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Bifurcations in annular electroconvection with an imposed shear

Zahir A. Daya,1,2 Vatche B. Deyirmenjian,1 and Stephen W. Morris1
1Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7
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We report an experimental study of the primary bifurcation in electrically driven convection in a freely
suspended film. A weakly conducting, submicron thick smectic liquid crystal film was supported by concentric
circular electrodes. It electroconvected when a sufficiently large voltageV was applied between its inner and
outer edges. The film could sustain rapid flows and yet remain strictly two dimensional. By rotation of the
inner electrode, a circular Couette shear could be independently imposed. The control parameters were a
dimensionless numberR, analogous to the Rayleigh number, which is}V2 and the Reynolds number Re of the
azimuthal shear flow. The geometrical and material properties of the film were characterized by the radius ratio
a, and a dimensionless numberP, analogous to the Prandtl number. Using measurements of current-voltage
characteristics of a large number of films, we examined the onset of electroconvection over a broad range ofa,
P, and Re. We compared this data quantitatively to the results of linear stability theory. This could be done with
essentially no adjustable parameters. The current-voltage data above onset were then used to infer the ampli-
tude of electroconvection in the weakly nonlinear regime by fitting them to a steady-state amplitude equation
of the Landau form. We show how the primary bifurcation can be tuned between supercritical and subcritical
by changinga and Re.

DOI: 10.1103/PhysRevE.64.036212 PACS number~s!: 05.45.2a, 47.20.Ky, 47.54.1r
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I. INTRODUCTION

Phenomenological amplitude equation models are imp
tant tools in the study of symmetry-breaking, patte
forming bifurcations@1,2#. They have proven particularly
useful at the weakly nonlinear level. While their broad app
cation stems from the common symmetries that are share
many different systems, it is the coefficients or specific
rameters in amplitude equations that distinguish each sys
It is an interesting question to examine how these coe
cients, especially those of the nonlinear terms, change as
properties of the system are varied. There are only a
experimental systems, such as Rayleigh-Be´nard convection,
Taylor vortex flow, and electrohydrodynamic convection
nematic liquid crystals, for which these coefficients ha
been quantitatively determined@1#.

Three-dimensional, nonlinear systems are prone to
velop complicated spatial and temporal patterns even w
only weakly nonequilibrium@1#. The spatiotemporal pattern
are often the result of successive symmetry-breaking bi
cations. It is useful to study pattern formation in low
dimensional systems that are close to equilibrium but h
little symmetry so that there are only a very limited set
symmetry-breaking bifurcations available. In general, o
seeks the most complex dynamics that can be realized i
simple and restricted a system as possible. In our sys
annular electroconvection, we exploit the strict two dime
sionality of a submicron smecticA liquid crystal film. The
lower dimensionality greatly reduces the variety of possi
pattern states and so makes it easier to experimentally s
the rich nonlinear properties of the basic pattern.

In this paper, we report an experimental study of the pr
erties of the bifurcations in annular electroconvection with
variable circular Couette shear. Our primary focus is to
vestigate the variation of the cubic nonlinear coefficient of
1063-651X/2001/64~3!/036212~16!/$20.00 64 0362
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amplitude equation as the experimental parameters are
tematically changed. This coefficient determines the satu
tion behavior of the convective flow velocity. We begin b
establishing that the experimental system is well descri
by a theoretical model that reduces to an amplitude equa
near the onset of the pattern-forming instability. We test
adequacy of the theoretical model by direct comparisons
tween the experimental results and theoretical prediction
the linear level@3#. We then proceed to describe how th
coefficient of the lowest order nonlinear term depends on
experimental parameters. Interestingly, we find that the co
ficient can be made to change sign and thus that the prim
bifurcation can be tuned between subcritical and superc
cal. In this paper, we show from symmetry consideratio
that the amplitude equation that describes the sheared ca
the complex Landau equation@1,2,4#. Elsewhere, we have
derived this result directly from the full electrohydrodynam
equations using a multiple-scales analysis@5#. Calculation of
the parameter dependence of the coefficients of this equa
is beyond the scope of this paper, but in future, we expec
be able to compare the experimental results presented
with theory at the weakly nonlinear level.

Our system consists of a freely suspended annular sme
A film that can be driven out of equilibrium by electrica
forces and can be independently subjected to a shear flo
shown in Fig. 1. It was previously described in Refs.@3# and
@6#. The film is suspended between concentric circular el
trodes and is driven by a voltage difference between the e
trodes. The inner electrode can be rotated about its a
thereby imposing a circular Couette shear. The flow patt
that emerges when the film is driven sufficiently hard is
ferred to as electroconvection and consists of an array
counter rotating vortices. Our primary probe of the elect
convective amplitude is the excess electric current car
convectively by the flow. The annular geometry and elec
©2001 The American Physical Society12-1
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cal nature of the experiment make it possible to study ra
ally forced convection under steady shear, a combina
more often associated with geophysical flows than w
small laboratory systems. On the other hand, the accura
two-dimensional nature of the flow makes it far simpler th
most planetary analogs, and thus more amenable to the
ical investigation.

The driving force originates from the interaction of th
radial electric field and the surface charge density that de
ops on the film’s free surfaces@7#. Below the onset of con-
vection, the film’s electrical state is independent of the i
posed shear in the film. It is thus straightforward
superpose shear flows with the radial driving, as these
characterized by independent control parameters. The
plest such shear flow is a steady azimuthal or circular C
ette flow. The annular geometry is naturally periodic so t
the shear flow is closed and leads to a net mean flow aro
the annulus.

The addition of a shear flow to the annular electroconv
tion alters the symmetries of the base state of electrocon
tion. When shear is absent, the base state is invariant u
azimuthal rotation and reflection in any vertical plane co
taining the rotation axis through the center of the annu
The electroconvective state is then stationary and app
with the spontaneous breaking of the azimuthal invaria
@6#. When sheared, the reflection symmetry of the base s
is not present. When driven, the pattern once again bre
the azimuthal symmetry, but since the reflection symmetr
absent due to shear, the pattern is free to travel azimuth
in the direction of the mean flow@6#. In addition, as we show
in detail below, the shear flow alters the primary bifurcatio
making it hysteretic.

