec. VI.

Although this paper is motivated by the Turing instability we DleiAkl"Z: 0.

adopt a model-independent approach throughout, and we

emphasize that the results are therefore applicablantp ~

three-dimensional pattern-forming system with the appropri-This condition is satisfied byd,=k,-V—(i/2)V?, but not

ate periodicity. In Sec. VII we point out certain similarities by its truncation tdk,- V. Consequently, if we wish to retain

among the calculations for the different solutions and sumthe isotropy of the Euclidean group we must expand all

marize these in terms of general statements about pattequantities in powers dfl and not in powers off as obtained

formation in higher-dimensional systems. Since our analysifrom the traditional asymptotic approach: in the latter ap-

involves the computation of eigenvalues of Hermitian matri-proach any truncation breaks isotropy and hence a funda-

ces we find it convenient to employ quantum mechanicamental symmetry of the pattern-forming system. In the fol-

perturbation theory and the associated Dirac bra-ket notatiolowing we will therefore truncate our expansion to lowest

[15]. order inJ, and not ind. For example, retaining all terms of
the formOJ™z" with m+n<3, Eq. (1.2 becomes

IIl. ENVELOPE EQUATIONS IN THREE DIMENSIONS

: . . : . z=\z+a|z|?z+ s0%z+0(04,2%), 2.1
In this section we consider a general system of isotropic z=Az+alz|z z+0(H%2) @D

partial differential equations undergoing a steady state insta- 4o e
bility in three dimensions. Isotropy implies that the neutralWhereO([1%,z") indicates terms of the forral™z" with m

stability curve takes the form +n=4. A formal justification of the resulting equatida
modification of the Newell-Whitehead-SegdlWS) equa-
A=Tf(K?). tion] has been given by Grahalti6]. However, sufficiently

near onset, this modification has no qualitative effect and one
It follows that instability sets in at)\czf(kﬁ), where  still finds that the Eckhaus instability is present for wave
f'(k?)=0 providedf”(k?)>0. In the following we assume humbers in the range/35<g”<\/é. In fact, as discussed
thatk.>0 so that the instability has a finite wavelength. Wefurther below, the use of envelope equations truncated uni-
are interested in patterns that form for slightly supercriticafformly at OfdefQ(Ds,Zs) has only a benign effect on the
values ofs and with wave vectork, whose lengths are close stability boundaries of all spatially uniform patterns, even in

to k¢ . In the following we choose a length scale such that two and thrge Q|men3|ons, although in two dlmenS|onSIS|g—
~ nificant qualitative differences between the two truncations

ke=1 and writek=k+ g, where|k|=1. Thus arise when these are used to study domain boundgrils
Rather than say that the inclusion of the higher order terms
creates an extra symmetry that we would like, we prefer to
say that the neglect of these terms violates a symmetry that
the physical problem manifestly possesses.

The terms on the right side of this equation are responsible On the bcc lattice the presence of a quadratic equivariant

©

1 -
N=ho= 2 (k[ 2k- G+ 07"

n=2

for the presence of théslow) spatial derivatives in théin- (see belowallows the addition of terms that are quadratic in
earized amplitude equation. These are obtained by replacinghe amplitudes; containing one factor ofJ, cf. Ref.[17].
G with —iV, resulting in the contribution We do not consider this possibility here.

o

1
2 (2",

n=2

Ill. THE SC LATTICE

The sc lattice is generated by the six wave vectois,
where i=1,2,3, taken from the sphere of marginally stable wave
vectors, where

O
Il

x>

<
I

I
E k]_:;(, &2:9, k3:2
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TABLE I. Maximal isotropy branches for the sc lattice. Here=3?>_,|z|2.

Name Solution oy Branching equation
Trivial (0,0,0 0 o1=0
Lamellas &,0,0) x? At (hyg, thy)o=0
Square prisms Xx,0) 2x2 N+3(2hy, +hg)oy=0
Simple cubic €.X,X) 3x? N+3(3hy, +hg)oy=0
are unit vectors in Cartesian coordinatesy(z). With the A. The solution sc
spatially dependent terms added, tfirincated envelope We first look at the sc solution, for whichk,=z,=z;

equations take the foriv] =r. In order that this solution be stable with respect to per-

. turbations on the sc lattice, we assume fisaie below
zy=\23+ (N1, +N3)|2|%21+ Dy (125742517 2+ 601z

h3<0, 3hy, +hs<0, \—d5g*>0. (3.5
+0(0%2Y), (3.1 1

: . W nsider uniformly distort c stat i.e., states with
wherez=(z,2,,23), together with two other equations ob- e conside ormly distorted sc states, i.e., states

tained by cyclic permutation. Hene<1 is a(rea) bifurca- |k1|=|k2|.=|k3|5k’ say, but do not demand that tge are
tion parameter, whilén,, , hs, and 5>0 are real coeffi- necessarily parallel to thie . Such states are given by

cients. Although the coefficiens can be scaled out by 5 1o )

rescaling time and (the choicek.= 1 fixes the length scale A+ (3hyg, +hy)re—38(k"=1)°=0. (3.6

we retain it in what follows, in order to compare the results

for q# 0 with those listed in Table | for theame\ but at the  Perturbations of this distorted equilibrium evolve according
band centerd=0). We are only interested in those solutionsto the linearized equations

that can be stable with respect to perturbations on the sc

Iattice,[i.]e., simple-cubic patterribereafter scand lamellas ar=(hy, + ha)r?(a,+ B1)+ hl,(rlrz(a2+ B5)

(rolls) [7].

For supercritical values ok all wave vectors within a 2 T2 L B L2
: ; L + + B3) — - K"+ (k-
spherical annulus become unstable and spatially periodic pat- hy o, “(agt Bs) — Sag[ (kK1 —1)ky- K"+ (ky-Kq)
terns with different values dk;| may be constructed. As in +1(K-1)k'2]+0(k'3%;63,r3),

Sec. | these correspond to distorted patterns of the form

where O(k’3;03,r®) indicates terms of the fornk’'q™r"
with =3 or m+n=3. The equation foB; is obtained by

where theq; denote small but arbitrary changes of the am-feplacingk” by —k’ andi exchangingy angl,Bi » while those
plitude and direction of the lattice wave vectdigereafter for a,, ... ,B8; are obtained by permutation.

referred to aglistortionsof the lattice and ther; satisfy With the basisé=(a;,B1,a,,B2,a3,83), the lineariza-
tion of our system becomes

z(X,t) =97,

N+ (hy,, +ha)r+hy, (r3+13)— o[ky- Gr+ 2a2]2 _
§=(Ho+H;+Hy+H3)é,
=0(q*r®) (3.2

where
and permutations. Note that the patterns on distorted lattices
remain periodic, but with the lengths and angles of the wave
vectors slightly altered. In the following we write P Q Q P=(h;,. +hg)
01

11
11

11
Q Q@ P/ Q=hy(, .

[ki- G+ 30717 =3[(k+ )~ 112= (K~ 1)% 3.3
whereiisﬁi+ﬁi, i=1,2,3. To determine the stability of
such distorted patterns with respect to long-wavelength per- Ky
turbations we let

2(X,0) =9, +a; (1)K X+ B (e K ], (3.4

wherek’ represents the perturbation wave vedior <|dj| K:(E--IZ’) 1
<1,i=1,2,3, and linearize the resulting equationsijn 3; . b -1/’
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'&‘ '

5 ~
Hy=— E(k2—1)k'21.

- " & =

Here Hy is O(r?)=0(q?)=0()\), H; is O(gk’), H, is
0O(k’?), andH; is O(gk’?). In the following we work to
0O(k’?) and drop terms oD(gk’?). Since the matrixH,
+H,;+H,+Hgzis real symmetric all its eigenvalues are real
and there are no Hopf bifurcations.

The (orthogonal eigenvectors ofH, are the columns of

EE N NN

. 8 8 &8 =

-1 0 0 1
0

T O
B O O O
& 8 8 B 8 B 8 8w

L
-
&
-
&
-
»
-
-

L O
L I TEE O U TR I e

i}
B

CI)=(¢1, e 1¢)6):

v

1
1
1
1

x

FIG. 1. The Eckhaus instability in the-y plane. The unper-
turbed solution has maxim@vhite) at the vertices of a square lat-
tice and minima(black at the vertices of another square lattice.
Thus the unperturbed solution could be the sc or square prism so-
{edii, 6=r2{0,0,0,213,2h3,2(3h10 +hy)l, lutions (or_ squares on th(_e two-dimensional square latti€er the

B w1 Eckhaus instability, the displacements of the maxima are parallel to
@e modulation wave vectde’, here both in thex direction.

