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Dynamics of quantum systems
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Arelation between the eigenvalues of an effective Hamilton operator and the polesSohtitex is derived
that holds for isolated as well as for overlapping resonance states. The system may be a many-particle quantum
system with two-body forces between the constituents or it may be a quantum billiard without any two-body
forces. Avoided crossings of discrete states as well as of resonance states are traced back to the existence of
branch points in the complex plane. Under certain conditions, these branch points appear as double poles of the
S matrix. They influence the dynamics of open as well as of closed quantum systems. The dynamics of the
two-level system is studied in detail analytically as well as numerically.
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[. INTRODUCTION points and the well-known diabolical points has not been
investigated until now. The relation of the latter ones to geo-
Recently, the generic properties of many-body quantunmetrical phases was studied experimentally] as well as
systems have been studied with a renewed interest. Mostlyheoretically12,13 in a microwave resonator by deforming
the level distributions have been compared with those folit cyclically. The results show nontrivial phase changes when
lowing from random-matrix ensembles. The generic properdegeneracies appear near to one andth@r The influence
ties are, as a rule, well expressed in the center of the spectdd level crossings in the complex plane onto the spectra of
where the level density is high. As an example, the statisticahitoms was studied ifl4]. In this case, the crossings are
properties of the shell-model states of nuclei arodfidg called hidden crossingd5]. The relation between avoided
were studied a few years agjb] by using two-body forces level crossings and double poles of tBenatrix was traced
obtained by fitting the low-lying states of different nuclei of in laser-induced continuum structures in atorh6,17.
the 2s-1d shell. In the center of the spectra, the generic Usually, it is assumed that avoided level crossings do not
properties are well expressed in spite of the two-body charintroduce any correlations between the wave functions of the
acter of the forces used in the calculations. states as long as the system parameter is different from the
Another result was obtained recently in performing shell-critical one at which the two states avoided crossing.
model calculations for the same systems with random two€ounter-examples have been found, however, in recent nu-
body forces. In spite of the random character of the forcesmerical studies of the spectra of microwave cavifi@d g).
the regular properties of the low-lying states are described hese results coincide with the idgE9] that avoided cross-
quite well [2] in these calculations. Further studig-5]  ings are a mechanism of generating the random matrix like
proved the relevance of the results obtained and could exroperties in spectra of quantum systems.
plain in detail even the regular properties at the border of the |t is the aim of the present paper to study in detail the
spectra obtained from random two-body forded. The  gynamics of quantum systems that is caused by avoided level
spectral properties of the two-body random ensemble studieéﬁlossings_ They are traced back to the existence of branch

30 years ago have been reanalygep _ points in the complex plane where the interaction between
The spectra of microwave cavities are not determined b¥he two states is maximum. The wave functions are bi-

two-body forces. Nevertheless, the calculated spectra a
similar to those from nuclear reactiof8]. They show de-
viations from the. speqt_ra ol_)talned from' random-matrix The paper is organized as follows. In Sec. Il, the relation
theory as well as similarities with them. Avoided level cross-

ings play an important role. The theoretical results obt<';1ine(lj)ewveen the elgenvalues. Of. an eﬁecnve .Ham|lt-on operator
have been confirmed by experimental stud@ls and the poles qf th& matrix is Qerlved. This relatlo.n holds _
The effect of avoided level crossing.andau-Zener ef- also in the region of overlap.pmg resonances. It is useq in
fec) has been known and studied theoretically as well as€C- !ll, where the mathematical properties of branch points
experimentally for many years. It is a quite general property" thg complex plane and their relatl.on to avoided level
of the discrete states of a quantum system whose energi€§0ssings and double poles of tBematrix are sketched by
will never cross when there is a certain nonvanishing intermeans of a two-level model. In Sec. IV, numerical results for
action between them. Instead, they avoid crossing in energstates at a double pole of tiematrix as well as for discrete
and their wave functions are exchanged when traced as &nd resonance states with avoided crossing are given. The
function of a certain tuning parameter. The avoided levelnfluence of branch points in the complex plane onto the
crossings were related to the existence of exceptional poindynamics of quantum systems is traced and shown to be
[10]. To our knowledge, the relation between exceptionalarge. The results are discussed and summarized in Sec. V.