The equilibrium properties of freely suspended liqu
crystal films have been extensively studied; see Ref.@8# for a
recent review. Smectic liquid crystals consist of layers
orientationally ordered long molecules that readily form s
pended films. In smecticA, the average orientation of th
long axis of the molecules, and hence the optic axis, is n
mal to the layer plane. The layers are of uniform thickne
and within each layer the distribution of molecules is isot
pic. SmecticA exhibits two-dimensional isotropic fluid prop
erties in the layer plane while flows perpendicular to t
layers are strongly inhibited. Other material properties s
as the electrical conductivity and dielectric permittivity a
also isotropic in the plane of the layers. Uniform suspend
smectic films are always an integer number of smectic lay

FIG. 1. The geometry of the annular film. Circular Couette sh
is produced by rotating the electrode holding the inner edge of
film.
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thick and while they flow readily, they seldom change thic
ness; they are robustly two dimensional. Unlike soap so
tions @9,10#, smectic liquid crystals have very small vap
pressures, hence the film can be enclosed in an evacu
environment. The reduction in ambient pressure leads
proportional reduction in the air drag to which the film
subjected@9#. This system thus has several attractive featu
for the study of bifurcations in simple nonlinear systems t
may be described by amplitude equation models. Our st
greatly extends and complements previous work on elec
convection in isotropic liquids@11–17#, nematics@18,19#,
smecticA @3,6,7,20–25#, and higher smectic phases@26–29#.

The paper is organized as follows. In Sec. II A we d
scribe the results of a linear stability analysis of our syste
In the process we define the various dimensionless par
eters that characterize the experiment. In Sec. II B, we
symmetry arguments to justify the form of the relevant a
plitude equation. Our description of the experimental ap
ratus and protocol follows in Sec. III. In Sec. IV A we ou
line our data analysis procedure. We present experime
results that pertain to linear analysis in Sec. IV B. An expe
mental determination of the cubic coefficient of the amp
tude equation is found in Secs. IV C and IV D. Section
discusses the relationships between our results and thos
other similar systems and Sec. VI presents a brief summ
and conclusion.

II. THEORETICAL BACKGROUND

In this section, we briefly review the linear and weak
nonlinear theory that is relevant to our data analysis a
results.

A linear stability analysis of annular electroconvectio
with circular Couette flow was reported in Ref.@3#. The
theory is constructed with a number of simplifying assum
tions @3,7#. The fluid film is treated as an annular sheet
inner radiusr i , outer radiusr o , and thicknesss. A schematic
is shown in Fig. 1. An important geometric parameter is
radius ratioa5r i /r o . The film widthd5r o2r i is assumed
to be much greater thans. The viscous fluid is assumed t
flow only in two dimensions, and be incompressible, Ohm
and of uniform electrical conductivity. We denote the flu
density byr, its molecular viscosity byh, and its electrical
conductivity bys. Only the charges due to free surfaces a
included and bulk dielectric effects inside the film are n
glected@7#. The electrodes are assumed to be of negligi
thickness, and fill the rest of the plane not occupied by
annular film. Outside the plane of the film, we assume
empty space of dielectric permittivitye0. Couette shear in
the theoretical model is imposed by specifying the appro
ate velocity boundary conditions on the edges of the fi
Linear theory predicts the position of the onset of convect
and the degree to which onset is suppressed by the s
These are discussed in detail in Ref.@3# and are further ana
lyzed in Sec. IV B below.

From very general symmetry considerations, we can
duce the form of an amplitude equation that is valid in t
weakly nonlinear regime just above onset@1,2,4#. Here, a
complex-valued amplitude describes the slowly varyi
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BIFURCATIONS IN ANNULAR ELECTROCONVECTION . . . PHYSICAL REVIEW E64 036212
magnitude and phase of the spatially periodic physical fie
for example, the fluid velocity. We find an expression of t
well-known Landau form@5#. The coefficients of the ampli
tude equation can in principle be calculated from the und
lying electrohydrodynamic equations; a calculation of t
kind is in progress and will be reported separately@5#. The
magnitude of the complex amplitude is directly related to
quantity we measured experimentally, the total current c
ried by the film. We can thus fit current-voltage data to t
real part of the amplitude equation to experimentally de
mine its coefficients. This is done in Secs. IV C and IV
below.

A. Outline of linear stability theory

The theoretical treatment of Ref.@3# examined the linear
stability of the two-dimensional annular fluid film when it
subjected to a voltageV at the inner electrode of the annulu
while the outer electrode is held at ground potential. In
dition, the theory allowed for the rotation of the inner ed
of the annulus at angular frequencyv, while the outer edge
is held fixed. The rotation drives a Couette shear flow in
film below the onset of convection. It can be shown that a
arbitrary rotation of the inner and outer edges can be tra
formed to a rotation of only the inner edge by moving to t
appropriate rotating coordinates@3,30#. Such a coordinate
transformation has no effect on the dynamics as long as
flow is strictly two dimensional. The theoretical model
completely specified by the radius ratioa and three addi-
tional dimensionless parameters,

R[
e0

2V2

shs2
, P[

e0h

rssd
, and Re[

rvr id

h
. ~2.1!

The control parameterR is a measure of the external drivin
force that is proportional to the square of the applied volta
V while P is a ratio of the time scales of electrical an
viscous dissipation processes in the film. The Reynolds n
ber Re is a measure of the strength of the applied shear,
is regarded as a second control parameter. It has been e
lished @3,6# that the instability leads to a one-dimension
pattern ofm vortex pairs wherem is the azimuthal mode
number. Linear stability predicts the value of the critical co
trol parameterRc and the critical mode numbermc at which
the film becomes marginally unstable.Rc andmc are in gen-
eral functions ofa, P, and Re. A detailed discussion of th
calculated values ofRc and mc under various conditions is
given in Ref.@3#. When Re50 ~i.e., with no applied shear!,
it was found thatRc and mc are independent ofP. In the
following, these critical values for zero shear will be denot
R c

0 andmc
0 .

When Re.0, it is found thatRc.R c
0 , for anya andP,

i.e., that the shear always suppresses the onset of conve
@31#. It is convenient to measure the relative degree of s
pression for a givena andP in terms of the reduced quantit

ẽ~a,Re,P !5FRc~a,Re,P !

