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Dynamics of quantum systems
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A relation between the eigenvalues of an effective Hamilton operator and the poles of theSmatrix is derived
that holds for isolated as well as for overlapping resonance states. The system may be a many-particle quantum
system with two-body forces between the constituents or it may be a quantum billiard without any two-body
forces. Avoided crossings of discrete states as well as of resonance states are traced back to the existence of
branch points in the complex plane. Under certain conditions, these branch points appear as double poles of the
S matrix. They influence the dynamics of open as well as of closed quantum systems. The dynamics of the
two-level system is studied in detail analytically as well as numerically.
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I. INTRODUCTION

Recently, the generic properties of many-body quant
systems have been studied with a renewed interest. Mo
the level distributions have been compared with those
lowing from random-matrix ensembles. The generic prop
ties are, as a rule, well expressed in the center of the spe
where the level density is high. As an example, the statist
properties of the shell-model states of nuclei around24Mg
were studied a few years ago@1# by using two-body forces
obtained by fitting the low-lying states of different nuclei
the 2s-1d shell. In the center of the spectra, the gene
properties are well expressed in spite of the two-body ch
acter of the forces used in the calculations.

Another result was obtained recently in performing she
model calculations for the same systems with random t
body forces. In spite of the random character of the forc
the regular properties of the low-lying states are descri
quite well @2# in these calculations. Further studies@3–5#
proved the relevance of the results obtained and could
plain in detail even the regular properties at the border of
spectra obtained from random two-body forces@6#. The
spectral properties of the two-body random ensemble stu
30 years ago have been reanalyzed@7#.

The spectra of microwave cavities are not determined
two-body forces. Nevertheless, the calculated spectra
similar to those from nuclear reactions@8#. They show de-
viations from the spectra obtained from random-mat
theory as well as similarities with them. Avoided level cros
ings play an important role. The theoretical results obtain
have been confirmed by experimental studies@9#.

The effect of avoided level crossing~Landau-Zener ef-
fect! has been known and studied theoretically as well
experimentally for many years. It is a quite general prope
of the discrete states of a quantum system whose ene
will never cross when there is a certain nonvanishing in
action between them. Instead, they avoid crossing in ene
and their wave functions are exchanged when traced
function of a certain tuning parameter. The avoided le
crossings were related to the existence of exceptional po
@10#. To our knowledge, the relation between exceptio
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points and the well-known diabolical points has not be
investigated until now. The relation of the latter ones to ge
metrical phases was studied experimentally@11# as well as
theoretically@12,13# in a microwave resonator by deformin
it cyclically. The results show nontrivial phase changes wh
degeneracies appear near to one another@13#. The influence
of level crossings in the complex plane onto the spectra
atoms was studied in@14#. In this case, the crossings a
called hidden crossings@15#. The relation between avoide
level crossings and double poles of theS matrix was traced
in laser-induced continuum structures in atoms@16,17#.

Usually, it is assumed that avoided level crossings do
introduce any correlations between the wave functions of
states as long as the system parameter is different from
critical one at which the two states avoided crossin
Counter-examples have been found, however, in recent
merical studies of the spectra of microwave cavities@8,18#.
These results coincide with the idea@19# that avoided cross-
ings are a mechanism of generating the random matrix
properties in spectra of quantum systems.

It is the aim of the present paper to study in detail t
dynamics of quantum systems that is caused by avoided l
crossings. They are traced back to the existence of bra
points in the complex plane where the interaction betwe
the two states is maximum. The wave functions are
orthogonal in the whole function space without any exce
tion.

The paper is organized as follows. In Sec. II, the relat
between the eigenvalues of an effective Hamilton opera
and the poles of theS matrix is derived. This relation holds
also in the region of overlapping resonances. It is used
Sec. III, where the mathematical properties of branch po
in the complex plane and their relation to avoided lev
crossings and double poles of theS matrix are sketched by
means of a two-level model. In Sec. IV, numerical results
states at a double pole of theSmatrix as well as for discrete
and resonance states with avoided crossing are given.
influence of branch points in the complex plane onto
dynamics of quantum systems is traced and shown to
large. The results are discussed and summarized in Sec
©2001 The American Physical Society13-1
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II. HAMILTON OPERATOR AND S MATRIX

A. The wave function in the space with discrete and scattering
states

The solutions of the Schro¨dinger equation

~H2E!CE
c 50 ~1!

in the whole function space contain contributions from d
crete as well as from scattering states. The discrete state
embedded in the continuum of scattering states and can
cay. In the following, we will represent the solutionsCE

c by
means of the wave functions of the discrete and scatte
states.