r<‘?rthogona| in the whole function space without any excep-
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II. HAMILTON OPERATOR AND S MATRIX \P(I:E:(P+Q)WE:§E+(1+GPHPQ)Q\I’C , (9)

A. The wave function in the space with discrete and scattering

states where the(*) on the wave functions are omitted for conve-

. - _ nience. Using the ansatz
The solutions of the Schdinger equation

(H-E)¥E=0 (1) QWE=; Br®§ (10)

in the whole function space contain contributions from dis-
crete as well as from scattering states. The discrete states &t
embedded in the continuum of scattering states and can de- 1
cay. In the following, we will represent the solutiodsg by Bg= E (oY |<I> HPRIHopl€E) (1D
means of the wave functions of the discrete and scattering
states.

Following [20,21], we define two sets of wave functions and
by solving first the Schidinger equation

pd Eq.(6), one gets

(HI—ES D=0 2 VE=&+ 2 (PR wr) (DR PR PR [Hopl £8),
RR
for the discrete states of the closed system and secondly the (12)
Schralinger equation where the
> (' —E)& =0 3) wr=GpHpoPR (13

C!
. _ _ follow from the solutions of the Schdinger equation
for the scattering states of the environment. Hét€,is the

Hamilton operator for the closed system with discrete states

andH®® is that for the scattering on the potential by which

the discrete states are definédis the energy of the system,

and the channels are denoted dy with source term that connects the two seb&} and{£2} of
By means of the two function sets obtained, two projec-wave functions. With these coupling matrix elements

tion operators can be defined,
N Wa=(£2" [Hpol @) = (PRIHopI ) (15)

:RZ |DENDR, P= E J dE[EENE ] 4 petweendiscretestates and scattering wave functions, it fol-
lows from Eq.(8)

2 (H-E)EE |op)= (& [Hpd R) (19

with Q¢é&")=0; P®Y=0. We identify H® with QHQ
=Hqq andH®®’ with PHP=Hpp. From Eq.(1), (DRIHDE, ) =(DEAHC| D >+E Pf dE’

R’

c(+) o(+) . —F
(Hpp—E)PWg"/=—HpQW¥g /;
(Hoo— E)Q‘I’E(+)= _ HQPP\I,(E(+) (5) —i 77021 WEWE,,. (16)
and The principal value integral does not vanish, in general.
pq,fz(ﬂ:§E(+)+G(P+)HPQQ\I,E(+); Wi~th the eigenfunctionsdr and eig?nvalueﬁz: Er
—i/2I'g of H®" the solution¥ ¢ of the Schidinger equation
QUEM = (E—H®M) " THoped ), (6) in the whole function space of discrete and scattering states
reads
whereHpo=PHQ andHqp=QHP. Further,
W
GL)=P(E) —Hpp) *P Y = D O (17
. ) . E ER+ _FR
is the Green function in thB subspace and
He“:HQQ+ HQPG(F>+)HPQ (8) In order to identify the eigenvalues and eigenfunctions of

He™ with values of physical relevance, the two subspaces
is an effective Hamiltonian in the function space of discretehave to be defined in an adequate manner. WherPthigb-
states. space contains all scattering states defined by their

AssumingQ+P=1, it follows from Eq.(6) asymptotic behavior and th@ subspace is constructed from
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all the wave functions of the closed system in a certain eNgrgiesEr=Er(E=ER), widthsFR=fR(E=ER) and wave

ergy region(for details se¢20,21]), the values

We=(£Z [Hpg| @) =(P|Hopl ££) (18)

are the coupling coefficients between tlesonancestates

functionsQRzﬁR(E=ER) of the resonance states can be
found by solving the corresponding fixed-point equations.
Also the coupling matrix element8\$, are complex and

energy-dependent functions, generally. For numerical ex-

and scattering wave functions, while the eigenvalues dete@mples, see Ref24].