1
1
1
1
1
1

o O O O -
=

-2
-2
with eigenvalues

respectively. These are the stability eigenvalues of the s
state with respect to perturbations on the sc lattice. The in-
equalities(3.5) guarantee that the last three eigenvalues aré
negative, so that the eigenvectds,), |¢s), and|pg) are

stable and remain so for sm&l. In the following we em- (ki+Gp)- %+
ploy quantum mechanical perturbation theory and the Dirac
bra-ket notation, so thatp,) is a column vector an¢ig,| is
the row vector, i.e., the transpose conjugatédf), etc. To  with |ay|<r. The effect of the proposed long-wavelength
determine whether the first three eigenvectors remain stablgerturbation is to shift the positions of the maxima slightly
whenk’ # 0, we must look at terms of higher orderkf/q. from their original (@;=0) locations. Since only, is af-
Before proceeding we examine the physical interpretatio
of the null eigenvectors dfl,. Suppose we find that the state . Do~
a;= ;=0 loses stability to the eigenvectpp,). What ef-  this shift is periodic with wave vectdd'. If k'llk; the shifts
fect does this have on the sc state? The values,aind3,  form a “longitudinal” wave, with alternating regions of com-
start to grow from 0 witha;=— 8,=|a,|€'®. While these pression and rarefaction of the maxima. This is the Eckhaus

nd the maxima are found by requiring that

2|a1|

sink'-X+¢)=2nm, neZ,

Rected, the maxima are shifted in the~ ﬁl:i direction;

are still extremely small we have, approximately, instability, and is illustrated in Fig. 1. The figure shows a
1% Oy — i cross section through they plane. Ifk’ Lk, the perturba-
zy=e' 1 r+ a1 *—aqe ] tion is “transverse,” with maxima shifted at right angles to
5 the modulation wave vector. This is the zigzag instability,
~rexpli|d; %+ |a1|sin(l2’->?+ ot and is iIIus.trated. !n Eig. 2. If neither of these relationships
holds, the instability is called skew varicose, an example of

which is shown in Fig. 3.
One way to interpret this result is to look at the positions of  All of the modes for whichy;= — 8; can be interpreted as
the maxima of the pattern. We know from RET] that the  modulations of the phase, and we will refer to these as PM
positions of the maxima of the sc solution form a simple-modes. Modes for whick; = + 8; can analogously be inter-
cubic lattice. At leading order the pattern is defined by thepreted as modulations of the amplitude of the pattern, and we
scalar function refer to these as AM modes.

Since the operatiok’ — —k’ merely exchanges; and
B, leaving the eigenvalues unchanged, any perturbation of

3
W(X)=>, ze"i*+c.c., , 2 )
i=1 the eigenvalues dfl; must be even ik’, and thus the first
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L B O A A O O
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- . 8 " B " & @

x

FIG. 2. The zigzag instability, shown by the same means as in
Fig. 1. The displacements of the maxima are in ¥hdirection,

while the modulation wave vectdt is in they direction.
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Then
(dilHyl ¢i)]i=123

| —

- /A A A
=201l _p g g
0 -2C C

(states not normalized).

If we normalize the states properly, we get the second order
matrix (see Ref[15])

6
(dilH1l d){(Bi[H1 p5)
2,

Vij= e
2A> —AB -AC
= — 5%'?(k*—1)2 P ~AB 2B?2 -BC
3\ -AC -BC 2c?
A*> AB AC
' |aB ® BC
6r%(3hy, +hs) AC BC

order perturbation vanishes identically. To perform second

order perturbation theory oA, we first define the direction

cosines fork’,

A=k, -K'/k’, B=k,-K'/k’, C=Kks-K'/K'.

g o8 ® 8y g5 e

L E T E E BB B
BB A E TE E B

A FTEEEREE T

-
L 2
-
L
i .
N
.
-
-

x

The overall factor k2—1)? is alreadyO(g?). This expres-
sion is to be combined with the corresponding first order
result forH,, which is of the same order a5,
A2
(¢ilHal )i j=1.25=— k'? B?
CZ
The result can be simplified using the expression

1o(k2—1)2—)

g7 —\
3hy, +hy  3hy, +hs

2

from Eqg. (3.2), where we have used the substitution

k=+y1+2q. 3.7
Thus q=Kk; - G,+ 1|G4|? (and likewise fori=2,3) and this
new variable absorbs all contributions from the second de-
rivative in (1. For smallq (or [d|) this is a well-defined, i.e.,
one-to-one, relationship betwegrandk. The eigenvalues of

the resulting perturbation matriX;; +(¢;|H,|#;) are now
5k’? times the solutions it to

2+ At’+Et+Y =0,

FIG. 3. The skew-varicose instability, shown by the same mean¥vhere

as Figs. 1 and 2. The displacements of the maxima are irxthe

direction, but the modulation wave vector is neither parallel nor
perpendicular to them.

Ao (A%+B2+C?)[N—T,60?%]
A — 697
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(A2B2+ A%2C2+B2C?)[A—T'169%][A—T'3697] lar to the modulation wave vectdr = (A,B,C), this insta-
(A— 5022 ' bility corresponds to a zigzag instability.
The remaining possibility for instability, tha& <0, occurs
for N/ 6g?<T,, but in view of (3.8) this condition does not
introduce any new stability boundaries. The condition be-

ot
- =
f—

v A?B2C2(N—3692) [\ —T'3609%]?

(A—602)3 ' comes important, however, whén,, <0 because it implies
that the simple-cubic pattern will be unstable for all
and <I'3692, i.e., that the pattern is also unstable in the interval
360°<\<T';8q°.
_ 3hgt2hy,, _ 3hgt4hy, We still have to deal with the caske=0. In this caseY
I= h >0, I'x= h >0, vanishes identically to this order in perturbation theory. To
3 8 determine whether or not it actually passes through 0, we
look at terms that ar@©(qgk’?). We get no such term from
3h3+6h1v01 H,, whereas to the order we desire,
[g=—>0.
hs
0
Note that, if we use Eq.3.5), then (dilHal é)]i j-125= _K'2s B2
hy,, <0=3<T;<T,<T}, c?
(3.8 0
h,, >0=3>I'>T,>T;. I
Loy e —2k's|  B(GzK')
The simple-cubic pattern is stableith respect to long- C(Gs k")

wavelength instabilities if the three eigenvalues have a

negative real part for all values &, B, and C, which re- and

quiresA, E, andY all to be positive. Since the denominators

are already positive, we need only examine the numerators. (¢ilHa|p;)=— 5qk’ 21,
We examine first the possibility that passes through 0 be-
coming negative and triggering an instability. This occurs forOur new perturbation matrix is

A<360°2.

Vij+(oilHo| &)+ (di|Hs| ¢))
The inequalities(3.8) indicate that this condition provides . . ' ~
the stability limit whenh,, >0. To interpret the nature of = (Vij+(4ilHzl ¢))outH
this instability we substituta =38q? into V;; +(¢;|H| ¢;) =(Vij+(ilHz| ¢}))oid
and find that the null eigenvector is of the form 0
(BC,AC,AB), which in the original ¢ basis isBC|¢;)
+AC|¢,)+AB|p3). This is therefore a general skew- —2k'S B(G,-K') — 5qk'21.
varicose instability, with wave vectdd’ pointing in the di- CGs-K')
rection (A,B,C), but the maxima shifted in the direction ds
(BC,AC,AB). It can, however, be a zigzag instability if , ) .
ABC=0, or an Eckhaus instability iA?=B2=C2=1. The We calculate the new eigenvalue by using perturbation
caseA=0 (or B=0 or C=0) is special because the calcu- theory upon our previous perturbation results. That is, we

lation must be carried to next order in perturbation theory in¥ish to find corrections to the 0 eigenvalue of the matrix

order to determine stability. We postpone this calculation. (Vij +(ilH2l ¢;))oa for the caseA=0. We assume first that
When h, . <0 the corresponding stability boundary is this eigenvalue is nondegenerate. Then the null eigenvector
01

given by x =TI"3692. Along this curve bothY and E vanish s (¢4/=(1,0,0) and

and there is therefore a double zero eigenvalue. More@&ver, ~ '’
also passes through zero along the cuxveI';8g%. The (#|H|p1)=—oqK"".
system is thus also unstabl& €0) when

Thus forg<O0 there exists &' that makes our system un-

stable. Furthermore, =0, thenk' is in they-z plane, but
the unstable eigenvector |#;) so the shifts are in the
[>N69>>T5  for hy, >0. direction. Thus this is a zigzag instability. To check for pos-
sible multiple O eigenvalues we sAt=0 and compute the
Since the two null eigenvectors when=1"369° are (B, determinant of the nonvanishingx2 submatrix of ¥;;
—A,0) and C,0,—A) and these span the plane perpendicu-+(¢;|Hz|#;)) ol

I1<N8q’<Ty  for hy, <O,
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A subset of all possible distortions of the lattice. The equilib-
rium condition(3.2), in the limit of smallz, andz;, yields
the two conditions

N+ (hy, +ha)r2=15(kE-1)2+0(g%r%) (3.9
and
har?=18(ki-1)2—15(k3-1)%, K3=K:.

The latter appears to provide a restriction on the allowed
distortion of the sc lattice. In fact, an examination of the
calculation that follows shows readily that none of the sta-
bility results depend on this restriction, i.e., the results apply
to strictly one-dimensional structurélamellas. The addi-
tional equations are retained purely for convenience so that
all the problems analyzed have the same algebraic structure
and can therefore be solved by an identical method. In the
present case we find that the new lowest order matrix is

FIG. 4. The lower portion of the Busse balloon for the sc solu-
tion, showing the neutral stabilityNS), skew-varicosgSV), and

zigzag(ZZ) boundaries and the resulting region of stability. The SV P 1 1
boundary is present whem , >0, and is replaced by another zig- Ho=r2 Q , P=(hy, +hy) ) ;
zag boundary wheh , <0. 0 ot 11
B?C?S° [N —T189°][A—T'359°] ,, 1
2 k . Q: - h3
(AN—49°) 1

The instabilities due to the-dependent terms in the numera- The (orthogonal eigenvectors are the columns of

tor have already been described. The only remaining possi-
bilities for finding a multiple zero eigenvalue aBs==0 and
C=0. For example, iA=B=0 (and henceC=1) there are -1
two independent null eigenvectors spanning g plane

while k’ is in thez direction, again corresponding to a zigzag O= (b1, ....P6)=
instability. We summarize the above results in Fig. 4.