Following @20,21#, we define two sets of wave function
by solving first the Schro¨dinger equation

~Hcl2ER
cl!FR

cl50 ~2!

for the discrete states of the closed system and secondly
Schrödinger equation

(
c8

~Hcc82E!jE
c8(1)50 ~3!

for the scattering states of the environment. Here,Hcl is the
Hamilton operator for the closed system with discrete sta
andHcc8 is that for the scattering on the potential by whi
the discrete states are defined,E is the energy of the system
and the channels are denoted byc.

By means of the two function sets obtained, two proje
tion operators can be defined,

Q5 (
R51

N

uFR
cl&^FR

clu, P5 (
c51

L E
ec

`

dEujE
c(1)&^jE

c(1)u ~4!

with QjE
c(1)50; PFR

cl50. We identify Hcl with QHQ

[HQQ andHcc8 with PHP[HPP . From Eq.~1!,

~HPP2E!PCE
c(1)52HPQQCE

c(1) ;

~HQQ2E!QCE
c(1)52HQPPCE

c(1) ~5!

and

PCE
c(1)5jE

c(1)1GP
(1)HPQQCE

c(1);

QCE
c(1)5~E2Heff!21HQPjE

c(1), ~6!

whereHPQ[PHQ andHQP[QHP. Further,

GP
(1)5P~E(1)2HPP!21P ~7!

is the Green function in theP subspace and

Heff5HQQ1HQPGP
(1)HPQ ~8!

is an effective Hamiltonian in the function space of discr
states.

AssumingQ1P51, it follows from Eq.~6!
03621
-
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CE
c 5~P1Q!CE

c 5jE
c 1~11GPHPQ!QCE

c , ~9!

where the(1) on the wave functions are omitted for conv
nience. Using the ansatz

QCE
c 5(

R
BRFR

cl ~10!

and Eq.~6!, one gets

BR5(
R8

^FR
clu

1

E2Heff
uFR8

cl &^FR8
cl uHQPujE

c & ~11!

and

CE
c 5jE

c 1(
RR8

~FR
cl1vR!^FR

clu
1

E2Heff
uFR8

cl &^FR8
cl uHQPujE

c &,

~12!

where the

vR5GPHPQFR
cl ~13!

follow from the solutions of the Schro¨dinger equation

(
c8

~Hcc82E!^jE
c8* uvR&5^jE

c* uHPQuFR
cl& ~14!

with source term that connects the two sets$FR
cl% and$jE

c % of
wave functions. With these coupling matrix elements

WR
c 5^jE

c* uHPQuFR
cl&5^FR

cluHQPujE
c & ~15!

betweendiscretestates and scattering wave functions, it fo
lows from Eq.~8!

^FR
cluHeffuFR8

cl &5^FR
cluHcluFR8

cl &1 (
c51

K

PE
ec

`

dE8
WR

c WR8
c

E2E8

2 ip(
c51

K

WR
c WR8

c . ~16!

The principal value integral does not vanish, in general.

With the eigenfunctionsF̃R and eigenvaluesẼR5ẼR

2 i /2G̃R of Heff, the solutionCE
c of the Schro¨dinger equation

in the whole function space of discrete and scattering st
reads

CE
c 5jE

c 1(
R

ṼR

W̃R
c

E2ẼR1
i

2
G̃R

. ~17!

In order to identify the eigenvalues and eigenfunctions
Heff with values of physical relevance, the two subspa
have to be defined in an adequate manner. When theP sub-
space contains all scattering states defined by t
asymptotic behavior and theQ subspace is constructed from
3-2
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DYNAMICS OF QUANTUM SYSTEMS PHYSICAL REVIEW E64 036213
all the wave functions of the closed system in a certain
ergy region~for details see@20,21#!, the values

W̃R
c 5^jE

c* uHPQuF̃R&5^F̃R* uHQPujE
c & ~18!

are the coupling coefficients between theresonancestates
and scattering wave functions, while the eigenvalues de

mine the energiesẼR and widthsG̃R of the resonance state
The

ṼR5F̃R1ṽR5~11GPHPQ!F̃R ~19!

are the wave functions of the resonance states@with ṽR de-

fined by Eq.~13! whenFR8
cl is replaced byF̃R].

The HamiltonianHeff is non-Hermitian since it is define
in a subspace of the whole function space. The left and r

eigenfunctions,F̃R
lt and F̃R

rt , of a non-Hermitian matrix are
different from one another. For a symmetrical matrix,

^F̃R* uHeff5^F̃R* uER

and

HeffuF̃R&5ERuF̃R&, ~20!

see, e.g., Refs.@16,17,22,23#. Therefore,F̃R
lt 5F̃R

rt *[F̃R* .
The eigenfunctions ofHeff can be orthonormalized accordin
to

^F̃R
lt uF̃R8

rt &5^F̃R* uF̃R8&5dRR8 , ~21!

whereF̃R8
rt [F̃R8 . Equation~21! provides the biorthogonal

ity relations

^F̃RuF̃R&5Re~^F̃RuF̃R&!5^F̃R8uF̃R8&;

AR[^F̃RuF̃R&>1,

^F̃RuF̃R8ÞR&5 i Im~^F̃RuF̃R8ÞR&!52^F̃R8ÞRuF̃R&;

BR
R8ÞR[u^F̃RuF̃R8ÞR&u>0. ~22!