R c
0~a!

G21, ~2.2!
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which is a monotonically increasing function of Re for allP.
In Sec. IV B below, we extend the discussion in Ref.@3# by
comparing these results to data for several differenta, and
for a wide range ofP.

B. Nonlinear theory: The amplitude equation

The amplitude equation appropriate to our system follo
from symmetry considerations@1,2,4#. We defer a detailed
calculation of its numerical coefficients to future work@5#.

In the absence of shear, the base state solution of
electrohydrodynamic equations is invariant under azimut
rotations and reflections through any plane perpendicula
the annular plane and containing its center. Just above o
we assume that all the physical fields are nonaxisymme
and proportional to a rapidly-varying spatial oscillationeimu,
wherem is an azimuthal mode number. This requires that
differential equation for the slowly-varying complex amp
tudeAm of modem, be unchanged under the transformatio

u→u1u8, Am→Ameimu8, ~2.3!

and

u→2u, Am→Ām . ~2.4!

In the above,u is an azimuthal angle, and the overbar d
notes complex conjugation. The most general amplitu
equation that is invariant under these symmetry operati
has the Landau form,

t] tAm5eAm2guAmu2Am2huAmu4Am2•••, ~2.5!

where t, g, and h are real-valued coefficients. The sma
parametere is a reduced control parameter given by

e5F R
Rc

G21, ~2.6!

and is a measure of the distance from threshold. The am
tude equation is accurate for smalle and describes a bifur
cation from theAm[0 state (e,0) to theAmÞ0 state with
2m vortices (e.0). A sharp bifurcation occurs ate50.

If the fluid is subjected to a circular Couette shear, t
base state is only invariant under azimuthal rotations,
~2.3!. In this case, the general amplitude equation takes
complexLandau form

t~] t2 iaIm!Am5e~11 ic0!Am2g~11 ic2!uAmu2Am

2h~11 ic3!uAmu4Am2•••, ~2.7!

where aIm is the imaginary part of the eigenvalue of th
unstable modem at onset and the coefficientsc0 , c2 , c3
are real valued. Equation~2.7!, which here is simply deduced
from symmetry considerations, has been rigorously deri
for annular electroconvection with shear from the basic el
trohydrodynamic equations@5#. In general, it describes a
Hopf bifurcation to a pattern with a complex amplitudeAm
that travels in one azimuthal direction.
2-3
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FIG. 2. Schematic of the electrical and m
chanical parts of the apparatus, showing the a
nular electrodes and film drawing assembly
side view.
-

d
n

an

a

ce
ty
ha

d

ta

e
al

n
r

cti
ie

the
r, an
m-

wn
t to
2.

tiv-

ure
iv-
ne
m-
ies
was
he

hile
ic

2.96

n-
ible

less
ter
ter

f
t six

r

In both Eqs.~2.5! and ~2.7!, we have omitted terms in
volving the azimuthal gradients ofAm , which if included
would give the so-called Ginzburg-Landau equation@1#.
While such terms are potentially quite interesting, they
not appear to be directly relevant to interpreting our curre
voltage data. Our annular system is azimuthally periodic
thus lacks lateral boundaries at whichAm→0 where gradi-
ents would be important@24#. Thus, any gradients inAm
would have to arise from purely dynamical effects, such
Eckhaus or other phase instabilities@1#.

From current-voltage data, we can extract the redu
Nusselt numbern, which is a global dimensionless quanti
defined as the ratio of current carried by convection to t
by conduction. The reduced Nusselt numbern is related to
the electric Nusselt numberN by n5N21. One can show
@5,25# that the amplitude can be scaled so thatn5uAmu2.

To solve for the real and imaginary parts of the amplitu
equation, letAm(t)5A(t)eiF(t), where A(t) and F(t) are
real. Substitution into Eq.~2.7!, gives

t] tA5eA2gA32hA52•••, ~2.8!

t~] tF2aIm!5ec02gc2A22••• . ~2.9!

We will show in Sec. IV A how the raw current-voltage da
can be transformed into measurements ofe andn, and hence
be used to measure the real amplitudeA via a nonlinear fit
procedure. We focus on extracting the coefficientg of the
cubic nonlinearity. The sign ofg determines whether th
pitchfork bifurcation to electroconvection is supercritic
~‘‘forward,’’ g.0) or subcritical~‘‘backward,’’ g,0). A tri-
critical bifurcation occurs wheng50. The results forg are
discussed in Secs. IV C and IV D.

III. EXPERIMENTAL APPARATUS

In this Section we describe the liquid crystal sample a
the experimental apparatus. We performed a large numbe
precise current-voltage measurements on electroconve
annular films with a wide range of radius ratios and appl
03621
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shears. In overall structure, the apparatus consisted of
annular electrodes that were housed in a vacuum chambe
electrometer circuit, and a stepper motor, both under co
puter control. The chamber also allowed films to be dra
under vacuum and inspected under reflected white ligh
check thickness uniformity. A schematic is shown in Fig.

A. The liquid crystal

As in previous experiments@3,6,20–24#, our study used
smecticA octylcyanobiphenyl~8CB!. 8CB has a smecticA
phase between 21 °C and 33.5 °C. The electrical conduc
ity of ‘‘pure’’ 8CB is due to several ionic impurities of varied
and unknown concentrations. In order to control the nat
of the ionic species contributing to the electrical conduct
ity, we doped the 8CB with tetracyanoquinodimetha
~TCNQ!, a material believed to form charge transfer co
plexes with the host, so that the dominant impurity spec
was the dopant. To prepare the doped material, TCNQ
dissolved in acetonitrile and added to the 8CB sample. T
acetonitrile was then evaporated in a vacuum oven w
warming the mixture so that the 8CB was in its isotrop
phase. The samples used had concentrations of
31024, 1.1131024, and 7.6231025, of TCNQ by weight.
Experiments with significantly higher or lower dopant co
centrations were found to be less useful due to irreproduc
non-ohmic behavior below the onset of convection@32#.