It is worth noting that the substitutio(B.7), namely, k

=1+ 2q implies

o O O o

O O O O - B
O O O B, O O
O O B, O O O
O B O O O O
P O O O O

and correspond to the eigenvalues

{e}i-1,. . e=r*{0,2hy, +hs),—hs,—hg,—h3,—hg},

(K= 1)%=4g?=[2(k;- G1)2+]da|?12

Consequently we may think ofas the magnitudk; - G, and

Eq. (3.7) as anapproximationinstead of a substitution intro- respectively. Thus only the first eigenvalue can trigger a
ducing a new variable. This approximation is equivalent tolong-wavelength instability. Note, in particular, that the last
neglecting the higher order term(i/2)V2 in ;. Thus the  four eigenvalues are stakfié h;>0) indicating that the con-
only difference between the calculation with isotropy- straints in Eq.(3.9) play no role. As before, the first order
preserving terms and without lies in the near-identity relaperturbation calculation far, does not contribute, whilel,
tionship betweem andk; - G,. The stability diagrams calcu- Yields

lated in these two ways therefore differ only by a near-

identity rescaling of the horizontal axis. This is an example (p1lHa| 1) =— 5k'2A%.

of a general result that the use bf does not affect the

stability properties operiodic solutions, at least in the limit For the normalized second order calculation iftr we first

of long-wavelength perturbatiorig4]. note that

— 5k’ (k>=1)(—A 0 0 O
B. The lamelias (di|Hild)] =2, .. =K' (kI—1)( 0

To study the stability of lamellas on the sc lattice, we and then calculate the second order contribution as for the sc
assumer=r, ro,=r3=0. We again restrict ourselves to a pattern. The combined result is thex1 matrix
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TABLE Il. Maximal isotropy branches for the fcc lattice.

Name Solution o Branching equation
Trivial (0,0,0,0) 0 o,.=0
Lamellas &,0,0,0) x2 Mt (hy, +h3)o=0
Rhombic prisms %,%,0,0) G N+3(2hy, +hg)oy =0
fcc (X, X, X,X) 4x2 N+ 7(4hy, +hytp3)o=0
Double diamond £ X,X,X,X) 4x2 )\+f—1(4hlﬂl+ hz3—p3)o,=0
52k’2(f<2—1)2 A zigzag instability is therefore present fqrx0. Note that
Vi +{ilHol )y = — = 2A2— Sk’2A2, since|g|<1 the growth rate of this instability islowerthan
2(hy 5, +h3)r that of the Eckhaus instability computed above.
As before, we use the substitutia= 1+ 2q, which trans- IV. THE FCC LATTICE

forms this result into
The analysis of the stability properties of periodic patterns

A —36q° oo on the fcc lattice is similar to that performed for the sc lat-
Vij :<¢i|H2|¢J>: - \— 502 SK'A”. tice. Such patterns are generated by the vectdts where
If A#0 then for\ <3692 the lamellas are unstable e ). ki=(X=Y=2)/\3, ko=(=%+y-2)/\3,
This eigenvector corresponds to a shift of the maxima in the . .
x direction. When B<A<1 this is a skew-varicose instabil- ky=(—X—-9+2)/\3, ks=(X+y+2)//3.

ity, and is independent of the perturbation wave vektorin ] _ )
theq-\ plane this degeneracy manifests itself in the fact that! Ne resulting amplitude equations take the fdéh

the stability boundary is identical for every direction lof
The retention of terms of higher order gqresolves the de-
generacy and separates the stability boundaries for the differ-

entk’. With these higher order terms, the stability boundary

in theg-\ plane forA away from O is given by with three other equations obtained by cyclic permutation.
The possible maximal steady states on this lattice are sum-
marized in Table II. As in the sc case we consider long-
wavelength instabilities of only the potentially stable pat-
terns, i.e., the fcc and double diamoftt)) patterns, as well
showing that instability first sets in &=1; this is the Eck- as lamellag6].
haus instability.

The degeneracy can also be resolved by the NWS ap- A. The fcc and dd solutions
proach. In fact, these two approaches differ only in their o . . .
truncations, with Gunaratne’s truncation reducing to the The fcc solution is th? solution wnh=r, 1=1,2,34. The
NWS amplitude equation at leading order dn The latter results for the dd solution can be obtained by changigg

approach leads to a similar expression for the stabilit 7~ P3 1N what_follows, and_ are there_fpre; not listed sepa-
boundary, rately. We consider the stability of equilibria of the form

zy=\z3+ (N1, +N3)|2|%21+ Dy (12,4 257+ [24) 24

+ P3ZaZaza+ 8052, +O(0%4, 2%

2693

_ 2 4
)\—35(} —F‘FO(Q ),

3 N+ (4hy, +hs+py)ri=3a(k?—1)2+0(% r?)

5q
o),

2
\=35¢°— 89°~ -
and require thé? to be the same for every The evolution

whereq=q,+ %q% is still given by Eq.(3.7). The difference equation for the perturbatioa, is now

between these two expressions is due to a difference at _ >

higher order in the approximation to the neutral stability %~ ' [(his, +h3)(ai+B1)+hy, (axt Bt aztBatay

curve, but contributes only a small overall shift of the stabil- ~, ~

ity boundary. In particular, the instability that first sets in is +B4) +Pa(Bat Bat Ba— ar)]— Sag[(K1—1)(K;-K')

still of Eckhaus type. = , s s s

If A=0+#B, C, k' is perpendicular t; and the same + (K1 k") 2 (k= 1)k"“J+O(k"%;q7,r%).

calculation as for the sc solution shows that the contribution _ . . .

from O(qk’?) terms is The corresponding result fgg, is obtained by changing the
_ sign ofk’ and interchanging; and; , etc. These equations

(p1|H|p1)={(p1|H3| 1) =— 5qk’2. yield the 4x4 matrices
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P S ~
@ QQ Hz=—5(k*—1)k'%1.
L _2 Q@ P QQ -
1l P qQp
Q Q QP
11 10 The (orthonormal eigenvectors oH, are now the columns
P=(h,, +h ~ of
(hyq,+h3) 1 1) ps(o 1):
1 1 0 1
Q=hy,, Ps )
111 1 0
(D:(¢11"'1¢8)
Ky
- K,
H,=—o(k?—1) < , 1 -1 -1 1 1 -1 -1 1
3 ~1 1 -1 1 -1 -1 1
Ky
-1 -1 1 -1 -1 1
=, 1 1 1 -1 -1 -1 -1 1
KJ:(kJ k) -1 y = —
2\/5—1—1 1 -1 -1 1 1
1 -1 -1 -1 -1 1 1
1 1 1 1 1 1 1 1
2
K1 -1 -1 -1 -1 1 1 1
K2
H2:_5 2 2 ’
K3
K3 and correspond to the eigenvalues

feiiz, .. 8=r2{0,0,0,—4p3,2(h3—p3),2(4h1,(,1+h3+p3)},
thrice

respectively. The first four eigenvectors are PM modes andan all lead to long-wavelength instabilities. To calculate the
the last four are AM modes. The undistorted fcc state iscorrections to the corresponding zero eigenvalues we need,
therefore stable, provided as before, to go to second order in perturbation theory. We

defineA, B, andC as before and include
p3>0, h3_ p3<0, 4h1’0.1+ h3+ p3<0, (41)

and we assume henceforth that these conditions hold. D=ky-k'IK".
The three null eigenvectois,), |¢,), and|¢ps) repre-
sent shifts in the, y, andz directions, respectively, and these Then
i—
I 0 0 0
5 | —-A-B-C-D A+B-C-D A-B+C-D

Mi=1,23 =K' (Kk2—
(@Ml i232° =K' K=1 | AtB-c-D -A-B-C-D —A+B+C-D “.2

A-B+C-D -A+B+C-D —-A-B-C-D
—-A+B+C-D A-B+C-D A+B-C-D
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The eigenvectof ¢4 plays no role and we delete it in the We now proceed as in the sc case and express the total per-

PHYSICAL REVIEW E 64 036214

sequel. By construction; rotates PM modes into AM turbation matrixV;; +(;|H,| #;) in terms ofq instead ofk
modes and vice versa. Thus the second order perturbation ghd eliminater?. The eigenvalues arék’? times the solu-
the null PM eigenmodes can only contain cross terms involvtions int to

ing AM modes.
SinceA+ B+ C+ D=0, the resuli{4.2) reduces to

. 5 ~
(dlHaldi)ljzh22 =5k (K=1)

i—

I/ 0 A+B A+C
«A+B 0 B+C

A+C B+C 0

B+C A+C A+B
We now define
A+B=-27/3, A+C=-2Y/\3, B+C=-2X/3,
so that

and
X2+ Y2+272=1. 4.3
These are again the direction cosinebf It follows that

0O Z2 Y

<
X

X
0
Z

X
<

VijE§8: (ilHi| ) {(iH1 &)

=5 —€

Y2+72 XY XZ
[2; XY  X+z2 YZ
6riths=ps) | - YZ  R+V2
) X2 XY XZ
+6r2(4h1 +hz+p3) Xy v vz
o1 Xz YZ Z

3+ A2+ Et+Y =0,

where
A_)\—Fléqz _  (A—T1,569")Ng
N=602 " T 9(ps—hy)(A—8g2)2’
~ [A-T269%1°Ny
27(pa—h3) (A= 89%)°
Here
8
F1:3+§7], F2:3+477,
where
2hl,al+p3
=—
ps—h;

[the inequalitieg4.1) guarantee thay> — 3], while

Nz=(p3—h3)(3—4X2+4X*—AY2+4X2Y2+ 4Y*4)\
+(8hy,, +9h3—5ps—12h3X%+12p5 X%+ 12hX*
—12p3X*—12h3Y2+ 12p5 Y2+ 12h;X2Y2— 12p,X2Y?
+12h3Y*—12p5Y%) g2 (4.9

and

Ny=(p3—hg)(1—4X%+4X*—4Y?+20X?Y?— 16X*Y?
+4Y4—16X2Y*)\ + (3h3—3p3— 12h3X%+ 12p5X?
+12h3X* = 12p5X* = 12h3Y?+ 12p5Y?+ 320, , X?Y?
+60n3X?Y?— 44p3X?Y2—32hy , X*Y?—48hyX*Y?
+32p5X*Y?+ 12h3Y*— 12p5 Y4 — 32h, , X2Y*
— 48h3X2Y4+32p3X2Y4) 692 (4.5

In writing these expressions we have eliminaZedsing Eq.
4.3.