mine the energieEr and Widthsz of the resonance states.
The

‘EZR:&)R—’_:UR:(]-—'_GPHPQ)&)R (19)

are the wave functions of the resonance sthtéth wg de-
fined by Eq.(13) when@ﬂ, is replaced bybg].
The HamiltonianH®" is non-Hermitian since it is defined

The expressioril7) is solution of Eqg.(1) independently
of whether or not the Hamilton operatét contains two-
body residual forced/. It is H=Hy+V, e.g., in nuclear
physics butH=H, for quantum billiards. WherH=H,
+V, it follows W&= (| V|£2) [20,21). In the case of quan-
tum billiards, theWy, can be calculated by using Neumann
boundary conditions at the place of attachment of the lead to
the cavity whereas Dirichlet boundary conditions are used at
the boundary of the cavitysee Ref[25]). In this case, the

in a subspace of the whole function space. The left and righwa are real, i.e., the principal value integral in E{.6)

eigenfunctions®!, and ®%, of a non-Hermitian matrix are
different from one another. For a symmetrical matrix,

(DE|HE=(DE| &r
and

H D) = &R P, (20
see, e.g., Refq16,17,22,2% Therefore, dlt=dL* =k .
The eigenfunctions dfi®™ can be orthonormalized according
to

(DRIDR)=(PRIPr)= S (21)
Whereég,EEDR,. Equation(21) provides the biorthogonal-
ity relations

<&)R|&)R>: Re(<a)R|a)R>):<&)R'|éR'>?
ARE<&)R|&)R>>11
<€I;R|E)R’¢R>:i |m(<&)R|&)R'¢R>)= _<&)R'¢R|&)R>§

= (22

BE#R_K&’R@R'#RH?O-

Using the orthonormality conditiof21),

K
Tr=—2Im{(@E[H b} =273, (WR)? (23

for the relation between thER andW§,. This relation holds
also for overlapping resonance states. Here (28) holds,
but Tr=(27/AR)S|WE/2<272|WE|? according to Eq.
(22).

It should be underlined here that the expressipn is
obtained by rewriting the Schdinger equation(1) with the
only approximatiorP+Q=1. TheW§ and¢g as well as the

QR,ER,I:R depend on the enerdy of the system. The en-

vanisheg26]. The W§ may be complex neverthelef,25].

B. The S matrix

The S matrix is defined by the relation between the in-
coming and outgoing waves in the asymptotic region. Its
general form is

Seer = EXP(2i 8g) 8o — 2i (X ¥ |VIWE),  (29)
where theyg are uncoupled scattering wave functions ob-
tained from

> (HSS —E)x¢ =0. (25)
c!

The W¢ are given by Eq(17). When the two subspaces are
defined consistently, Eq24) can be written as

S =552, (26)
where
S = exp(2i 80) S — 2i m(XE*|VIEL)  (27)
is the smooth direct-reaction part and
N ~
so=2in S (& M——— (29

E_ER‘l' EFR

)

is the resonance reaction part. 8 ,

coupling between the channgls
Since Eq.(19), between the resonance stafeg and the

eigenfunctionsﬁ)R of H® is completely analogous to the
Lippman-Schwinger equation

V may be zerano

Ee=(1+GpV)xE (29
(which describes the relation between the two scattering
wave functionstg and yg with and without channel-channel
coupling, respectively one arrives af21]
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Cx I\ \ — / £C% [\ T\ — (R nied by an approaching of the states in en stering of
(XE* IVIQg) = (£2° [V|PR) = Wi (30 levels )\/Nhile tph% seconéJ case is accompangrggnel regul-
When V=0, channel-channel coupling may appear due tosion in energy Numerical examples can be found in Refs.
the coupling of the scattering wave functions via @esub-  [16,17 for atoms and in Ref 8] for quantum billiards. The
space(an effective Hamilton operator in tHe subspace can interplay bet_ween the real and imaginary parts of the nondi-
be derived analogously to the effective Hamilton operator@donal matrix elements of E¢L6) characterizes the dynam-