B. The annulus

The annular electrodes were constructed out of stain
steel. The inner electrode was a circular disk of diame
2r i . The outer electrode was a circular plate of diame
9.00 cm with a central hole of diameter 2r o . The outer elec-
trode was 0.7360.01 mm thick. By using several pairs o
inner and outer electrodes, we conducted experiments a
different radius ratios betweena50.33 anda50.80. We
used inner electrodes with radii ranging betweenr i53.60
60.01 mm andr i55.2660.01 mm. The radii of the oute
electrodes were betweenr o55.5760.01 mm and r o
511.2560.01 mm.
2-4
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The annulus was housed in a vacuum chamber that
evacuated by a rotary pump. The air was evacuated slowl
as to prevent vigorous air flows that may cause the film
rupture. The surrounding air was pumped down to an am
ent pressure between 0.125.0 torr. At these pressures, th
mean free paths of N2 and O2 are in the range 0.5
20.05 mm. This was comparable to the film widthd, so that
the air drag on the film was negligible@9#. All experiments
were performed at the ambient room temperature of
61 °C, well below the smectic A-nematic transition
33.5 °C for undoped 8CB.

The inner electrode was made to rotate about its axis
means of a high precision stepper motor operating at 25
steps per revolution. The motor was located outside
vacuum chamber and was connected through a rotating
The inner electrode was adjusted to rotate true to its axi
within 50mm at angular frequencies up tov56p rad/s.

C. Drawing the film and determining its thickness

A motorized film-drawing assembly was housed in t
vacuum chamber. The film was spread across the annula
between the electrodes using a stainless steel razor b
inclined at;25°. The blade was moved away from the a
nulus while voltage was applied, to avoid perturbing t
electric fields near the film.

The thickness of the film was determined from the int
ference color of the film under reflected white light using
low power videomicroscope. Using standard colorimet
functions@33–35# a color-thickness chart was calculated f
8CB. Since smectic films are constrained to be an inte
number of smectic layers thick, the film color can be used
identify the film thickness measured in smectic layers. E
layer of smecticA 8CB is 3.16 nm thick@36#. Most of the
experiments were performed with films between 25 and
layers thick. Over most of the middle of this range, the fi
thickness can be determined to within62 layers, while close
to the ends of the range a more conservative estimate of65
layers was used. The colorimetric method worked well
film thicknesses where the strong interference color can
unambiguously matched to a color chart. Very thin films th
appeared black and thicker, nearly white films were not us

During the course of an experiment, the film color w
monitored to check that it remained uniform in thickness
within 61 layer. Films drawn with nonuniform thicknesse
left to themselves, tend to anneal to become uniform
thickness and hence uniform in color. The annealing proc
can be accelerated by electroconvecting and shearing
films.

Current-voltage runs during which the film thickne
spontaneously became nonuniform were abandoned. A s
number of visualization experiments were performed
films that had a nonuniformity in thickness of about62
smectic layers, or about 5% ofs. Usually these nonuniform
films had two thicknesses and in reflection displayed t
nearby interference colors. The advection of the thickn
nonuniformities was used to visualize the flow pattern a
thus to determine the azimuthal mode numberm by counting
vortices. For simplicity, some of these observations w
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done at atmospheric pressure. This visualization meth
while somewhat crude, was preferable to using suspen
smoke particles, which tend to perturb the conductivity
the film @23#.

D. Current-voltage measurements

Since the current transported through the film was pi
amperes in magnitude, particular care had to be exercise
avoid stray currents. The inner rotating electrode was e
trically isolated from all other components by a highly ins
lating sleeve. The current was carried onto the rotating e
trode by a set of silver-graphite slip rings inside the vacu
chamber. A Keithley model 6517 electrometer was used b
as a voltage source and a picoammeter. The ‘‘high’’ of t
programmable dc voltage source of the electrometer
connected to the rotating inner electrode, which was the o
part of the entire apparatus that was not at ground poten
The outer annulus was connected to the input of the e
trometer that was held at very nearly ground potential. T
outer annulus was electrically isolated from true ground
teflon washers that served to eliminate leakage currents
would otherwise be added to the signal. The rest of the
paratus was grounded. Electrical noise was reduced
shielding the electrodes and most of the experimental c
ponents in a large Faraday cage that doubled as the vac
chamber. Low noise triaxial cables and feedthroughs w
used to connect the outer electrode to the electrometer.

An example of a current-voltage characteristic in a fi
without shear is shown in Fig. 3a. It consists of data obtain
for incremental and decremental voltages. The curre
voltage characteristic clearly shows two regions: one
voltages smaller than a critical voltageVc and one for volt-
ages greater thanVc . The critical voltage that separates the
two regions is in the vicinity of the kink in the curren
voltage characteristic. In the regimeV<Vc , the current is
linearly dependent on the voltage and the film is ohmic. E
periments in 8CB with significantly higher and lower co
centrations of TCNQ show, at least initially, nonohm
current-voltage characteristics even forV<Vc , due to elec-
trochemical effects.

We estimatedVc before each run then defined an appro
mate reduced control parametere5(V/Vc

est)221. Current-
voltage data was then obtained by making variable step
voltage in such a way as to make equal increments ine. We
used severale step sizes, which became finer near thresho
Similarly, we used a variable waiting time after each st
which allowed for longer relaxation times closer toVc . Very
long relaxation times were not feasible due to the drift of t
electrical conductivity@37#. After the wait time, between
100–200 measurements of the current, each separated b
ms, were averaged. The error in the average was taken t
the standard deviation of the mean or 1%, the reading e
of the picoammeter, whichever was greater. Each run c
sisted of incrementinge up to a predetermined maximum
and then decrementing it to zero voltage again. Once the
had been acquired, more precisee values at each voltage
were found using drift-corrected values ofVc from a fit pro-
cedure described in the following section.
2-5
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When the film was sheared by rotation of the inner el
trode, it was allowed at least 30 s after a change of shear
to attain a steady state before the current-voltage chara
istics were obtained. In all runs, the shear rate was es
lished and then held fixed during a current-voltage swe
Figure 3~b! displays a representative current-voltage char
teristic in a film under shear. The principal effects of t
shear are to suppress the onset of convection and, event
to make the primary bifurcation hysteretic.