The symmetry of the perturbation matrix guarantees that

all the eigenvalues are real. They are all negative if and only
if A, =, andY are all positive. Consequently instability only
arises when an eigenvalger two or thre¢ passes through 0,

To this result we add the first order contribution fraih,

(dilHol &) i.e., the conditiorlY =0 is a necessary condition for the ap-
X2+ Y24 72 2XY X7 pearance oflong-wavelengthinstability. Nevertheless, it is
o, XY 24 y24 72 2y7 helpful to look first at the coefficiend. In view of the in-
- §k equalities(4.1) and the requirement> 592, the coefficient
2XZ 2YZ X+Y2+272 A<O0 if and only if
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N 8q?<T ;. V. THE BCC LATTICE

Patterns with the symmetry of the bcc lattice are gener-

Moreover, = has a single zero and a double zero at ated by the 12 wave vectorsk, , where

A/&qzzl—‘z . 1 R 1 " l
k]_:_(l,l,o), kzz_(o,l,l), ksz_(laoyl)y
and instability occurs fok/89°<T, if Nz=0. The quantity V2 V2 V2
N==0 when\/8g?>=T"=(X,Y), a quantity readily obtained
from Eq. (4.4). 1 ~ 1

To establish the conditions for instability we need to de-Ka= \/5(1’_1’0)’ Ks \/5(0'1’_ 1), ke \/5(_1’0'1)'
termine, for givenh,, , hs, and p3, the maximum and

minimum of I'z(X,Y) over all directions ok’, i.e., on the Symmetry arguments lead to thteuncated amplitude equa-

domainX?+ Y2<1. The result is tions[7]
extremal'=(X,Y)={3+ 253+ 2y ={I'z .z ;}. 21 =\2y+ 38122526+ 23Z5) + 1| 21|21 + Fag(| 2]+ | 23]
2, v2_ N
Xeve=t +|25]2+ | 26|%) 21+ @g| 24| *21 + F16( 2024751 Z32475)
Similarly, for each direction ofk’, Y=0 at \/&q? +o05z,+0(0%, 2% (5.9
=I"y(X,Y), a quantity obtained from E@4.5). The extrema
on the domainX?+Y?<1 are with the remaining equations generated by the symmetries of
the lattice. Since the quadratic equivariant renders all solu-
extremal’y(X,Y)={3,3+ ¥ 5}; tions unstable near onset we focus, following Ref, on the
24y2<1 casea;,~0 corresponding to a system with a weakly broken
additional symmetryz— —z. This assumption allows us to
we denote the second of these By . Thus for >0, drop any even terms im allowed by symmetry involving]

[17], since the coefficients of these terms must also be ex-
pected to beD(a;,). When these terms are present but are
small, their main effect is to introduce a slight asymmetry
i ) with respect ta=0 in the stability regions computed below.

in which case the lowerthg hossible primary solution branches when this additional
symmetry is exact are listed in Table Ill. In the presence of
X ) ~'small but nonzeraa;, only six of these branches remain
respect 1o long-wavelength instabilities ”; and only if himary The branches of lamellas, squares, bccl, and the
N 6q°>maxXT';,3;. As \ passes through',6q° two eigen-  gqjytion A remain completely unaffected by this symmetry-
values pass through 0 for every wave vecldr. The breaking term, while the hexagonal prisms and bcc states

3<Iz <T'y<Tg,<I'1<T,.

For »<O the order is reversed,
bound onz guarantees thdt,>1.
In view of the above results the fcc state is stable with

corresponding null eigenvectors, obtained frod;;  now bifurcate in transcritical bifurcations. The remaining
+(¢i|H,| ¢;), are (Y,—X,0) and £,0,— X). These span the branches become secondary as detailed in [R&f.
subspace perpendicular tX,(Y,Z) and indicate that the in- In physical models the requirement that,<|a;| may

stability is a zigzag instability with no preference for a par- introduce constraints on the remaining coefficients. This is so
ticular wave vectork’ and no preference for a particular in particular for general two-species reaction-diffusion mod-
“polarization.” els. These models have a special structure as a consequence

As \ passes through&)? only certain wave vectors pro- Of the law of mass action and as a result their bifurcation
duce unstable eigenvalues. Since=3 only for XYZ=0  properties are a function of a single parameter. When this
we assume without loss of generality tHat0, so thatk’ ~ Parameter is chosen so tlgh<1 the remaining coefficients

lies in the x-y plane. Substitution of botZz=0 and »  have the fixed ratio
=350% into Vj;j+{i|H,|¢;) yields the null eigenvector
(—X,Y,0). Since this vector is in general neither parallel nor

. *, . o . _ 2 .
perpendicular t&’, the 'nSt"f‘b'"ty _tr_lggered a)t—3:$q '? Nt leading ordef18]. Motivated by this example we perform
general a skew-varicose instability. However,kif points  getajled Busse balloon computations only for this choice of
along a coordinate axis, the instability becomes an Eckhaugpefficients. This choice restricts us to the study of long-

instability, while if it points midway between two axes the yayelength instabilities of four states—bcc, beel, lamellas,
instability is a zigzag instability. Note that there is no need tognqg hexagonal prisms—as we now describe.

go to higher order in perturbation theory, and that there is
therefore no zigzag instability boundary gt O.

The stability properties of the lamellas on the fcc lattice
with respect to long-wavelength perturbations are identicalto We begin with the bcc solution, for which;=r,
those for the lamellas on the sc lattice. i=1,...,6. Thedistorted equilibrium is given by

a,:az:ag:a;i—1:—8:—2:—4 (5.2

A. The solution bcc
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TABLE lll. Maximal isotropy branches for the bcc lattice with the extra —z symmetry.

Name Solution o Branching equation
Trivial (0,0,0,0,0,0 0 o,=0
Lamellas «,0,0,0,0,0) X2 Atajo=0
Rhombs £,x,0,0,0,0) %2 A+ 3(4a;+ag)o=0
Squares %,0,0x,0,0) 22 A+3(a;+ag)o,=0
Hex (0,0,0,X,X) 3x2 A+ 2(2a;+ag)o=0
Tri i(0,0,0x,X,X) 3x2 A+ 2(2a;+ag)o=0
bec (X, X, X, X, X, X) 6x2 A+ 2(ay+agtagtago;=0
becl (X, %X, X, X, X, X, ) 6x2 A+ 2(ay+ag+tag—ag ;=0
123 (x,x,x,0,0,0) G A+ 2(2a;+ag)o=0
A (0.x,%,0,— X,X) 4x? A+ 3(2a,+ag+2ag—az) o, =0
B (0.%,%,0%,X) 4x? A+ 3(2a,+ag+2ag+ a0 =0

N+agf +(ag+agtagtaeri=;ki—112+0(q%r?) — Sar[ (K= 1)(Ky-K') + (K- K2+ 2 (k2= 1)k'2]
(53) +O(k,3;q3,r3)-

Again, the result fop, is similar, withk’ — —k’ anda« g,
and similarly fora,, ... ,Bs. )

The linear problem can again be written in the foém
=(Ho+H{+Hy+Hj3)¢ with é=(ay, ...,Bs), and is guar-
a1=3ayf (ay+ az+as+ Beg—2ay)+ra(a+ B1) anteed to have real eigenvalues. To simplify the analysis we

define= %a,,, assume the coefficients are in the r46®)
+ias(ast Botagt Batast BstagtBs)+aglas  and scale the amplitudesuch thata; = — 1. The lowest or-

der matrixHg then has the orthogonébut not normalizep
+Ba) 3856 axt agtastazt Bat Bs—2a)] eigenvectors ¢, . . . ,¢1,) given by the columns of

with T(,z the same for every. The evolution equation fod;
is

1 1 0 1 1 0 1 0 0 1 1
-1 -1 0 -1 -1 1 0 o0 1 1 1
0 1 1 -1 0o 1 0 -1 1 1
-1 -1 1 -1 0 1 0 -1 1 1

1 0 1 0 -1 -1 0 0 1 0 -21
-1 0 -1 0 1 0 0 1 0 -2 1
®='7 1 0 -1 1 0 -1 0 0 1 1 1
—1 o 1 -1 0 -1 0 0 1 1 1
0 -1 -1 0 -1 0 -1 0 -1 1 1
o -1 1 1 0 1 0 -1 0 -1 1 1
-1 0 1 -1 0 0 -1 0 -2 1
1 0 -1 -1 1 0 0 -1 0 -2 1

feidioi, ., 1z=r{0,0,0,4(2d;— é),2(5t;— é),2(3trf2§),2(— 15r+ )}
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The first six eigenvectors are PM modes and the last six areigenvectors ¢.|, (¢s|, (¢¢| play no role and we delete
AM modes, with the first three PM modes being translationghem. The(non-normalizegifirst order perturbation matrix is
in thex, y, andz directions, respectively. In order for the bcc therefore

state to be stable with respect to perturbations on the bcc

lattice, we demand that

1 <r <1 Tl
s i
. . - . . Ly X 0
i.e., the bcc solution must have finite amplitude. This is a ! 0 7 v
consequence of the fact that the bifurcation to the bcc state is
transcritical, with the bcc state acquiring stability only at a % 4 0 X
secondary saddle-node bifurcatipf18]. . X 0 _z
As  before we define A,B,C,D,EF)=(k;
- ~oe X -2Y Z
-k'1k", ... kg-k'/K") and set
-2X -2y -2z