He in the Q subspace, Eq8), see Ref[21]). ics of open quantum systems. _
Using this relation, the resonance pé@®) of the S matrix Equation(31) coincides formally with the standard form
reads of the resonance part of tt&matrix. It should be underlined,
N o however, that th&VS, Eg, andI'g are not parameter&s in
@) WEWR the standard form, see R¢28]), butenergy-dependent func-
Scc'—z”’zfl il (3D tions that can be calculated. Equatid@l) holds also for
E—-Er+ EFR overlapping resonances. Due to the energy dependence of the

fR, the line shape of the resonances differs from a Breit-
Thus, the poles of th& matrix are the eigenvalu&%R=ER Wigner shape, as a rule, even without any interferences with
- i/ZT“R of the HamiltonianH®™ at the energyE=ER (solu- E:Tjessdé[je?rz ;f;g?gzaag;j Some numerical examples are dis-
tions of the fixed-point equationsThe numerator of Eq31) T

contains the squarei)(q)2 of the eigenfunctions dfi®™ (and IIl. BRANCH POINTS IN THE COMPLEX PLANE
not the|®g|?) that are always finite in accordance with the
normalization conditior(21). Numerical results for strongly
overlapping resonances can be found in R22].

Equation(31) gives theS matrix for isolated as well as for
overlapping resonance states. The extreme case of overlap-
ping corresponds to the double pole of ®eatrix at which

For overlapping resonance statfis., W&(E)V\/CR,(E) . ~
40 atth for R=R'1. the b i ; the eigenvalues, , of two resonance states are equal. Let us
at the energy for 1, theW may be very differen illustrate this case by means of the complex two-by-two

from the W. Even when thaV are real, théV may be com-  Hamiltonian matrix
plex since the eigenfunctions &f*" are complex. The cou-

pling strength of the system to the continuum of channel

wave functions is given by the sum of the imaginary parts of

the diagonal matrix elements or of the eigenvaluesi®f, H=

I57’1(51) o

- i . (39

w 5 y2(a)

e(a) 0
0 exa)

2 Tr=2 Tr=2m2 Wellg=2m3 WEWe, (32

R R Re Re The unperturbed energieg and widthsy, (k=1,2) of the
where Eqs(16) and(23) are used. All redistributions taking two states depend on the paramedeln be tuned in such a
place in the system under the influence of a certain paramet&fanner that the two states may cross in enefgyd/or
must obey the sum rulé32). According to this rule, reso- width) whenw=0. The two states interact only via the non-

nance trapping may appear when the resonance states ovéfagonal matrix elements that may be complex, in general,
lap, see Eq.(16). In the following, we consider reab and vy
\ " \ independent of.

~ ~ ~ The eigenvalues of{ are
Z FR%RZJ_ FR, R 2+1 FR%O (33)

R=1 i €.+ €

1
&§=Eij—5li == *5(e1-e)*+40” (39

It means that, under certain conditiohsM resonance states
may decouple from the continuum of scattering states, i.e., .
they may betrappedby M states. For numerical results on \ith j j=1,2 ande,=e,— I_')’k (k=1,2). According to Eq.
nuclei see Refl21] and on open quantum billiards see Ref. . ) . 2 . )

[27]. Studying the system by means of its coupling to the(35), two interacting discrete statéwith y,=0) avoid al-

environment (described by the coupling matrix elements Ways crossing since» and (e;—e;) are real in this case.
Wc) will give, in such a case, information either on tReM Equation(35) shows also that resonance states with nonvan-
R ’ ’

long-lived states on the background of the short-lived ishing widthsy, avoid mostly crossing since
states or on thé/ short-lived states with fluctuations arising F(a,0)=(e;— €)2+ 4w? (36)
from theN-M long-lived states.

This behavior, induced by the imaginary part of the non-is different from zero for alla, as a rule. Only when
diagonal matrix elements of E@l6), differs from that in- F(a,0)=0 ata=a“ (andw= "), the states cross, i.€;
duced by the real part. While the imaginary part causes the=&,. In such a case, th®matrix has a double pole, see, e.g.,
formation of structures with different time scaléas dis- Ref.[29].
cussed abovethe real part causes equilibrium in tinfap- It can further be seen from Ed35) that the crossing
proaching of the decay widthsThe first case is accompa- points are branch points in the complex plane. The branch
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FIG. 1. The energiek; (top left) and widthsI;/2 (top righy of the two eigenstates of the matii®4) as a function of the parameter
The thin lines give the energi&s and widthsl';/2 of the states ab=0. The lower part of the figure shows the coefficidnis(bottom lef)

andb;; .; (bottom righy defined by Eq(37). The X andO denote the Rdgj;) while the Im({;;) are denoted by- and ¢ . e;=1-a/2;
e,=a; y,/2=1.0; y,/2=1.1 andw=0.05.