IV. EXPERIMENTAL RESULTS

With the exception of some simple flow visualization th
used slightly nonuniform films, all our results were obtain
by fitting current-voltage data taken with uniform films. It
possible to fit the data in such a way as to extract all
unknown material parameters in a nearly model-independ

FIG. 3. Representative current-voltage characteristics for ra
ratio a50.467 in the absence of shear~a! and when strongly
sheared~b!. Note the different scales.
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way, as well as to correct for small drifts in conductivity.
The first task was to determine the dimensionless par

eters relevant to each current-voltage sweep: the radius
a, the dimensionless ratioP and the Reynolds number Re
We could then properly nondimensionalize the curre
voltage data and fit it to an amplitude equation model. T
details of this fit are described in the Sec. IV A below.

In Sec. IV B, we consider the features of the data that
predicted by the linear stability theory developed in Ref.@3#.
For zero shear, these are the critical mode numbermc

0 , and
the critical voltageVc

0 . We use the latter to fix the last un
known material parameter, the viscosityh. We also compare
our data to the linear stability prediction for the shear su
pression of the onset of convection. This was done for
values ofa, and for wide ranges ofP and Re.

In the weakly nonlinear regime, the value of the coef
cient of the cubic nonlinearity,g in the amplitude equation
was of primary interest. In Sec. IV C we report results forg
at variousa andP for Re50, that is, in the absence of shea
We find thatg can become slightly negative for smalla, so
that the bifurcation is weakly backward. The result forg in
the limit Re50, a→1 is compared to the theoretical resu
for rectangular films@25#. Finally, in Sec. IV D we describe
the results forg in sheared films, where Re.0. We find that
increasing Re has a strong effect on the nature of the bi
cation, drivingg negative and making the bifurcation bac
ward.

A. Fitting the current-voltage data

Except for a small drift, the film is ohmic below the ons
of convection. We used fits in this range to determine so
important material parameters in order to scale the data.

Each voltage-current measurement in the ohmic regi
(V,I ), constitutes an experimental determination of the film
conductance,c5I /V. For a film of radius ratioa, thickness
s, and conductivitys, the conductance is given by

c5
2pss

ln~1/a!
. ~4.1!

Interestingly, the conductance is independent of the size
the film, i.e., independent ofr i or r o . Sincea is merely a
geometrical parameter, measurements ofc are effectively
measurements ofss, eliminating the need to determine the
separately.

Using Eq.~4.1!, P, defined in Eq.~2.1!, can be expressed
in terms ofc as

P5
e0h

rssd
5

2pe0h

r~r o2r i !ln~1/a!

1

c
, ~4.2!

where d5r o2r i . Similarly, the Reynolds number R
5rvr id/h can be calculated from the measured angular
quencyv of the inner electrode in rad/s, givenr andh. The
density r of 8CB at room temperature@38# is 1.0
3103 kg/m3. In both P and Re, the only remaining unde
termined material parameter is the viscosityh. We fixed this

s

2-6
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parameter using a combination of experimental and theo
ical results, as described in Sec. IV B. The result wash
50.1860.03 kg/ms.

Thus, for each current-voltage sweep, we were able
determineP and Re. The drift in conductivity@37# caused a
drift in c and hence inP over the course of a sweep. Fu
thermore,c is only known directly during the ohmic parts a
the beginning and end of each sweep. We associated a m
P with each sweep by averaging overc data before and after
This results in;10% errors inP for any one sweep, and
slow, uncontrolled evolution ofP from sweep to sweep.

A substantial range of current-voltage data is fit to t
amplitude equation model. Equation~2.7! gives the full,
time-dependent complex coefficient amplitude equation
quired by symmetry. Only the real and steady state par
Eq. ~2.7!, given by

eA2gA32hA51 f 50, ~4.3!

is required to model the current-voltage data. Here we h
truncated at the quintic order and augmented Eq.~2.7! with a
phenomenological field termf. This term models the round
ing of the bifurcation due to nonideal systematic effects t
are slightly symmetry breaking, resulting in an ‘‘imperfec
bifurcation @1#. For all of the fits, we foundf !1.

As discussed in Sec. II B, the amplitudeA that appears in
Eq. ~4.3! is related to the reduced Nusselt numbern by

n5
I

I cond
215

I

cV
215A2, ~4.4!

while the reduced control parametere is given by

e5
R
Rc

215S V

Vc
D 2

21. ~4.5!

Equations ~4.3!–~4.5! contain five parameters
c, Vc , g, h, and f. While c has a nearly constant initia
slope andVc is marked by a relatively obvious kink in th
raw (I ,V) data, the amplitudeA is indirectly deduced via the
pair of transformations Eqs.~4.5! and ~4.4! that are nonlin-
ear. This amplitude is in turn fit using Eq.~4.3!, which is
again nonlinear. Thus, the parameters (g,h, f ) are rather dis-
tantly related to the raw (I ,V) data. Ifg,0, the bifurcation
is hysteretic, andA is multivalued over some ranges ofe.
Also, the nature of the model necessarily involves severa
parameters that are not independent. Consequently, the d
mination of these parameters is much more difficult thanVc .
As discussed in Secs. IV C and IV D, (g,h, f ) can be influ-
enced by small systematic effects in the data leading to s
ter that is larger than the statistical uncertainties in the
Nevertheless, the general trends are robust.

The drift of the film’s conductivity, and hence its condu
tance c, introduces some additional complications. Rec
that the onset of convection occurs when the control par
eterR equals a critical valueRc given by

Rc5
e0

2Vc
2

shs2
or Vc5

s

e0
ARcsh. ~4.6!
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Since the electrical conductivity is not constant, the value
Vc required to calculatee slowly changes during the cours
of an experiment. Combining Eqs.~4.1! and ~4.6! yields

Vc~c!5AshRc ln~1/a!c

2pe0
2

. ~4.7!

We corrected for the drift inc by tracking its value during the
ohmic parts of the sweep and using a linear interpolat
during the portion of the sweep when the film was conve
ing. In this way,eachvoltage and current measurement w
nondimensionalized with its own value ofc and Vc(c) to
produce fittable values ofe andA. We also transformed the
errors in the current measurementsDI into amplitude errors
DA.