X=%X-K'IK', Y=Yy-K'Ik', Z=z-K'IK,

giving us A=(X+Y)/\2, etc. In the following the PM The correctly normalized total perturbation matrix is

Y2+Z7%2 XY XZ
Vi + (i Hol )= — 6% 2(k2— 1)2 m XY X+72 YZ
XZ YZ  R+Y?
1 2 —XY -XZ . X2 XY XZ
_m -XY 2Y2 -vYZz —m XY Y2 YZ
-XZ -Yz 272 Xz Yz Z
2X2+Y2+272 2XY 2XZ
—:—:k’Z 2XY X2t 2Y24 72 oy7
2XZ 2YZ X+ Y24 272
[
The substitution&= 1+ 2q, Z2=1-X2—Y2, and .~

Y= 1
64N — 692+ 15r2) (N — 69— 12r2)?(N — 5g°—5r?)3
- 5q°—N+15r2

or and

N, =N3—2A250%+ \ 6%q*— 2\%r2+ 36\ 89°r2— 345°q*r?
[see Eq(5.3)] allow us to write the eigenvalues of the above _ 4 2 4 6
matrix asék’? times the solutions it to 195\r" 270597+ 900r™.

The factorsNz and Ny are listed in Ref[19]. All the ex-
3+ At?+ Et+Y =0, pressions are functions @62, so without loss of generality
we seté=1 in what follows.
As in the fcc case it is helpful to look first at the coeffi-
cientA. The requirement that the nontrivial eigenvaleeall
be negative translates into the requirement

where

A SN,
(N— 892+ 15r2) (N — 8g2—5r2) (A — 8q2—12r2)

g%—15r2<\<q?+5r?,

providing a restriction on the denominator. This is the
52N “smile” between the lower two parabolas in Fig. 5, drawn

= for r=47. The numeratoN, vanishes along the other two
16(\ — 892+ 15r2) (A — 892 — 12r2)2(N — 5g°—5r2)2’ curves shown in the figure. One resembles a parabola near

—
— =
—
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FIG. 6. The neutral stability curve for the bcc state together with

FIG. 5. The curves in thg-\ plane across whicl for the bcc f o
state changes sign whare 5. The denominator ofA vanishes the zeros off andA whenr =15 for the case wherg’ is parallel
along the solid parabolas and the numerator vanishes along tH@ the z axis, so thatZ=1 and the zeros ok lie on the curve
dashed curves. The undistorteg£0) bce state is stable between fz-1=0 andg,—,=0. The solid and dashed curves are as in Fig. 5,

the two lowest parabolas, ad>0 in the “bubble” containing the ~ fz=1=0 along the short dashed curve aggd.,=0 along the dot-
origin. dashed curve. The stability region is reduced to the eye-shaped

region inside the bubble.

A=q?+12r2, while the other is a small “bubble” entirely locus of points in the-\ plane for whichY vanishes for the

contained within the smile. Thus whatever complicatedparticular direction cosineX¥=Y=0 andZ=1 along with

boundary we get fol =0, we need only look at that portion the parabolas of marginal stability and the bubblg=0

within the bubble given byA=0. from Fig. 5. This locus divides the smile into regions distin-
We turn now to the coefficienY. Figure 6 shows the guished by the sign of. In fact,

(N +30%—5r2)2(N>—4Ng2+3qg*+ 3\r2+399%r2— 180r%)
320 —g?— 123 (N —q?-5r2)2(A -+ 152) '

Y(X=Y=0)=

Although Y (X=Y=0) does not change sign across the pa- There are two other important caseX=0, Y=Z
rabola A +3g°—5r?=0 it turns out that the coefficient =1/\2, andX=Y=2Z=1/\/3. The former gives top and bot-
E(X=Y=0) does. Thus\+3g?>—5r?=0 is a stability tom boundaries

boundary, forming the top boundary of the eye-shaped region

in Fig. 6 containing the origin. This region is defined by fx=oy=z=fz-1=0,

f,_ =) +3q%—5r2<0 Ox—oy-z=5N3—17\%q?+ 19\ q*—7q°— 10N ?r?
Z=1" - ’

+2320%r2— 2220 2— 975\ r*— 1155°r*
07— 1=N°—4N0g%+30*+ 3\ r?+399°%r?—180r*<0 +45006=0,

while the latter has the boundaries
with g=0 forming the bottom boundary. The resulting eye is

entirely contained within th& bubble, and remains so forall ~ fx-v-z=A?+\g?—2g*—17\r?~129°r*+60r*=0,
values ofr. To show this we first show that th& bubble 5 o 4 5 - .
N,=0 intersects the parabolg,_;=0 at only two points Ox=y=z=A"—2Nq°+ Q"+ 10Nr“+300°T“—75"=0.

other thang=0. Likewiseg;_;=N,=0 has only two non- _

trivial solutions. Moreover, for eachthere are two points in "€ boundaryfx_y_z=0 always lies above the boundary
the g-\ plane at which all three polynomials vanish. Thesefz=1=0 and can be ignored. The three bubbiesO for
results are conveniently proved using Gner bases; for de- these three sets of direction cosines meet at the points
tails see Ref[19]. Thus the eye is always entirely contained (a2.0)=(%,—2)r?; apart from these points and the point
within the bubble with the corners of the eye exactly on theq=0 there are no intersections between any two of them.

bubble, as shown in Fig. 6. Since these three bubbles cross transversely at their meeting
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> F(N,0)=\?+4\g°—50"— 17\~ 699°r*+60r*,

G(\,q,r,Y)=3\*—10\%q2—28\2q*+ 74\ q°— 39¢®
—2IN3r 24 277\ 29%r 2+ 261\ q*r?—517°r?

—555\%r*— 2860\ q%r*+ 6559*r*+ 56251 ®
+862%)%r®— 13500 8— 5\ 4Y2+ 2\ 3g2Y?

+961\2q*Y%— 178 q®Y2+850°Y?

o125 A +35\%r2Y2—- 319 2g%r2Y2— 133 q*r2y?

I B +16231°r2Y2+ 925\ 2r*Y2 4+ 7800\ g %r 4Y?

FIG. 7. The final region in the-\ plane(the Busse ballogrin +3315*r4Y?—9375\rY?— 31 275%rbY?
which the bcce solution is stable to long-wavelength perturbations of B2
arbitrary orientation, again far= ﬁ) The region contains the ori- +22500°Y~.

gin and is bounded by the curvés_,=0 (solid), g,-,=0 (short
dashed, and gx-y->=0 (dot-dot-dashed Also shown are the
curves where y_y_,=0 (dashetlandgy-qy-z=0 (dot-dasheyl The expression fosNy /dY is identical but withX, Y inter-
changed. We have already looked at the case where two of

point (their gradients point in different directionthe curve  (X,Y,Z) vanish and at the case=Y=Z. We now assume
Ox—o0y-z=0 can never form a part of the stability boundary. that neither of these is the case. If one ¥ Y,2) \_/anlshes
Thus the boundary of the eye is formed gy_,=0 and  We Use our permutation symmetry and choose it -toZbEf
Ux_y_>=0 (see Fig. 7. two of (X,Y,Z) are equal, we choosé to be the different

It remains to show that none of the other valueXafnd ~ ©One. Thus we can assume without loss of generality that
Y lie on the stability boundary. To construct the envelope ofX,Y#0Z. Now X#Z implies 1-2X?~Y?#0 and simi-
all such boundaries a¥(Y) ranges over the unit disk?we ~ larly for 1—X?—2Y?  Furthermore,F(\,q)=Ny=0 is

note that a point@,\) lies on this envelope when solved by the pointso?,\) = (%, — $2)r? already identified,
independently of the direction cosines. This is not surprising,
(1) V(X,Y)eDZNy(\,q,r,X,Y)=0 as at this poinf( vanishes for all X,Y). If X2#Y? andqr
#0, the remaining factor&(\,q,r,Y), G(\,q,r,X) vanish
and together withY atq®=—\=5r?/2, i.e., another pair of iso-

lated points on a boundary we already have, nanfely,
(2) 3(X,Y)eDZENy(L AT, X, Y) =0, ;é)mt\llgz therefore assume thét=Y, obtaining the two pos-
i.e., (q,\) on the envelope implies
. Ugeneral, =N —3M2q?— 5N g%+ 70°— 2\ 2r2+ 80N g?r?