Using the orthonormality condition~21!,

G̃R522 Im$^F̃R* uHeffuF̃R&%52p(
c51

K

~W̃R
c !2 ~23!

for the relation between theG̃R andW̃R
c . This relation holds

also for overlapping resonance states. Here Eq.~23! holds,

but G̃R5(2p/AR)(uW̃R
c u2<2p(uW̃R

c u2 according to Eq.
~22!.

It should be underlined here that the expression~17! is
obtained by rewriting the Schro¨dinger equation~1! with the
only approximationP1Q51. TheCE

c andjE
c as well as the

ṼR ,ẼR ,G̃R depend on the energyE of the system. The en
03621
-

r-

ht

ergiesER5ẼR(E5ER), widths GR5G̃R(E5ER) and wave

functions VR5ṼR(E5ER) of the resonance states can
found by solving the corresponding fixed-point equatio
Also the coupling matrix elementsW̃R

c are complex and
energy-dependent functions, generally. For numerical
amples, see Ref.@24#.

The expression~17! is solution of Eq.~1! independently
of whether or not the Hamilton operatorH contains two-
body residual forcesV. It is H5H01V, e.g., in nuclear
physics butH5H0 for quantum billiards. WhenH5H0

1V, it follows WR
c 5^FR

cluVujE
c & @20,21#. In the case of quan-

tum billiards, theWR
c can be calculated by using Neuman

boundary conditions at the place of attachment of the lea
the cavity whereas Dirichlet boundary conditions are used
the boundary of the cavity~see Ref.@25#!. In this case, the
WR

c are real, i.e., the principal value integral in Eq.~16!

vanishes@26#. TheW̃R
c may be complex nevertheless@8,25#.

B. The S matrix

The S matrix is defined by the relation between the i
coming and outgoing waves in the asymptotic region.
general form is

Scc85 exp~2idc!dcc822ip^xE
c8* uVuCE

c &, ~24!

where thexE
c are uncoupled scattering wave functions o

tained from

(
c8

~H0
cc82E!xE

c850. ~25!

The CE
c are given by Eq.~17!. When the two subspaces a

defined consistently, Eq.~24! can be written as

Scc85Scc8
(1)

2Scc8
(2) , ~26!

where

Scc8
(1)

5 exp~2idc!dcc822ip^xE
c8* uVujE

c & ~27!

is the smooth direct-reaction part and

Scc8
(2)

52ip (
R51

N

^xE
c8* uVuṼR&

W̃R
c

E2ẼR1
i

2
G̃R

~28!

is the resonance reaction part. InScc8
(1) , V may be zero~no

coupling between the channels!.

Since Eq.~19!, between the resonance statesṼR and the

eigenfunctionsF̃R of Heff, is completely analogous to th
Lippman-Schwinger equation

jE
c 5~11GPV!xE

c ~29!

~which describes the relation between the two scatter
wave functionsjE

c andxE
c with and without channel-channe

coupling, respectively!, one arrives at@21#
3-3
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I. ROTTER PHYSICAL REVIEW E 64 036213
^xE
c* uVuṼR&5^jE

c* uVuF̃R&5W̃R
c . ~30!

When V50, channel-channel coupling may appear due
the coupling of the scattering wave functions via theQ sub-
space~an effective Hamilton operator in theP subspace can
be derived analogously to the effective Hamilton opera
Heff in the Q subspace, Eq.~8!, see Ref.@21#!.

Using this relation, the resonance part~28! of theSmatrix
reads

Scc8
(2)

52ip (
R51

N W̃R
c W̃R

c8

E2ẼR1
i

2
G̃R

. ~31!

Thus, the poles of theS matrix are the eigenvaluesẼR5ẼR

2 i /2G̃R of the HamiltonianHeff at the energyE5ER ~solu-
tions of the fixed-point equations!. The numerator of Eq.~31!

contains the squares (F̃R)2 of the eigenfunctions ofHeff ~and

not theuF̃Ru2) that are always finite in accordance with th
normalization condition~21!. Numerical results for strongly
overlapping resonances can be found in Ref.@22#.