point is determined by the values)? and (e;—€;)? but not  vanishes with ®;|*=(®;|®;)—1 and|(®;|®;;)|—0. Us-

by the signs of these values. According to E2p), it lies in  ing Eq. (22), the right-hand side of Eq38) reads

the complex plane at the poidt=(1/2){e;(a*) + e,(a“")}. _ _

According to Eq.(31), it is a double pole of th& matrix. WD) =WH(A|D ) +iB|D,)) + W (A|D,)—iB|D,))
The eigenfunctionsb; can be represented in the set of (39

basic wave functionsb? of the unperturbed matrix corre-

sponding tow=0 with WK'=(dJW|d;); k=1,2. At the branch point, the

complex energies are equal?=¢£5P, and
;=2 by} B7 WiA[DEP) +iB|D) + Wi (Al D37 ~iB|B3P)

P\ . R |y b bp\ _ ir (b

In the critical region of avoided crossing, the eigenfunctions = Woa(Al®5P) +iB|®3P)) + Wie(A|D5P) —iB|DLP))
are mixed:|b;j|=|bj;|#1 andb;=—h;#0 for i#j. The il bpy bp 21 bpy L ; bp

bi; are normalized according to E(R1). Wop(A|937%) — B[ D1P)) + Wop(A|@17) +iB| D)),

The Schrdinger equation with the Hamiltoniagk can be (40

rewritten as
where the relation®V*=W?% W?=W?! are used. This

0 w gives
(Ho—&)| D)= ® 0 |D)=W|®D;)
(A+iB)|®P)=(A—iB)|®3P) (41)
=k;112 <‘bk|W|‘Di>m:21’2 (PP )| Py and finally
bpy _| 1 i bp\ . +i|pbP.
Equation (38) is a Schrdinger equation with the Hamil- @7 =| 1 2A2+ BZiZIAZvL B? |7 =TI

tonian H, of the unperturbed systerftorresponding taw (42
=0) and a source term that is related directly to the bior-
thogonality of the eigenfunctions of the Hamiltonigh It by using the biorthogonality relation22)
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FIG. 2. The energieE; (left) and widthsI';/2 (right) as a function of the tuning parametere;=1—a/2; e,=a andw=0.05. They,/2
are 1.10(top), 0.90(middle), O (bottom); y,=1.1y,. The full lines show th&; andI';/2 for w=0.

(DPP|DPPY| — oo, |<cpibp|q>§3§i | o0 (43) Thus, the conditiof21) is fulfilled in the whole function
) _ space without any exception. According to E42), the two
andA/B—1 at the branch point. The relatidd2) between  \ave functions can be exchanged by means of interferences
the two wave functions at the branch point in the compleX,anveenA andB. i.e. by means of the source term in the
plane has been proven in numerical calculations for the hySchr"cdinger equatior38). When the wave functions are ex-
drogen atom with a realistic Hamiltonia@7]. Note that the changed, Réf,;)=Re(b,;) as well as Ref;)= — Re(b,)
" , )= )=
condition (21) do not change their signs while lim{;)=Im(b,,) and
<q)ibp*|q>]bp>:5” (44  Im(byp)=—1Im(by) jump between—o and +« at the
_ _ o ~ branch point.
is fulfilled also at the branch point in the complex plane. This  \ote that Eq.(42) differs from the relationd?P= = @2°
Is achieved since the. difference betyvegn two infipitely Iargeljsed in the literature for the definition of the exceptional
values may be @for i#j) or 1 (for i=j). Numerical ex- point [10]. With ®2P= = ®BP, neither((Dit’pld)f’p):ﬁij nor

amples for the valueé®;|®;) with i=j as well as withi bpk [ .Dp\ , o bp_ L xbp
#] can be found in Refg22,23,30~32 (OPP*|®7F)= 5, can be fulfilled. Withd ;"= =id3P, how-
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FIG. 3. The mixing coefficients;; (left) andb;;; (right) defined by Eq(37) as a function of the tuning parameterO andx denote
the real parts and> and + the imaginary partse;=1—a/2; e,=a and w=0.05. They,/2 are the same as in Fig. 2: 1.1®p), 0.90
(middle), 0 (bottom); y,=1.1y;. Note the different scales in the three cases.