(XrYT:'SDZNY("’q’r’X'Y):O' +26q°r2— 195\r%— 465q%r *+ 900r =0,
Because of the permutation symmetry amofigY, and Z, 3 av2.2 4 B oy 2.2 5 9
points on the boundary db? are equivalent to points in the Ggeneral, 2= A"~ 4N"Q7+ NG~ 207~ 2M T+ ST
interior of the disk. Thus we wish to look for points|,}) —500*r2—195\r*—3009%r*+ 900 °=0.
such that there exist{(Y) e int D? with the property

INy Ny The bubbleggenera, =0 intersectsf;_;=0 andgyx-y-,=0
=——=—=0 at the same point. The additional requirement that the extre-
mum lies in the unit disk, so that?><3$, is only satisfied for
that portion of the bubble above its intersection wigh y
We find that =0. Thus the physically meaningful portion of the boundary

Jgeneral, = 0 does not intersect the region of stability we have
INy already found_. A S|m|la_r result holds f@_gquram These re-
—— =2X(1—-2X2-Y?)F(\,q,r)G(\,q,r,Y) sults are again conveniently proved using drer bases.
X In summary, the bcc state is stable with respect to long-
wavelength perturbations in the small region of thex
with plane defined by

YUoax o ooy

036214-16



LONG-WAVELENGTH INSTABILITIES OF THREE . .. PHYSICAL REVIEW E 64 036214

fz-1<0, 97-1<0, Ox-v-z<0, zj=ie'"%i¥(r + aje‘k*"xlrﬁje‘ik"'*),

shown in Fig. 7. At the boundarf,_ ;=0 there are two null
eigenvectorg1,0,0 and(0,1,0. Thus we have a zigzag in-
stability with the wave vector along a coordinate axis but no

polarization preference. A,_,;=0 there is the single null a1=ir{(— ap+aztas—Bg) +air’(a+py)
eigenvector(0,0,1), so this is an Eckhaus instability along a
coordinate axis. Atgx-v-z=0 the null eigenvector is
(1,1,1, so there is an Eckhaus instability along the body
diagonal of the cube.

evolves according to

2

+3agr?(ay+ Bot azt Ba+ as+ Bs+ agt Be)
2 1, .2

+agr(as+Bs)— a4

X(Of2+ a4+ a5+ C!3+ B4+ ,86_2(11)
C. The solution bccl

We now examine the bcel solutian=---=zg=ir in the — Say[(K2—1)(k-k")+ (k-K")2+ (k- 1)k'?].
same regiméb.2) as the bcc solution in the previous section.
The distorted equilibrium is given by The equation for3; is obtained by interchanging; and g;
_ and changing the sign d@f etc. As in the bcc case we assume
A+ (a;+azg+ag—agr’=36k?—1)2+0(g>r3 that the coefficients are in the ratf6.2) with a;=—1. The
lowest order matrixH, is now complex, but is still Hermit-
and its perturbation, defined by ian, and so still has only real eigenvalues,

{eitic1 . 12=7{0,0,0,—14r,—2r,—2r,—Tr—\r*+ 8%, —Tr+yr*+8{*}.

thrice thrice

Since the last eigenvalue is positive whens small, the AM modes. The remaining six eigenvectors are superposi-
undistorted =0) bccl solution is unstable at the onset andtions of AM and PM modes. Using the orthogonal vectors
only acquires stability at finite amplitude.

The first six eigenvalues belong to the orthogonal eigen-

vectors
0 0 -6 O 2 1
1 1 0 -1 -1 1 6 o0 -2 2 0 -3
-1 -1 0 -1 -1 1 1 -1 1 -1 0 -3
0 1 0 2 1 3 0 3 0 2 1
1 -1 o0 2 1 3 0 1 2 -1 1
o 1 1 -1 1 1 -1 -5 -1 -1 1
1 0 -1 1 -1 1 (7, . W)= 2 -1 4 -1 -1 1|
(b1, b0)=| 1 1 o -1 -1 1 2 1 4 -1 -1 1
-1 0o -1 -1 1 -3 0 1 2 -1 1
0 1 0 2 1 -1 1 -5 -1 -1 1
0o -1 0 2 1 -3 0 3 0 2 1
-1 0 1 -1 1 -1 1 1 -1 0 -3
1 0 -1 1 -1 1
The first three of these are PM modes corresponding to trani€ normalize the basis di;, ... .¢s, 47, ... .12 and

lations in thex, y, andz directions, while the last three are block diagonalizeH, in this basis to get
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| gy =v]i7) — wl i),
| o) = | tho) + v[h10),

0
0 |10 = V] tho) — ul h10),
0 |¢11>:m¢11>+;[¢12>-
— 142
o2 | p12)=v[h10) — u|h12),
—2r2 ' where
A B —r+3\r?+8¢°
A K a2+ 144 —er(r2+ 892
A
2\2(r-3iy)
V:
where \/18r2+ 144{:2_6r(r2+8§2)1/2
r —20r —2\2(r+3i¢) Modes |¢7), |¢o), and |¢11) have the eigenvalue
A= 3 —2\2(r=3i¢) —2or . —7r2—r\r?+87%, while modes|gg), |b1o), and |pip)
have the eigenvalue 7r2+r\r?+8Z2.
Thus the last six orthonormal eigenvectors are We can now construct the second order perturbation ma-
trix. With A=(X+Y)/\2, etc. the properly normalized re-
| p7)=wlth7) + v|ihg), sult is
XY XZ 2X?  —=XY -—Xz
~ 1 ) 1 5
Vij+ (i Ho| ) = 6% 2(k2—1)2 o XY Y Yz +E -XY 2Y? -YZ
Xz YZ 2 -XzZ -YZ 277
Y2+Z%2 XY XZ
1 2 2
+ — XY xX+Z YZ
4G xz YZ  R+Y?
5 2X2+Y2+2Z72 2XY 2XZ
- Zklz 2XY X+ 2Y2+ 72 2YZ
2XZ 2Yz X+ Y2+ 272
|
As before, the eigenvalues afk’? times the solutions ihto N

t3+ A2+ Et+Y =0,

where

Na
(N—89%) (6N — 6592~ 772

|
I

T 1600 — 0D A6N — 6507772

64\ — 59%)3(6N — 6592 — 7723’

and

N, =6N2—44\ 5q°+385%q% — 7T\ [?+2850° (2,
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FIG. 8. The equivalent of Fig. 5 for the becl solution. There are £ 9. The region of stability in the-\ plane for which the

two parabolic neutral stability curvésolid) and a locus of points e slution is stable to long-wavelength perturbations. This is the

for which Al=0 (dashedl For this and the following figure we have upper central region lying above the curveg qy_>=0, gz_;

chosen/=15. =0. The solid and dashed curves are as in Fig. 8. The curves
o . fz-1=0, fx_oy-z=0, andfy_y_,=0 are drawn short dashed,
where we have chosen to eliminatistead off. Once again  dot-dashed, and dot-dot-dashed, respectively. The curves;for

the expressions fakz andNy are too long to lis{19]. =0, etc. are drawn the same way except in bold.
We seté=1 and examine the roots of this equation subject
to the requirement that the bccl state is stable with respect to fy—oy—z=N—1502=0,

perturbations on the lattice, i.e., that the nontrivial eigenval-
uese; be negative. This occurs in the region

Ox—0y—=z=30N?—176\q%+ 1469*— 35\ {*+ 1059%¢%=0,

A>Q2+ 222
while in the latter cas&” vanishes for

This is the region above the upper parabola in Fig. 8, drawn

for {=15. The coefficientA is positive above this curve and £ =6\2— 32002+ 26q% — T\ {2+ 1402 £%=0
negative below it, i.e., the region of long-wavelength stabil- x=v=z '
ity must be entirely above the upper parabola in Fig. 8. We

next examine the coefficierif. For the particular direction

cosinesXx=Y=0 andz=1, Ox=v-z=6\"—68\q°+62q"— 7\ {*+569°{*=0.
) ) - In the latter cas& contains a factog__,, but= changes
Y (X=Y=0)= (A—7q%) (6N —349°—7(7) sign across this curve indicating thg¢_y_,=0 is a stabil-
32(A —q?)(6N—6G2—7¢2)?’ ity boundary. The same techniques used for the bcc solutions

can now be used to determine the stability boundary for the
bccl solution. We find that the curvels—oy-z=0, 971
=0, andgy_y->=0 meet at the pointsgf,\)=(3,%)%,
while the curvesf;_;=0, fy_y_z=0, and gx_gy-z=0
f,_ =N—Tq2=0, meet at .qz,x)z(%,%?)gz. The region of stability is there-
fore delineated by the boundarigg-;=0 and fy_oy_7
=0 as shown in Fig. 9. This stability picture is unchanged
9y_1=6\—34q%—7£2=0. when general orientations ot are included. The same
analysis as for the bcc pattern leads to a pair of functions
F(\,q,¢) and G(\,q,,X) whose explicit forms we omit.
As in the bce caseZ (X=Y=0) changes sign acrogs-,  The possibilityF (\,q,{)=0 leads to the intersection points
=0, i.e.,0z-1=0 is a stability boundary. Moreover, these already found, while the possibilitiesG(\,q,Z,X)
two curves always intersect on the cuNg=0, so that the =G(\,q,,Y)=0 andX?+ Y? lead to the first of the above
region of stability must be contained within the region de-intersection points. Finally, the possibilitiz(\,q,Z,X)
fined byf,_,>0 andg;-,>0. The other two special direc- =G(\,q,,Y)=0 andX=Y leads to another set of bound-
tions areX=0, Y=Z=1/\/2, andX=Y=Z:1/\/§. In the  aries, which, just as for the bcc solution, do not enter the
former casé€Y vanishes foig,-,=0 and stability region already identified.

which vanishes when
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The net result is that the stability of the bccl state is de-time with wave vector along a diagonal in a coordinate plane
limited by two boundaries in the-A plane. The lower and polarization in the same coordinate plane.
boundary is given by,_,=0 and holds forg?>< ¢%/8 or \
<15¢%/8. Along this boundary, the null eigenvectors of
Vij+(¢ilH,| ¢;) are(1,0,0 and (0,1,0 corresponding to a

zigzag instability along this boundary with wave vector C. The hex prisms
along a coordinate axis and no polarization preference. The
upper boundary igyx_oy->=0, and holds forg®>£2/8 or The hex prisms take the form=r,=r;=0 andr,=rs