We approached the fitting problem in the following boo
strap fashion. It was easy to ascertain bounds onVc by in-
specting the current-voltage characteristics, see, for exam
Figs. 3~a! and 3~b!. Each current-voltage characteristic w
scrutinized and two voltage intervals were chosen. The fi
interval contained the critical voltage at which the condu
ing state became unstable to the convecting state. The se
interval contained the voltage at which the convecting st
became marginally unstable to the conductive state. Gue
of Vc in both these intervals were chosen at random usin
uniform deviate random number generator@39#. The conduc-
tancesc were then determined for the ohmic regimes a
from a linear interpolation for the convecting portion, as d
scribed earlier. The raw current-voltage data was then tra
formed into e and A6DA and fit to Eq.~4.3! by varying
only the three parametersg, h, and f in a weighted
Levenberg-Marquardt nonlinear fitting procedure that mi
mized x2. We then did a Monte Carlo optimization of th
randomly chosenVc @39,40#. The bestVc was taken to be the
one that minimizedx2 over the Monte Carlo sample. Th
uncertainty inVc was the standard deviation of the unifor
deviate on the constraint interval. Corresponding to this b
Vc were the three best fit parametersg, h, andf. The uncer-
tainties ing, h, andf were estimated by a Monte Carlo da
decimation step withVc constrained to its best fit value.

For several reasons, it was necessary to restrict the fi
the neighborhood ofe;0. In the first place, amplitude equa
tion models are only rigorously valid in the limite!1, al-
though in practice they have been found to apply over a m
extended range@23#. Second, restricting the range ofe re-
duced the impact of the residual, uncorrected componen
the conductivity drift. In many cases, the drift effects we
sufficiently large that only the data acquired with increas
e were fit.

Figure 4 shows a typical result of transforming curre
voltage data to reduced Nusselt numbersn and amplitudesA
and fitting to Eq.~4.3!. The transition from conduction to
convection is continuous and the best fit parameterg.0,
indicating that the bifurcation is supercritical. Figure 5 sho
the analogous result for a film under a strong shear. For
case, the transition from conduction to convection is disc
tinuous andg,0; the bifurcation is subcritical. In all fits, we
found h.0, and 0, f !1. We performed a large number o
2-7
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such fits and surveyed the dependence ofg on a, P, and Re.
In addition, the fits provided determinations of the critic
voltageVc as a function ofa, P, and Re via the bootstra
process described above. These results are discussed in
IV C and IV D below.

B. Tests of linear stability theory

This section compares the experimental measurem
with the predictions of the linear stability theory given

FIG. 4. The amplitudeA and the reduced Nusselt numbern
5A2 vs the control parametere for a film with radius ratioa
50.64. The solid and dashed lines are a fit to the Landau ampli
equation.

FIG. 5. The amplitudeA and the reduced Nusselt numbern
5A2 vs the control parametere for radius ratioa50.80 with an
applied shear. The solid and dashed lines are a fit to the Lan
amplitude equation.
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Ref. @3#. The simplest feature of linear theory that can
compared with experiment concerns the critical mode nu
ber for zero shearmc

0 . As mentioned in Sec. III, some ex
periments were performed in films with slight thickness no
uniformity. This permitted the qualitative visualization of th
flow field and a quantitative determination of the mode nu
ber m of the stationary pattern of vortices. Unless the bifu
cation is strongly subcritical, we expectm5mc

0 close to on-
set. The observed zero shear mode number was in exce
agreement with predictions of linear stability analysis. Ta
I summarizes the results. Rapid rotation of the vortex patt
and larger hysteresis prevented a systematic study ofm under
shear. Qualitative observations confirm the general pre
tion thatmc(Re.0),mc

0 , i.e., that shear reduces the numb
of vortices.

The primary theoretical result of Ref.@3# is the prediction
of the critical voltageVc required for the onset of electro
convection.Vc is given for the general case by Eq.~4.6!.
Even though the viscosityh is not well known, we can tes
the zero shear theory for various thicknessess and conduc-
tivities s using the following scheme. Denoting the ze
shear value ofVc by Vc

0 , we write

~Vc
0!2~a!5Fshs2

e0
2 GR c

0~a!. ~4.8!

Using Eq. ~4.1!, Eq. ~4.8! can be expressed more conv
niently as

v2[
4p2e0

2s~Vc
0!2~a!

@ ln~1/a!#2R c
0~a!

5hc2. ~4.9!

Written in this way, Eq.~4.9! expresses a proportionalit
betweenv2 andc2 in which the viscosityh is the only un-
known parameter. Consistency with this proportionality ov
a wide range of parameters serves as a test of the li
theory forVc

0 as well as a determination ofh. There is one
caveat: this analysis is not entirely experimental but requ
the theoretical value ofR c

0(a). The quantityv, which we
refer to as the scaled critical voltage, was found as follo
For each set of current-voltage data, the fit procedure o
lined in Sec. IV A was used to deduce a critical voltageVc

0

and conductancec at onset. The film thicknesss was de-

de

au

TABLE I. Experimental measurements of the marginally sta
mode number for zero shear,mc

0 .Theoretical values are from Re
@3#.

Radius ratio Experimental Theoretical
a mc

0 mc
0

0.33 4 4
0.47 6 6
0.56 8 7
0.60 8 8
0.64 10 10
0.80 20 19
2-8
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duced from the color of the film. Using the measured rad
ratio a and Eq.~4.1!, s was calculated. Finally, the numer
cal result forR c

0(a) was used to findv2 that was plotted
againstc2. Figure 6 shows the results obtained from 2
current-voltage runs at six differenta, numerous differents
and conductivities in the range 5.931028,s,8.4
31027 V21 m21. Consequently, the range ofP is very
broad. Within some scatter, Fig. 6 exhibits the predicted p
portionality over several decades. Hence, the theory prop
accounts for the scaling of the critical voltage with respec
the film thickness and radius ratio.

A single-parameter linear fit tov25hc2 gives h50.18
60.03 kg/ms. This is a reasonable value for the viscos
while it has not been independently measured, it is belie
to be of order of 0.1 kg/ms@41#.

We now turn to the case of nonzero shear. The main p
diction of the linear stability analysis is that the onset
electroconvection is suppressed by Couette shear. This
pression is botha andP dependent. Returning to Eq.~2.2!,
the degree of suppressionẽ is given by

ẽ~a,Re,P !5FRc~a,Re,P !

R c
0~a!