ever, the orthogonality relation&21) are fulfilled in the IV. NUMERICAL RESULTS
whole function space, without any exception.
The effects arising from the source term in E88) play The numerical results obtained by diagonalizing the ma-

the decisive role in the dynamics of many-level quantumtrix (34) are shown in Figs. 1 to 6. THe, andI’; are in units
systems caused by avoided level crossings. This will be ilof a chosen arbitrarily, and thig;; are dimensionless. In all
lustrated in the following section by means of numerical re-casese;=1—a/2, e,=a, and w=0.05. They; do not de-
sults. The effects appear everywhere in the complex planpend on the tuning paramet&rThe relation between them is
when only [®;|?#1, [(®;|®;.)|#0. They appear also in y,=1.1y;. At a=a®=2/3, the two levels cross when unper-
the function space of discrete states wheredheare real, turbed(i.e., »=0) and avoid crossing, as a rule, when the
due to the analyticity of the wave functions and their con-interaction w is different from zero. Heree;=e,=¢’, ,
tinuation into the function space of discrete states. =2/3 and
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cross freely in energy, and the wave functions ao¢ ex-
changed after crossing the critical valag.

(2) The situation is completely different when<y". In
this case, the states avoid crossing in energy while their
widths cross freely. After crossing the critical vala€, the
wave functions of the two states are exchanged. An exchange
of the wave functions takes place also in the case of discrete
states f;=0). This latter result is well known as Landau-
Zener effect. It is directly related to the branch point in the

F(a,w)=ReF(a,0)]=40* = (14 (7~ y)? (45

according to Eqs(35) and (36). TheF®(a,w) may be posi-
tive or negative. Thusgither the widthsI'; ; or the energies
Ei; cross freely ata®, but not both. The only exception
occurs when th& matrix has a double pole af', i.e., when
y1/2=y{12=1.0, y,/2=v5/2=1.1. Here,F“(a,0)=0 and
the two resonance states cross in spite &f0. According to

Eq. (35), the double pole of th& matrix is a branch point in
the complex plane. complex plane ad® as can be seen from Fig. 2.

In Fig. 1, the energieg; ;, widthsT; ; and wave func- _The wave functiong;; are shovyn in Fig. 3. '_rhe state_s are
tions b;; of the two states are shown as a function of themixed (i.e., |b;|#1 andbj;.;#0) in all cases in the neigh-
parametera in the very neighborhood of the branch point. borhood ofa®. In the case without exchange of the wave
Approaching the branch point &, |Re(b;j)|— and functions, Rel;;) as well as Imb;;) behave smoothly &
[Im(b;;)|—2. While Refp;;) does not change its sign by while this is true only for Rey;;) in the case with exchange
crossing the critical valua®, the phase of Intf;) jumps  of the wave functions. In this case, I() jumps from a
from *+ to ¥. The orthogonality relation§21) are fulfilled  certain finite valugy to —y ata“. Since the Iml;;) of dis-
for all a including the critical value®. crete states are zero, a jump in the by) cannot appear in

Figure 2 shows the energids ; and widthsI'; ; of the  this case. The Ré;), however, show a dependence an
two states for values of; ; just above and below the critical which is very similar to that of resonance states with ex-

values v/, as well as fory; ;=0, i.e., for discrete states.
According to Eq.(45), either the energy trajectories or the

change of the wave functiong/{(< y{").
In order to trace the influence of the branch point in the

trajectories of the widths avoid crossing at the critical valuecomplex plane onto the mixing of discrete states, the differ-

a® (since the condition for the appearance of a double pol€ncesd=[bj|?—|bj; |* and the valuesby;

of the Smatrix is not fulfilled. It is exactly this behavior of
the trajectories that can be seen in Fig. 2.

|2 are shown in
Figs. 4 and 5 for different valueg; from y;> ;" to 7,=0.