For overlapping resonance states@i.e., WR
c (E)WR8

c (E)

Þ0 at the energyE for RÞR8], theW̃ may be very different
from theW. Even when theW are real, theW̃ may be com-
plex since the eigenfunctions ofHeff are complex. The cou
pling strength of the system to the continuum of chan
wave functions is given by the sum of the imaginary parts
the diagonal matrix elements or of the eigenvalues ofHeff,

(
R

GR5(
R

G̃R52p(
Rc

W̃R
c W̃R

c 52p(
Rc

WR
c WR

c , ~32!

where Eqs.~16! and~23! are used. All redistributions taking
place in the system under the influence of a certain param
must obey the sum rule~32!. According to this rule, reso
nance trapping may appear when the resonance states
lap,

(
R51

N

G̃R' (
R51

M

G̃R; (
R5M11

N

G̃R'0. ~33!

It means that, under certain conditions,N-M resonance state
may decouple from the continuum of scattering states,
they may betrappedby M states. For numerical results o
nuclei see Ref.@21# and on open quantum billiards see Re
@27#. Studying the system by means of its coupling to t
environment ~described by the coupling matrix elemen
W̃R

c ) will give, in such a case, information either on theN-M
long-lived states on the background of theM short-lived
states or on theM short-lived states with fluctuations arisin
from theN-M long-lived states.

This behavior, induced by the imaginary part of the no
diagonal matrix elements of Eq.~16!, differs from that in-
duced by the real part. While the imaginary part causes
formation of structures with different time scales~as dis-
cussed above!, the real part causes equilibrium in time~ap-
proaching of the decay widths!. The first case is accompa
03621
o

r

l
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ter
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.
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nied by an approaching of the states in energy~clustering of
levels! while the second case is accompanied bylevel repul-
sion in energy. Numerical examples can be found in Re
@16,17# for atoms and in Ref.@8# for quantum billiards. The
interplay between the real and imaginary parts of the non
agonal matrix elements of Eq.~16! characterizes the dynam
ics of open quantum systems.

Equation~31! coincides formally with the standard form
of the resonance part of theSmatrix. It should be underlined

however, that theW̃R
c , ẼR , andG̃R are not parameters~as in

the standard form, see Ref.@28#!, butenergy-dependent func
tions that can be calculated. Equation~31! holds also for
overlapping resonances. Due to the energy dependence o

G̃R , the line shape of the resonances differs from a Br
Wigner shape, as a rule, even without any interferences w
the direct reaction part. Some numerical examples are
cussed in Refs.@16,21,22#.

III. BRANCH POINTS IN THE COMPLEX PLANE

Equation~31! gives theSmatrix for isolated as well as fo
overlapping resonance states. The extreme case of ove
ping corresponds to the double pole of theSmatrix at which
the eigenvaluesẼ1,2 of two resonance states are equal. Let
illustrate this case by means of the complex two-by-t
Hamiltonian matrix

H5S e1~a! 0

0 e2~a!
D 2S i

2
g1~a! v

v
i

2
g2~a!

D . ~34!

The unperturbed energiesek and widthsgk (k51,2) of the
two states depend on the parametera to be tuned in such a
manner that the two states may cross in energy~and/or
width! whenv50. The two states interact only via the no
diagonal matrix elementsv that may be complex, in genera
see Eq.~16!. In the following, we consider realv and gk
independent ofa.

The eigenvalues ofH are

Ei , j[Ei , j2
i

2
G i , j5

e11e2

2
6

1

2
A~e12e2!214v2 ~35!

with i , j 51,2 andek[ek2
i

2
gk (k51,2). According to Eq.

~35!, two interacting discrete states~with gk50) avoid al-
ways crossing sincev and (e12e2) are real in this case
Equation~35! shows also that resonance states with nonv
ishing widthsgk avoid mostly crossing since

F~a,v![~e12e2!214v2 ~36!

is different from zero for alla, as a rule. Only when
F(a,v)50 at a5acr ~andv5vcr), the states cross, i.e.,E1
5E2. In such a case, theSmatrix has a double pole, see, e.g
Ref. @29#.

It can further be seen from Eq.~35! that the crossing
points are branch points in the complex plane. The bra
3-4
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FIG. 1. The energiesEi ~top left! and widthsG i /2 ~top right! of the two eigenstates of the matrix~34! as a function of the parametera.
The thin lines give the energiesEi and widthsG i /2 of the states atv50. The lower part of the figure shows the coefficientsbii ~bottom left!
andbi j Þ i ~bottom right! defined by Eq.~37!. The 3 ands denote the Re(bi j ) while the Im(bi j ) are denoted by1 andL. e1512a/2;
e25a; g1/251.0; g2/251.1 andv50.05.
of
-

n

-

or
point is determined by the values (v)2 and (e12e2)2 but not
by the signs of these values. According to Eq.~35!, it lies in
the complex plane at the pointX[(1/2)$e1(acr )1e2(acr )%.
According to Eq.~31!, it is a double pole of theS matrix.