G215S Vc~a,Re!

Vc
0~a!

D 2

21.

~4.10!

We used the two equivalent expressions forẽ in Eq. ~4.10! to
calculate the suppression theoretically and experiment
Vc(a,Re) was found from the nonlinear fit, along with th
conductancec for that particular sweep. It was necessary
correctVc

0(a) for the drift of c in order to calculateẽ. This
was done using values ofVc

0(a) taken from zero shea
sweeps performed before and after each sheared sweep
variation ofVc

0(a) with c was modeled with a linear fit tha
was used to find the drift-corrected value ofVc

0(a). In this

FIG. 6. The scaled critical voltage vs the square of the cond
tance for various films at six differenta. The solid line is a one-
parameter fit with a single constant of proportionality that det
mines the viscosityh50.1860.03 kg/ms.
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way each experimental value ofẽ could be computed for a
constantc. The uncertainty inẽ was dominated by the un
certainty in the drift correction toVc

0 . The conductancec for
each ẽ can be used to calculate its associated value ofP.
Thus, we arrive at sets of experimental values ofẽ(a,Re,P)
for fixed a and Re and ranges ofP. These can be compare
in detail to the theoretical results for suppression as a fu
tion of these parameters given in Refs.@3,42#. Figures 7~a!
and 7~b! show this comparison ata50.47 anda50.64, re-
spectively. In each case the theoretical curves are calcul
for the mean value of the range ofP spanned by the data. Fo
a discussion of the distinction between the local and nonlo
approximations, see Ref.@3#.

c-

-

FIG. 7. A comparison between the measured suppressionẽ vs
Re and the predictions of the local and nonlocal theories of Ref.@3#.
In ~a! a50.47. The different symbols denote theP quartiles: 13.3
,s,15.4,d,17.5,h,19.6,n,21.7. The theoretical lines
are for the meanP516.3 of the data. Similarly, in~b! a50.64,
29.1,s,37.1,d,45.2,h,53.2,n,61.2 and the theoretica
lines are for the meanP545.2. Note the very different scales.
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Note that the ranges of Re for these twoa are different by
a factor of 10 and that the suppressions are also very di
ent. It is quite interesting that a rather mild shear (Re;3)

suppresses the onset of electroconvection so strongly thẽ
;14 ~i.e.,Rc515R c

0). We have also studied the suppressi
at a50.33, 0.56, 0.60, and 0.80. The results are simila
those in Fig. 7. The suppression data covers the range
,P,130 and 0<Re,3. In each case the agreement b
tween theory and experiment is fair, with the theory sligh
underestimating the suppression in most cases. The u
bound on Re could easily be extended using increased
tion rates, while smallerP would require larger, thicker
films.

The degree of agreement shown in Figs. 7 is essent
independent of the value ofh. Recall thath was determined
by a single parameter fit to Eq.~4.9!. Since theh dependence
in the Re scaling of both the theory and the experiment
proportional to 1/h, any change inh multiplies both by the
same factor@3#. This simply results in a rescaling of the R
axis in Figs. 7~a! and 7~b!, with no change in the quality o
the agreement.

We close this section with some brief speculation on w
might account for the scatter in Fig. 6 and for the remain
discrepancies between theory and experiment in the supp
sion curves.

The most likely sources of these discrepancies are
imperfect geometry of the film and its finite thickness. T
two-dimensional~2D! theoretical model assumed that th
flow velocity is independent of position over the thickness
the film. This may be inexact for thicker films. Since th
electrical forcing is localized near the free surfaces, it see
likely that the surfaces are preferentially driven in thick film
so that the motion is not accurately 2D. The film’s edges
also imperfect because small wetting layers unavoidably
ist on the circumferences of the inner and outer electrod
These may produce electrical or velocity boundary con
tions that are not exactly those assumed by the theory
general, however, the linear stability theory works rema
ably well considering its rather simple assumptions.

C. Coefficient of the cubic nonlinearity without shear

In this section, we consider the experimental results in
nonlinear regime, beginning with the unsheared Re50 case.
These are expressed in terms of the cubic Landau coeffic
g of the amplitude equation, Eq.~4.3!. Even with Re fixed at
zero, we will show that this coefficient is an interesting a
nontrivial function of the remaining dimensionless quan
ties,P anda.

The radius ratioa is a fixed geometric parameter for ea
run, determined only by the choice of the electrode dim
sions. TheP appropriate to each film was deduced after ea
run as described in Sec. IV A. SinceP is proportional to the
conductivity, which exhibits a slow drift, a wide range ofP
could be investigated. While they are independent in p
ciple, a andP are not easy to separate experimentally. T
practical constraint derives from Eq.~4.2! in which P}d21,
where the width of the filmd5r o2r i . In practice,d is larg-
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est at smalla, so the runs with the smallestP occur for small
a.

The nonlinear coefficientg(a,P) was determined as de
scribed in Sec. IV A. Figures 8~a! and 8~b! show g as a
function ofP for two differenta. The scatter that is manifes
in these plots exceeds the statistical uncertainty of the fit.
discussed in Sec. IV A, the scatter originates from system
effects due to the nonideal features of the experiment. N
ertheless, the gross features of theP dependence ofg can
still be extracted.

At a50.33, the measurements explored the range 2,P
,8. These were the smallestP reached in the experiment. I
is clear from Fig. 8~a! that g increases withP, and passes
through zero for small enoughP. Thus, fora50.33, we find
that the bifurcation from the conduction state to them54
vortex state is subcritical (g,0) for P&5 and supercritical
(g.0) for P*5. NearP>5 we pass a tricritical point. It is

FIG. 8. ~a! Measurements of the coefficient of the cubic nonli
earity g for zero shear vsP for ~a! a50.33 and~b! a50.64.
2-10
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BIFURCATIONS IN ANNULAR ELECTROCONVECTION . . . PHYSICAL REVIEW E64 036212
interesting to observe that in each case the bifurcation
volves thesametwo symmetry states, yet its subcriticalit
depends onP.