A >15(2/8 (see Fig. 9. Along this boundary, the null eigen- =rg=r. The stability matrixH, has non-normalized but or-
vector is (0,1,—1). This is another zigzag instability, this thogonal eigenvectors

o 0 0 0 0 0 0 -1 0 -1

O 0 0 0 0 0-1 0 -1 0

o 0 0 0 0 0 0 0 0 2 0

0O 0 0 0 0 0 0 0 2 0 10
o 0 0 0 0 0 0 1 0 -1

O 0 0 0 0 0 1 0 -1 0 10

=7 1 1 1 11 0 0 0o 0 04

-1 -1 -1 1 1 1 0 0 0 0 00
0O -2 1 0 -21 0 0 0 0 00
0O 2 -1 0 -21 0 0 0 0 00
-1 1 1 -1 1 1 0 0 0 0 0

1 -1 -1 -1 1 1 0 0 0 0 0

with eigenvalues

{edic1 . 12=7r{0,0,=3(,(2a,—3a3)r—2{,(2a,+a3)r+{,(—a,—sa,6+ag)r—2{,(—a,+as+ag)r+{},
\_—’___.J . o N o

v gl

twice four times twice

respectively. The null eigenvectpp,) represents a shift of the maxima in the directior {2/ —2)//6, while|¢,) represents
a shift in the direction Z—V)/\/2. Consequently the distorted equilibrium

N+{r+(ag+ 2ag)r’=18(k3—1)2+0(qr?) (5.4

can have at most two unstable modes.
The properly normalized first order perturbation theory Haryields

prepz  DF
V3
AHol b g o= — L 5K"2
<¢|| 2|¢j>|l,] 1,2 2 DZ—FZ D2+4E2+F2
V3 3

For second order perturbation theory tég we first calculate the properly normalized
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I i—
l 0 0
D+F b-F
V3
D-F D+4E+F
3 3
- |~ 2 J2(D—-2E+F)
(dilHil pi)li=22  =—36k'(K*-1) \[g(D—F) —
0 0
0 0
0 0
0 0
0 0
0 0
The second order matrix is therefore
D2+ DF+F?2 (D—F)(D+E+F)
O SKA(Ke-1)? 3 3,3
' (2a;-tag)r2-2¢r | (D—F)(D+E+F) D2+2DE+4E2—DF+2EF+F?2
33 9
(D—F)? (D—F)(D—2E+F)
52k'2(k?—1)2 6 613
(2a;+ag)r?+{r| (D—F)(D—2E+F) (D—2E+F)?
63 18
[
As before, we Writ&=\/1+2q and A= (X+Y)/\2, etc., (N+ 82— 4r2)(X2— XY+ Y2~ XZ~Y Z+Z?)>3Nz
and use the equilibrium conditiaf®.4) in the form E= 5 75 5 5 =
12\ — 592~ 4r2)2(\ — 82+ 5r?)
02— N—(ay+ 3ag)r? and
' Ny=A2=3\38g%+28%g*+ Nr2+1250%r2—20r*

to obtain an equation for the eigenvalues of the perturbatio@nd
matrix Vj;+(¢i|H,|¢;) describing the long-wavelength
properties of distorted hex prisms. These &ké? times the N==\?—4\507+36°q*+\r?+135g°r?—20r*,

solutions int to the quadratic i i
The denominators vanish along two parabolas and the hex

prisms are stable only within the “smile” between them.
Moreover,A>0 inside the bubble given by, =0, while
is positive below the parabola

t?>+ At+=E=0.

We evaluate the coefficients at as,as,ag,a;5)~

—(1,8,2,4), obtaining fz=\+69°—4r?=0
5 5 5 and inside the curvdl==0. Just as for the bcc solution, we
A 2(X“=XY+Y = XZ-YZ+Z°)N, can show that these three curves always meet at the point
3(N—8G2—4r®)(A— 82 +5r2) (g2,0)=(2,2)r?, and that the hex prisms can only be stable
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for fz<<0 andN=<O0. This is the region depicted in Fig. 10. A
Along the boundaryf=z=0, the null eigenvector is- J3(z
=Y)|¢1)+(2X=Y—=2)|¢,). Since|e,) is a shift by an
amount (X—y—2)/\/6, while |¢,) is a shift by an amount
(z—Y)/\/2, we recognize this as a zigzag instability with no
preferred direction fok’. At the boundaryN==0, the null
eigenvector is (X—Y—2)|¢1)+ V3(Z—Y)|#,), indicating
a skew-varicose instability. _ ,
In the special cas¥=Y=Z=1/\/3 bothA and= vanish. 5 eI T o7 @
In this case we must go to higher orderkih For this direc- A a
tion of k', both (¢i|H,| ;) and (¢ |H:|¢;) vanish identi-
cally. The only term at the relevant order is

o ~
(dilHald))=— E(kz_ 1)k'?1=— 5qk’?1. FIG. 10. The region in the-\ plane for which the hexagonal
prism solution is stable to long-wavelength perturbations rfor
Thus if <0 the system is unstable to bdﬂﬁl) and|¢2), :ﬁ). This is the right half of the innermost region, bounded by the

_ . . . N . curvesfz=0 (short dashed Nz =0 (dot-dashell andg=0. Also
and this is a zigzag instability, witk’ pointed along the axis shown are the paraboldsolid) along which the denominator df

of the hexagonal prisms and no preference for polanzatlonvanishes and the curveashedl along which the numerator o

Once again, the long-wavelength stability properties of ;. ishes.
the lamellas are the same as those on the sc lattice. More-
over, with (@;,as,ag,a;5)~—(1,8,2,4) the remaining pri-

mary branch, square prisms, is unstable even wierd.

AW 2
Consequently, we do not consider this state further. X=a-X 1+ X2 +VX,
(6.2
VI. TURING INSTABILITY
: XY
In the foregoing discussion we have taken an entirely Y=05gl b| X— 5 +cV2Y ],
model-independent approach so that the results are appli- 1+X

cable to any three-dimensional pattern-forming system. In
this section we indicate briefly the application of the precedyyhere X and Y again represent the activator and inhibitor
ing results to two two-species reaction-diffusion Systems,ncentrationsc is the ratio of their diffusivities, and and
commonly used as models for the Turing instability. The firsty 5re fixed parameters. In agueous solutbis generally
of these is the Brusselator model0], close to 1 and consequently the conditions for the Turing
instability are not satisfied. However, with starch present the
iodide mobility is dramatically reducedecause of the bind-
. (6.1 ing of I to the starch and the effective diffusivity ratio
Y=BX—X?Y+DyV?Y. becomes larger by the factéz> 1. Thus the starch plays a
vital though passive role in the appearance of the instability
HereX andY are the chemical concentrations of an activator[ 24]. Both models require four parameters for their complete
and an inhibitor, respectivell)x andDy are their diffusivi-  specification. We think of two of thesé,andB (resp.,a, b),
ties Dx<Dy), and A and B are parameters that are held as representing concentrations of input chemicals, while the
fixed. Traditionally,B is chosen as the bifurcation parameter.remaining two specify the diffusion rates of the activator and
As B increases through a critical valls three-dimensional inhibitor. Moreover, in each model, the nonlinear term in the
structures may form. Indeed such structures were found iactivator equation is of the same form as that in the inhibitor
numerical simulations of the modg21,22. equation. This result of the law of mass action has important
Although the Brusselator has been much studied as aonsequences for the properties of these models.
model system exhibiting a Turing instability, it is not a model  The nonlinear coefficients for these two models on the sc,
for any specific chemical systeper se In contrast the sec- fcc, and bcc lattices are calculated elsewhgl8] on the
ond system, the Lengyel-Epstein mod@B3], models the assumption that the wave number of the pattern is the Turing
chlorite-iodide-malonic acid reaction in which the Turing in- wave numbek; identified below. On the bcc lattice the co-
stability was first experimentally establishg?]. More pre-  efficients are restricted by the relatidb.2) in order that
cisely, the Lengyel-EpsteifLE) model describes the closely stable patterns exist at small amplitude, i.e., in the range of
related chlorine-dioxide-iodine-malonic acid reaction, whichvalidity of the amplitude equations. In the absence of degen-
also exhibits the Turing instability. Like the Brusselator theeracies among these coefficients the nonlinear terms are un-
Lengyel-Epstein model is a two-species model with oneaffected by small departures of the wave number fiom
equation for an activator {) and another for an inhibitor i.e., by small distortions of the pattern. It remains therefore
(ClO,). In dimensionless variables the model takes the fornto calculate the neutral curve for the Turing instability as a

X=—(B+1)X+X2Y+A+DyV2X,
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function of k—ky and thereby identify the remaining coeffi- the Turing instability{ 18]. To perform it we considered “iso-
cient 5 [see Eq.3.1)] in the theory. tropic” distortions of the patterns, i.e., distortions that change
The Brusselator model has a uniform equilibrium atthe length of all the wave vectors by tsameamount. An-
(X,Y)=(A,BIA). Perturbations of this state with spatial de- isotropic distortions such as those leading to rhombs in two
pendencee”‘-‘*, wherek= |ZT+ g, are marginally stable when dimensiong17] were not considered. The analysis identified
the determinant of the stability matrix various skew-varicose, zigzag, and Eckhaus instabilities that
set in when the distortion becomes too large. We expect that

—Dyk?+B-—1 A? the resulting instabilities will alter the wave number of the
B _DJK2_ A2 pattern in such a way that the local wave number everywhere
Y falls in the stable region we identify. By analogy with the
vanishes, yielding the neutral stability curve processes that accomplish this task in two dimensions we
anticipate the existence of various gliding and climbing dis-
- Dy A2 locations[1] by which the three-dimensional patterns adjust
B=Dyk?+| 1+AZ—| + =~ their wavelength. We have not, however, studied these pro-
Dy/  Dvk cesses in detail. In fact it is a relatively simple matter, al-

though beyond the scope of the present paper, to derive
phase equations describing the relaxation of the spatial phase
of the pattern, cf. Ref§25] and[11]. For three-dimensional

The Turing instability therefore sets in at the minimum of
this curve, which is at

A patterns this process will be described by three phase equa-
B=B;=[1+A\Dy/Dy]? k2=k$E . t@ons couplgd via nonlinear terms. Undoubtedly such equa-
VDxDy tions describe a wealth of complex dynamics.