Most interesting is the change of the valadrom 1 to O at

(1) When y;>~%, the widths of the two states approach y{". The relation|b;;|2=b;; .;|? at y<y{" is the result from
each other nea® but the width of one of the states remains interference processes. It holds alsgat 0, i.e., for discrete
always larger than the width of the other one. The two statestates. In this cas¢h;|*=|b;; ;|*=0.5 ata®.
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The valuesA and B characterizing the biorthogonality of and bottom right of Fig. b Figure 7 bottom shows the large
the two wave functions are shown in Fig. 6 for the sameregion of thea values arounda® for which the two wave
values ofy; as in Figs. 4 and 5. Th& andB are similar for
yi—¥'==A as long asA is small. They approach— 1

andB—0 for y;—0.

In Fig. 7, the energieR; and mixing coefficientﬂabij

are

functions remain mixedib;;|>~1 and |b;;.;|*—~0 for a

—al with |a'—a$)|>|a%—aJ)|; i=1,2. The avoided cross-
ings between neighbored states do, therefore, not occur be-
tween states with pure wave functions and it is impossible to

shown for illustration for four discrete states with threeidentify the |bij|2 unequivocally (Fig. 7, right top and

neighbored avoided crossings as a functiora.olin analogy

to Eq. (34), the matrix is

middle). These avoided crossings are caused by branch
points whichoverlapin the complex plane while the avoided
crossings considered in Figs. 1-6 and Fig. 7 bottom corre-

e (a) 0 0 0 spond toisolatedbranch points in the complex plane.
0 ex(a) 0 0
HEH = V. DISCUSSION OF THE RESULTS
0 0 ez(a) 0 _ _
0 0 0 ea) Most calculations represented in the present paper are per-

formed for two states that cross or avoid crossing under the

influence of an interactiom that is real. A general feature

appearing in all the results is the repulsion of the levels in

energy (except in the very neighborhood @ when vy,

T w3z wzz 0 w3y (46) =y, i.e., F¥(a,w)=<0). This result follows analytically

0 from the eigenvalue equatiof85). It holds quite generally
for real w as shown by means of the spectra of microwave
cavities[8] and laser-induced continuum structures in atoms

The mixing in the eigenfunctions Gf that is caused by the [16]. The level repulsion in energy is accompanied by an

avoided crossings remains, at high level density, at all valuegpproaching of the lifetimegvidths) of the states.

of the parametea. It is the result of complicated interference  The sign ofF“(a,w), Eq. (45), is decisive whether or not

processes. This can be seen best by comparing the two pithe states will be exchanged at the critical vahfé of the

0 Wiy W13 Wig

wy 0 W23 Wy

Wy Wyp W43

tures with four interacting statggop and middle in Fig. ¥
with those of only two interacting statébottom of Fig. 7