The eigenfunctionsF i can be represented in the set
basic wave functionsF i

0 of the unperturbed matrix corre
sponding tov50,

F i5( bi j F j
0 . ~37!

In the critical region of avoided crossing, the eigenfunctio
are mixed:ubii u5ubj j uÞ1 and bi j 52bji Þ0 for iÞ j . The
bi j are normalized according to Eq.~21!.

The Schro¨dinger equation with the HamiltonianH can be
rewritten as

~H02Ei !uF i&5S 0 v

v 0 D uF i&[WuF i&

5 (
k51,2

^FkuWuF i& (
m51,2

^FkuFm&uFm&.

~38!

Equation ~38! is a Schro¨dinger equation with the Hamil
tonian H0 of the unperturbed system~corresponding tov
50) and a source term that is related directly to the bi
thogonality of the eigenfunctions of the HamiltonianH. It
03621
s

-

vanishes withuF i u2[^F i uF i&→1 andu^F i uF j Þ i&u→0. Us-
ing Eq. ~22!, the right-hand side of Eq.~38! reads

WuF i&5W1i~AuF1&1 iBuF2&)1W2i~AuF2&2 iBuF1&)
~39!

with Wki[^FkuWuF i&; k51,2. At the branch point, the
complex energies are equal,E 1

bp5E 2
bp , and

Wbp
11~AuF1

bp&1 iBuF2
bp&)1Wbp

21~AuF2
bp&2 iBuF1

bp&)

5Wbp
12~AuF1

bp&1 iBuF2
bp&)1Wbp

22~AuF2
bp&2 iBuF1

bp&)

5Wbp
11~AuF2

bp&2 iBuF1
bp&)1Wbp

21~AuF1
bp&1 iBuF2

bp&),

~40!

where the relationsW115W22; W125W21 are used. This
gives

~A1 iB !uF1
bp&5~A2 iB !uF2

bp& ~41!

and finally

uF i
bp&5S 122

B2

A21B2
62i

AB

A21B2D uF j Þ i
bp &→6 i uF j Þ i

bp &

~42!

by using the biorthogonality relations~22!
3-5



I. ROTTER PHYSICAL REVIEW E 64 036213
FIG. 2. The energiesEi ~left! and widthsG i /2 ~right! as a function of the tuning parametera. e1512a/2; e25a andv50.05. Theg1/2
are 1.10~top!, 0.90 ~middle!, 0 ~bottom!; g251.1g1. The full lines show theEi andG i /2 for v50.
le
h

hi
rg

ces
e
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u^F i
bpuF i

bp&u→`, u^F i
bpuF j Þ i

bp &u→` ~43!

andA/B→1 at the branch point. The relation~42! between
the two wave functions at the branch point in the comp
plane has been proven in numerical calculations for the
drogen atom with a realistic Hamiltonian@17#. Note that the
condition ~21!

^F i
bp* uF j

bp&5d i j ~44!

is fulfilled also at the branch point in the complex plane. T
is achieved since the difference between two infinitely la
values may be 0~for iÞ j ) or 1 ~for i 5 j ). Numerical ex-
amples for the valueŝF i uF j& with i 5 j as well as withi
Þ j can be found in Refs.@22,23,30–32#.
03621
x
y-

s
e

Thus, the condition~21! is fulfilled in the whole function
space without any exception. According to Eq.~42!, the two
wave functions can be exchanged by means of interferen
betweenA and B, i.e., by means of the source term in th
Schrödinger equation~38!. When the wave functions are ex
changed, Re(b11)5Re(b22) as well as Re(b12)52Re(b21)
do not change their signs while Im(b11)5Im(b22) and
Im (b12)52Im(b21) jump between2` and 1` at the
branch point.

Note that Eq.~42! differs from the relationF1
bp56F2

bp

used in the literature for the definition of the exception
point @10#. With F1

bp56F2
bp , neither^F i

bpuF j
bp&5d i j nor

^F i
bp* uF j

bp&5d i j can be fulfilled. WithF1
bp56 iF2

bp, how-
3-6
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FIG. 3. The mixing coefficientsbii ~left! andbi j Þ i ~right! defined by Eq.~37! as a function of the tuning parametera. s and3 denote
the real parts andL and 1 the imaginary parts.e1512a/2; e25a and v50.05. Theg1/2 are the same as in Fig. 2: 1.10~top!, 0.90
~middle!, 0 ~bottom!; g251.1g1. Note the different scales in the three cases.
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ever, the orthogonality relations~21! are fulfilled in the
whole function space, without any exception.