) ) We found that patterns stable at the band cefiter, with
We rescale the spatial coordinates so that 1 (henceDy gy remain stable with respect to long-wavelength pertur-

A=A2/DX) and henceforth write the critical wave vectors aSphations in some region of thg-\ parameter plane. Her

k. The procedure of Sec. Il applied B-By now yields an  gpecifies the change in the wave number away fkgrwhile
equation of the form(2.1) with the bifurcation parametex indicates the amplitude of the
pattern. The resulting region of stability, referred to as the
Busse balloon by analogy with the analogous problem in two
dimensions, may be either open or closed at the “top,” i.e.,
at large\. The latter is the case for the bcc and hexagonal
A= _ 2536 ¢ (b—by) prism solutions. Both these branches arise in a transcritical
(¢S e—1)R(25+a?)%? T primary bifurcation, and gain and lose stability through sec-
ondary bifurcationg7]: for the coefficients calculated from
\ for the LE model, the two-species reaction-diffusion equations, the bcc solu-
tions gain stability at a saddle-node bifurcation and lose it by

s AZ
——F—F—F  (B—B for the Brusselator
(A2—R?)(R+ 1)( v

4A? for the Brusselator shedding a branch called 128hile the hexagonal prism
(A2—R?)(R+1) branch gains stability by shedding 12and loses it by shed-
o= ding a branch of rhombic prisms. Consequently the Busse
SCOLE for the LE model balloon must be closed at the band center, i.eq=a0. Al-
\/l—Oa(céLE—l)R ' though there is, in principle, no reason why the stability re-

gion should be closed for other valuesaive find that this

For pattern formation from a stable uniform state we musts in fact so. It should be noted, however, that with suffi-
have §>0. In these expressionrR=A\Dy/Dy, and —5 cientlylarge but evenO(0?3,z°) terms included in E(5.1),
+/40a%/(25+a?), respectively. Calculations of the coeffi- the stability regions may become opg26]. Moreover, on
cient of the quadratic equivariant on the bcc lattice showghe hexagonal lattice in two dimensions with the midplane
that this coefficient vanishes whe®=1 (Brusselator and ~ Symmetryz— —zitis possible for hexagorid = to be stable
V21— 4 (Lengyel-Epstein[18]. at large\ [27]; stable solutions of this type were recently
computed for the Beard problen{28] and exist forq suffi-
ciently different from 0. In this case the Busse balloon for
H* remains open, and by continuity we expect this to be so

In this paper we have examined the stability of variousfor a;»<1 as well. We remark that standingavesin the
steady three-dimensional patterns with cubic symmetry wittparametrically forced Hopf bifurcation also have a closed
respect to long-wavelength perturbations. The study was md3usse balloorj29]. This example is interesting because the
tivated by the Turing instability in three dimensions and fo-standing waves do not lose stability with increaskm the
cused on instabilities that restrict the wave number of theabsence of sideband perturbations. In cases in which the sta-
pattern. The analysis relies heavily on an existing analysis dfility region for a solution is open, other techniques must be
three-dimensional patterns on the simple, face-centered- ar@nployed to find(finite wavelength instabilities (e.g., the
body-centered-cubic latticd§] and the application of this cross-roll instability that might close it. These calculations
theory to reaction-diffusion systems that are used to modedre also beyond the scope of this paper.

VIl. DISCUSSION
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A major accomplishment of the present paper has been We therefore conclude that at-dimensional patterns in
the demonstration that symmetry-based techniques can ledimensional spacenf<n) must be unstable to the zigzag
used to solve efficiently modulational instability problems of instability if the pattern is dilatedg<0) from its natural
a substantial degree of complexity. The necessary calculavavelength—its wavelength exactly at onset. In particular,
tions for the different solutions and lattices show a strikingsome higher-dimensional representations of the cubic lattice
similarity. In particular, the perturbation matricés, H,, contain higher-dimensional representations of the square lat-
andHjz are the same for every solution on a lattice and ardice, and therefore support prisms based on the patterns
almost the same among different lattices. The only signififound in Ref.[32]. According to the above theorem such
cant difference among the solutions lies in the lowest ordeprism patterns must also be unstable to the zigzag instability
matrix Hy. It is therefore hardly surprising that the results for g<0.
for the lamellas are exactly the same on each lattice. Physi- It is unclear why the same phenomenon should occur for
cally, this must be the case. Consider the lamellas on the gbe sc pattern. There is no continuous symmetry, yet there are

lattice. There is only one kind of phase shift that can takegirections ofk’ for which H; andH, vanish identically on
place, namely, shifts in the dlrectmq Because of transla- some portion of the null eigenspace. The tedn&E, andY

tion invariance of the lamellas, shifts perpendlculakicare factor into the product of a term independent\adindq and
identity operations and hence are not associated with a zemterm independent of the direction cosines. This may be due

eigenvalue. Since the modulation wave vedtbris permit-  t0 the high degree of symmetry¢;|H,| 4;) is diagonal, for
ted to point in any direction, the sc calculation already ideninstance and the fact that every term in the sc equation for
tifies the most general phase modulation; consequently thé i proportional toz;, a consequence of the absence of
result using a larger lattice must necessarily be the same. Igpatial resonances among tke This independence of the
fact the structure oH, indicates that thex; and 8; modes fundamental wave vectors manifests itself in the structure of
completely decouple from the other modes so that the preghe representation of the symmetry grolip For example,
ence of other lattice wave vectors is irrelevant. There is onlythe I" for the sc lattice can be written asvareath product
one exception: the possibility in two or more dimensions thaigroup [33,34] but this is not so for the fcc lattice. To write
E’Lkl, i.e., A=0 leads to the zigzag boundary qt0. the sc symmetry group as a wreath product we consider the
However, the directions of the other lattice vectors make n®Ystem €:,2,,z3) to be the union of three separate sub-
difference and we would get the same answer for any othesystems, one for eadj, and let O(2) be the set of rotations
lattice, including the higher-dimensional representations oftranslationg and reflections acting on each amplitude by
the cubic lattice$30].

We also note the similarity of the zigzag boundayry 0 i o
for both the lamellas and the hexagonal prisms. In fact, al- Ta1Zj— €%, pizj—Z).
though the result for the lamellas is the same as that for rolls
on two-dimensional lattices, the zigzag boundary for the hex-
agonal prisms is not found when calculating the stability ofThese operations define a local symmetry group, which acts
hexagons on two-dimensional lattices. This leads to the folon each individual subsystem. Since these subsystems can be
lowing. permuted among themselves, an additicigédbal) symme-

Claim. If the symmetry grouf® of a nontrivial solutiorz  try group is present. This is the permutation grép The
contains a continuous translation subgroup, then the solutiowreath product group O(23; is constructed from these two

is unstable to a zigzag instability far<O0. groups by permitting the local group to act independently on
LetI" be the(representation of thesymmetry group of the each of the subsystems, much as a local gauge symmetry in
system of amplitude equations. As explained in Sec. lll, infield theory. For the sc lattice, the group that results is the

the limit k' — 0, three of the PM eigenvectors bf, corre-  groupI’. Evidently this construction requires that the trans-
spond to translations in three independent directions. Thitions for each of the three amplitudesbe independent.
eigenvalues oH, are exactly the lattice stability eigenval- This is not so on the fcc lattice, for which the fact that
ues, and we know from Ref31] thatHo must have a null 7 k;=0 implies that the actions of the translations on the
eigenvector for each continuous symmetryiahat isnotin - four amplitudes are not independent, and hence that the sym-
=. A continuous translation symmetry that in X corre-  metry group is not O(25,.

sponds to a PM mode that is not generally a null eigenvector |t appears that it is the presence of such spatial resonances
of Hy. Becauseé, is Hermitian this PM mode is orthogonal on the fcc and bec lattices that preverts and H, from

to the null eigenspace f,. If we choosek’ to point in the  simultaneously vanishing on the null eigenspaceHgf no
direction of this continuous translation, then the dlrect|onmatter what the direction d¢'. This suggests the following.
cosines in the orthogonal directions vanish, and lk]ek() Conjecture Let G be a nontrivial discrete group and let
terms inH; andH, vanish identicallyon the null eigenspace TI'=0(2)G, i.e., the wreath product of @) andG. Choose a

of Hy. Thus the lowest order perturbationhk;, which al-  system equivariant under this representation, and ket the
ways gives instability fog<0. Because we have chosgh  solution with all amplitudes equal and nonzefé. solution
perpendicular to the direction of the shifts for the null eigen-Of this form is guaranteed by Reff34]). Thenz suffers a
vectors, this is always a zigzag instability. zigzag instability forq<<O with k' along a coordinate axis.
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Because the isotropy subgroup of this solutjmamely,

PHYSICAL REVIEW E 64 036214

namely, squares on the square lattice, with symmetry
2(2)=C] is the only axial isotropy subgroup without a con- O(2)Z,. These do indeed undergo exactly this instability

tinuous symmetrysee Ref[34]), this conjecture claims that [10].

all axial solutions on O(2): have such a zigzag instability.

This conjecture applies to the six-dimensional representation

of the sc lattice sincd®+0&7Z,~0(2)S;. Here O is the

octahedral group an§; the permutation group on three ele-
ments. We know of one other instance of this propertydation under Grant Nos. DMS-9703684 and DMS-9709494.
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