tuning parameter. Whew is real and so small th&“<0
and the difference of the widthis;—T';; is different from
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zero ata”, then the statesill not be exchangednd the teristic of the avoided crossing of resonance states. It in-
energy trajectories cross freely. If, howevEf™>0 andI’;  creases limitless at the double pole of Bieatrix and van-
=T;.; ata®, the stateswill be exchangedand the energy ishes in the case of an avoided crossing of discrete states
trajectories avoid crossing. (Fig. 6). It does not enter any physically relevant values
The exchange of the wave functions can be traced back tsince it does not enter th8 matrix, Eq. (31). The wave
the branch point in the complex plane where 8matrix has  functions of the resonance states appear inShmeatrix in
a double pole andb;— +i®; according to Eq.(42) (and  accordance with the orthogonality relatiof®d) that are ful-
calculations for a realistic cag&7]). Here, the real as well as filled in the whole function space without any exceptions.
the imaginary parts of the components of the wave functions Another result of the present study is the influence of the
increase up to an infinite value agd;* |®;) is the difference  branch points in the complex plane onto the purity of the
between two infinitely large values. Thus, the orthogonalitywave functionsb; ;. At a”, the wave functions are not only
relation (®|®;.;)=0 and the normalization condition exchanged but become mixed. The mixing occurs not only at
(®F|®;)=1 cannot be distinguished. This makes possiblethe critical pointa® but in a certain region arouraf” when
the exchange of the two wave functions. the crossing is avoided. This fact is important at high level
The exchange of the wave functions continues analytidensity where, as a rule, an avoided crossing with another
cally into the function space of discrete states as illustrated ifevel appears beford,— ®? is reached. As a result, all the
Figs. 3, 4, and 5. When the resonance states avoid crossingwave functions of closely lying states contain components of
a®, the components of the wave functions do not increase upll basic states. That means, they are strongly mixed at high
to infinity. Their increase is reduced due to interferencedevel density(for illustration see Fig.
(Fig. 5. The differences=|b;;|*—|bj; .i|* jump from 1 to O The strong mixing of the wave functions of a quantum
at a® (and from about 0 to almost 1 for values afdistant ~ system at high level density means that the information on
from a®) when (y;— y{") changes its sigfFig. 4). This jump  the individual properties of the discrete states described by
is related to the exchange of the wave functions. The valughe ®? is lost. While the exchange of the wave functions
5=0 at a® remains unaltered wheny(/2— y,/2)’<4w?,  itself is of no interest for a statistical consideration of the
i.e., also for discrete states. Therefore, the results shown istates, the accompanying mixing of the wave functidnss
Fig. 2 (top and middl¢ correspond to situations being fun- decisive for the statistics. At high level density, the number
damentally and topologically different from one another.  of branch points is relatively largéalthough of measure
The biorthogonality(22) of the wave functions is charac- zerg. Therefore, the discret@s well as resonangstates of
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quantum systems at high level density do not contain anyidual properties of the states with wave functish$ at the
information on the basic states with wave functish8. It  border of the spectrum is kept to a great deal in contrast to
follows further that the statistical properties of quantum systhat on the states in the center of the spectrum.

tems at high level density are different from those at low Thus, there is an influence of the continuum onto the
level density. States at the border of the spectrum are almogtroperties of &closed quantum system with discrete states
not influenced by branch points in the complex plane sincelue to the analyticity of the wave functions. The branch
there are almost no states that could cross or avoid crossimgpints in the complex plane afgidden crossingsindeed.
with others states. The properties of these states are expect€tey play an important role not only in atoms, as supposed
therefore to show more individual features than those at higin Refs.[14,15, but determine the properties of &tllosed
level density. In other words, the information on the indi- and opeh quantum systems at high level density.
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Summarizing the results obtained for quantum systems at All the results obtained show the strong influence of the
high level density with avoided level crossings and doublebranch points in the complex plane on the dynamics of
poles of theS matrix, the following can be stated. many-level quantum systems. They cause an avoided over-

(1) The poles of thes matrix correspond to the eigenval- lapping of resonance states that is accompanied by an ex-
ues of a non-Hermitian effective Hamilton operator also inchange of the wave functions. A special case is the avoided
the case that the resonance states overlap. level crossing of discrete states, which has been known for

(2) The eigenfunctions of a non-Hermitian Hamilton op- some time. The avoided level crossings cause a mixing of the
erator are biorthogonal in the whole function space withoutigenfunctions ofH. The larger the mixing, the higher the
any exceptions. level density. The states at the border of the spectrum of a

(3) Avoided level crossings in the complex plane as wellmany-particle system are therefore less influenced by
as in the function space of discrete states can be traced baekoided level crossings than those in the center.
to the existence of branch points in the complex plane.

(4) Under certain conditions, a branch point in the com-
plex plane appears as a double pole of $matrix. ACKNOWLEDGMENTS

(5) Branch points in the complex plane cause an exchange .
of the wave functiongnd create a mixing of the states of a  Valuable discussions with E. Persson, J. M. RostgBaS
quantum system at high level density even if the system i$1. Sieber, E. A. Solov'ev, and H. J. Stemann are grate-
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