The effects arising from the source term in Eq.~38! play
the decisive role in the dynamics of many-level quant
systems caused by avoided level crossings. This will be
lustrated in the following section by means of numerical
sults. The effects appear everywhere in the complex pl
when only uF i u2Þ1, u^F i uF j Þ i&uÞ0. They appear also in
the function space of discrete states where theF i are real,
due to the analyticity of the wave functions and their co
tinuation into the function space of discrete states.
03621
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IV. NUMERICAL RESULTS

The numerical results obtained by diagonalizing the m
trix ~34! are shown in Figs. 1 to 6. TheEi andG i are in units
of a chosen arbitrarily, and thebi j are dimensionless. In al
casese1512a/2, e25a, and v50.05. Theg i do not de-
pend on the tuning parametera. The relation between them i
g251.1g1. At a5acr52/3, the two levels cross when unpe
turbed ~i.e., v50) and avoid crossing, as a rule, when t
interaction v is different from zero. Heree15e2[ei 51,2

cr

52/3 and
3-7
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FIG. 4. The differencesd5ubii u22ubi j Þ i u2 as a function of the tuning parametera. e1512a/2; e25a andv50.05. Theg1/2 are 1.010
~top left!, 0.990~bottom left!, 0.90 ~top right!, 0 ~bottom right!; g251.1g1. Note the different scales in the different figures.
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Fcr~a,v!5Re@Fcr~a,v!#54v22~1/4!~g i2g j !
2 ~45!

according to Eqs.~35! and~36!. TheFcr(a,v) may be posi-
tive or negative. Thus,either the widthsG i , j or the energies
Ei , j cross freely atacr, but not both. The only exceptio
occurs when theSmatrix has a double pole atacr, i.e., when
g1/25g1

cr/251.0, g2/25g2
cr/251.1. Here,Fcr(a,v)50 and

the two resonance states cross in spite ofvÞ0. According to
Eq. ~35!, the double pole of theSmatrix is a branch point in
the complex plane.

In Fig. 1, the energiesEi , j , widths G i , j and wave func-
tions bi j of the two states are shown as a function of t
parametera in the very neighborhood of the branch poin
Approaching the branch point atacr, uRe(bi j )u→` and
uIm(bi j )u→`. While Re(bi j ) does not change its sign b
crossing the critical valueacr, the phase of Im(bi j ) jumps
from 6 to 7. The orthogonality relations~21! are fulfilled
for all a including the critical valueacr.

Figure 2 shows the energiesEi , j and widthsG i , j of the
two states for values ofg i , j just above and below the critica
valuesg i , j

cr as well as forg i , j50, i.e., for discrete states
According to Eq.~45!, either the energy trajectories or th
trajectories of the widths avoid crossing at the critical va
acr ~since the condition for the appearance of a double p
of the S matrix is not fulfilled!. It is exactly this behavior of
the trajectories that can be seen in Fig. 2.

~1! Wheng i.g i
cr , the widths of the two states approac

each other nearacr but the width of one of the states remai
always larger than the width of the other one. The two sta
03621
e
le

s

cross freely in energy, and the wave functions arenot ex-
changed after crossing the critical valueacr.

~2! The situation is completely different wheng i,g i
cr . In

this case, the states avoid crossing in energy while th
widths cross freely. After crossing the critical valueacr, the
wave functions of the two states are exchanged. An excha
of the wave functions takes place also in the case of disc
states (g i50). This latter result is well known as Landau
Zener effect. It is directly related to the branch point in t
complex plane atacr as can be seen from Fig. 2.

The wave functionsbi j are shown in Fig. 3. The states a
mixed ~i.e., ubii uÞ1 andbi j Þ iÞ0) in all cases in the neigh
borhood ofacr. In the case without exchange of the wa
functions, Re(bi j ) as well as Im(bi j ) behave smoothly atacr

while this is true only for Re(bi j ) in the case with exchang
of the wave functions. In this case, Im(bi j ) jumps from a
certain finite valuey to 2y at acr. Since the Im(bi j ) of dis-
crete states are zero, a jump in the Im(bi j ) cannot appear in
this case. The Re(bi j ), however, show a dependence ona,
which is very similar to that of resonance states with e
change of the wave functions (g i,g i

cr).
In order to trace the influence of the branch point in t

complex plane onto the mixing of discrete states, the diff
encesd5ubii u22ubi j Þ i u2 and the valuesubi j u2 are shown in
Figs. 4 and 5 for different valuesg i from g i.g i

cr to g i50.
Most interesting is the change of the valued from 1 to 0 at
g i

cr . The relationubii u25ubi j Þ i u2 at g,g i
cr is the result from

interference processes. It holds also atg i50, i.e., for discrete
states. In this case,ubii u25ubi j Þ i u250.5 atacr.
3-8
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FIG. 5. Theubii u2 ~full lines! and ubi j Þ i u2 ~dash-dotted lines! as a function of the tuning parametera. e1512a/2; e25a andv50.05.
Theg1/2 are the same as in Fig. 4: 1.010~top left!, 0.990~bottom left!, 0.90~top right!, 0 ~bottom right!; g251.1g1. Note the different scales
in the different figures.
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The valuesA andB characterizing the biorthogonality o
the two wave functions are shown in Fig. 6 for the sa
values ofg i as in Figs. 4 and 5. TheA andB are similar for
g i2g i

cr56D as long asD is small. They approachA→1
andB→0 for g i→0.

In Fig. 7, the energiesEi and mixing coefficientsubi j u2 are
shown for illustration for four discrete states with thr
neighbored avoided crossings as a function ofa. In analogy
to Eq. ~34!, the matrix is

H (4)5S e1~a! 0 0 0

0 e2~a! 0 0

0 0 e3~a! 0

0 0 0 e4~a!

D
2S 0 v12 v13 v14

v21 0 v23 v24

v31 v32 0 v34

v41 v42 v43 0
D . ~46!

The mixing in the eigenfunctions ofH that is caused by the
avoided crossings remains, at high level density, at all va
of the parametera. It is the result of complicated interferenc
processes. This can be seen best by comparing the two
tures with four interacting states~top and middle in Fig. 7!
with those of only two interacting states~bottom of Fig. 7
03621
e

s

ic-

and bottom right of Fig. 5!. Figure 7 bottom shows the larg
region of thea values aroundacr for which the two wave
functions remain mixed:ubii u2→1 and ubi j Þ i u2→0 for a
→al with ual2a34

cr u@uai4
cr2a34

cr u; i 51,2. The avoided cross
ings between neighbored states do, therefore, not occur
tween states with pure wave functions and it is impossible
identify the ubi j u2 unequivocally ~Fig. 7, right top and
middle!. These avoided crossings are caused by bra
points whichoverlapin the complex plane while the avoide
crossings considered in Figs. 1–6 and Fig. 7 bottom co
spond toisolatedbranch points in the complex plane.

V. DISCUSSION OF THE RESULTS

Most calculations represented in the present paper are
formed for two states that cross or avoid crossing under
influence of an interactionv that is real. A general feature
appearing in all the results is the repulsion of the levels
energy ~except in the very neighborhood ofacr when g i

>g i
cr , i.e., Fcr(a,v)<0). This result follows analytically

from the eigenvalue equation~35!. It holds quite generally
for real v as shown by means of the spectra of microwa
cavities@8# and laser-induced continuum structures in ato
@16#. The level repulsion in energy is accompanied by
approaching of the lifetimes~widths! of the states.

The sign ofFcr(a,v), Eq. ~45!, is decisive whether or no
the states will be exchanged at the critical valueacr of the
tuning parameter. Whenv is real and so small thatFcr,0
and the difference of the widthsG i2G j Þ i is different from
3-9



I. ROTTER PHYSICAL REVIEW E 64 036213
FIG. 6. TheA ~full lines! andB ~dash-dotted lines! defined in Eq.~22! as a function of the tuning parametera. e1512a/2; e25a and
v50.05. Theg1/2 are the same as in Fig. 4: 1.010~top left!, 0.990~bottom left!, 0.90 ~top right!, 0 ~bottom right!; g251.1g1. Note the
different scales in the different figures.
k

s
on

lit
n
bl

yt
d
ng

u
e

lu

n
-

-

in-

ates
es

.
the
he
y
y at

vel
ther
e

of
igh

m
on
by

ns
he

er
zero atacr, then the stateswill not be exchangedand the
energy trajectories cross freely. If, however,Fcr.0 andG i
5G j Þ i at acr, the stateswill be exchangedand the energy
trajectories avoid crossing.

The exchange of the wave functions can be traced bac
the branch point in the complex plane where theSmatrix has
a double pole andF i→6 iF j according to Eq.~42! ~and
calculations for a realistic case@17#!. Here, the real as well a
the imaginary parts of the components of the wave functi
increase up to an infinite value and^F i* uF j& is the difference
between two infinitely large values. Thus, the orthogona
relation ^F i* uF j Þ i&50 and the normalization conditio
^F i* uF i&51 cannot be distinguished. This makes possi
the exchange of the two wave functions.

The exchange of the wave functions continues anal
cally into the function space of discrete states as illustrate
Figs. 3, 4, and 5. When the resonance states avoid crossi
acr, the components of the wave functions do not increase
to infinity. Their increase is reduced due to interferenc
~Fig. 5!. The differencesd5ubii u22ubi j Þ i u2 jump from 1 to 0
at acr ~and from about 0 to almost 1 for values ofa distant
from acr) when (g i2g i

cr) changes its sign~Fig. 4!. This jump
is related to the exchange of the wave functions. The va
d50 at acr remains unaltered when (g1/22g2/2)2,4v2,
i.e., also for discrete states. Therefore, the results show
Fig. 2 ~top and middle! correspond to situations being fun
damentally and topologically different from one another.

The biorthogonality~22! of the wave functions is charac
03621
to

s

y

e

i-
in

at
p
s

e

in

teristic of the avoided crossing of resonance states. It
creases limitless at the double pole of theS matrix and van-
ishes in the case of an avoided crossing of discrete st
~Fig. 6!. It does not enter any physically relevant valu
since it does not enter theS matrix, Eq. ~31!. The wave
functions of the resonance states appear in theS matrix in
accordance with the orthogonality relations~21! that are ful-
filled in the whole function space without any exceptions

Another result of the present study is the influence of
branch points in the complex plane onto the purity of t
wave functionsF i , j . At acr, the wave functions are not onl
exchanged but become mixed. The mixing occurs not onl
the critical pointacr but in a certain region aroundacr when
the crossing is avoided. This fact is important at high le
density where, as a rule, an avoided crossing with ano
level appears beforeF i→F j

0 is reached. As a result, all th
wave functions of closely lying states contain components
all basic states. That means, they are strongly mixed at h
level density~for illustration see Fig. 7!.

The strong mixing of the wave functions of a quantu
system at high level density means that the information
the individual properties of the discrete states described
the F i

0 is lost. While the exchange of the wave functio
itself is of no interest for a statistical consideration of t
states, the accompanying mixing of the wave functionsF i is
decisive for the statistics. At high level density, the numb
of branch points is relatively large~although of measure
zero!. Therefore, the discrete~as well as resonance! states of
3-10
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FIG. 7. The energiesEi ~left! and mixing coefficientsubi j u2 ~right! of four discrete states (g i50 for i 51, . . . ,4)obtained fromH (4), Eq.
~46!, as a function of the tuning parametera. Top and middle:e1512a/3; e25125a/12; e3512a/2; e45a; v50.05 ~top! and 0.1
~middle! for all nondiagonal matrix elements. Bottom: the same as above bute151; e251.2; v50 for the coupling between the statesi
51,2 andj Þ i , v50.1 for the coupling betweeni 53,4 andj 54,3. In this case,ubii u2>ubi j Þ i u2 ~bottom right! as in Fig. 5~bottom right!.
The dash-dotted lines~left! showEi for v50. The statesi and j are exchanged at some valuesa.
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quantum systems at high level density do not contain
information on the basic states with wave functionsF i

0 . It
follows further that the statistical properties of quantum s
tems at high level density are different from those at l
level density. States at the border of the spectrum are alm
not influenced by branch points in the complex plane si
there are almost no states that could cross or avoid cros
with others states. The properties of these states are exp
therefore to show more individual features than those at h
level density. In other words, the information on the ind
03621
y

-

st
e
ng
ted
h

vidual properties of the states with wave functionsF i
0 at the

border of the spectrum is kept to a great deal in contras
that on the states in the center of the spectrum.

Thus, there is an influence of the continuum onto t
properties of a~closed! quantum system with discrete stat
due to the analyticity of the wave functions. The bran
points in the complex plane arehidden crossings, indeed.
They play an important role not only in atoms, as suppo
in Refs. @14,15#, but determine the properties of all~closed
and open! quantum systems at high level density.
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Summarizing the results obtained for quantum system
high level density with avoided level crossings and dou
poles of theS matrix, the following can be stated.

~1! The poles of theS matrix correspond to the eigenva
ues of a non-Hermitian effective Hamilton operator also
the case that the resonance states overlap.

~2! The eigenfunctions of a non-Hermitian Hamilton o
erator are biorthogonal in the whole function space with
any exceptions.

~3! Avoided level crossings in the complex plane as w
as in the function space of discrete states can be traced
to the existence of branch points in the complex plane.

~4! Under certain conditions, a branch point in the co
plex plane appears as a double pole of theS matrix.

~5! Branch points in the complex plane cause an excha
of the wave functionsand create a mixing of the states of
quantum system at high level density even if the system
closed and the states are discrete.
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All the results obtained show the strong influence of t
branch points in the complex plane on the dynamics
many-level quantum systems. They cause an avoided o
lapping of resonance states that is accompanied by an
change of the wave functions. A special case is the avoi
level crossing of discrete states, which has been known
some time. The avoided level crossings cause a mixing of
eigenfunctions ofH. The larger the mixing, the higher th
level density. The states at the border of the spectrum o
many-particle system are therefore less influenced
avoided level crossings than those in the center.
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