For all the other, largera investigated,g was found to be
independent ofP. This is illustrated in Fig. 8~b! for a
50.64 and was also true fora50.47, 0.56, 0.60, and 0.80
However, for all of these cases,P was never less than 10 an
can be as large as 150. Thus, it is unclear whether the
criticality at a50.33 is due to the smallness ofP or the
smallness ofa, or some combination. It would be interestin
to determine whetherg also becomes negative for largea as
P decreases. The regime of largea and smallP, while ac-
cessible in principle, would require significantly larger ele
trodes or much thicker films. All electroconvection expe
ments on freely suspended films in the rectangular geom
have reported supercritical bifurcations@20–23#. However,
these experiments were also at largeP and so the possibility
of a subcritical bifurcation in rectangular films cannot
excluded.

The case of largeP is easier to understand. In the go
erning electrohydrodynamic equations~see Ref.@3#!, the pa-
rameter analogous to thePandtl number only appears as th
inverse,P21, multiplying certain nonlinear terms. Hence,
is perhaps not surprising thatg becomes independent ofP
for P*10, where these terms become negligible.

In order to examine howg depends ona, we removed the
P dependence by averaging over data at variousP. For the
five largesta, g is independent ofP over broad ranges ofP.
A weighted average ofg was obtained for these cases. F
a50.33, where someP dependence was evident, onlyg val-
ues in the narrow range 2.1,P,4.4 were averaged.

In this averaging, the systematic scatter ing was treated
as random. It is thus likely that the true uncertainty in t
average values ofg will be much larger than the standar
deviation of the mean. The ultimate test of this procedure
in the comparison of the averaged values ofg with theoreti-
cal predictions. As we describe below, the limited compa
son we are able to make at present is not unfavorable.
line in Fig. 8~b! shows the average value ofg for the plotted
data. All of the results forg(a) are tabulated in Table II and
plotted in Fig. 9.

It is clear from Fig. 9 that, overall,g(a) increases witha.
As discussed above, the largera data are also associate
with largerP. At present, no theoretical prediction is ava

TABLE II. Experimental measurements of the coefficient of t
cubic nonlinearity,g without shear.

Radius ratio Experimental P Theoretical
a g range g

0.33 20.7460.23 2.1,P,4.4
0.47 1.6460.06 13.5,P,20.7
0.56 0.7360.15 59.4,P,100.8
0.60 2.7260.34 31.3,P,38.9
0.64 1.8760.10 25.2,P,63.0
0.80 2.2160.29 15.3,P,142.8

1.00 ~plate! P5` 2.842
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able for g at arbitrarya and P. However, we expectg to
approach a limiting value quite rapidly asa→1. This limit
corresponds to an unbounded lateral geometry in which
film is a strip of fluid suspended at its long parallel edges
two semi-infinite plate electrodes. In this limit the discre
azimuthal mode numbersm are replaced by a continuou
wave numberk5m/ r̄ , where r̄ 5(r i1r o)/2 is the mean ra-
dius. From linear theory, we found that the critical para
etersR c

0 andkc
05mc

0/ r̄ at a50.80 are already very close t
the limiting values fora→1 @3#.

This limiting behavior is reasonable given the large
mensionless circumference for largea. The relevant aspec
ratio L is the circumference at the mean film radius,p(r i
1r o), divided by the width of the filmd5r o2r i , so that
L5p(11a)/(12a). At a50.80, L;28. Almost all the
experiments performed in the rectangular geometry hadL
&10 @20–24# and were well modeled by the theory for a
unbounded strip for whichL5`. It is thus reasonable to
expectg at a50.80 to be close to its limiting value fora
51. Similarly, as the largea data also involve very large
values ofP, we may also employ the theory in theP→`
limit.

Weakly nonlinear analysis of unsheared electroconvec
in the ‘‘plate’’ electrode geometry was presented in Ref.@25#
for the caseP5`. The result of that analysis,g52.842 is
shown in Fig. 8. It is in good agreement with a reasona
extrapolation of the data to thea→1 limit.

When g,0, the onset of convection becomes hystere
and the quintic term with coefficienth in Eq. ~4.3! becomes
significant @42#. Since 0, f !1, the width of the hysteresis
loop de in e is given by de5g2/4h. When g>0, de50.
The hysteresis width with zero applied shear is plotted
Fig. 10 for a50.33 and variousP. Note that the hysteresi
vanishes forP*5 and even when nonzero, is always rath

FIG. 9. Measurements of the coefficient of the cubic nonline
ity g for zero shear vs the radius ratioa. The short dashed line
shows the theoretical value forg in the limitsP→` anda→1 from
Ref. @25#.
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small, de;0.02. This is in contrast with the sheared ca
discussed in the following section, for whichde;0.1.

D. Coefficient of the cubic nonlinearity with shear

In the presence of shear, the coefficientg of the cubic
nonlinearity is strongly dependent on the Reynolds num
Re of the Couette flow imposed in the base state. We
that the shear drivesg negative, producing a hysteretic Hop
bifurcation to convection in the form of traveling vortices.
this section, we describe the Re dependence ofg, which, as
in the previous section, is also a function of the radius ratioa
and the dimensionless ratioP.

Figure 11 shows a representative example of the Re
pendence ofg, in this case fora50.47. At Re50, the value
of g is found, as described in Sec. IV C, by averaging ove
range ofP, which was always.10. In the case shown in
Fig. 11,g(Re50)51.6460.06 with a meanP of 16.3. The
plottedg data for Re.0 had 13.3,P,21.7.

Our main result is that Re plays the part of a seco
control parameter that allows the primary bifurcation to el
troconvection to be tuned between supercritical and subc
cal. For a50.47, the bifurcation is supercritical at Re50
and weakens as the Reynolds number increases. The b
cation becomes tricritical at Re;0.2 and is subcritical there
after. The subcriticality at first deepens with increasing R
nolds number, until at Re;0.85 a minimum value ofg
>23.7 is reached. For Re.0.85, the bifurcation remain
subcritical butg becomes an increasing function of the Re
nolds number. For the range of Reynolds numbers inve
gated the bifurcation does not become supercritical agai

There is some scatter in the data, nonetheless, the ov
trends are clear. The systematic deviations are comparab
those in Figs. 8~a! and 8~b!. The results were qualitatively
similar for a50.56, 0.60, 0.64, and 0.80. The tricritic
Reynolds number at whichg50 will be denoted ReT . The

FIG. 10. Measurements of the hysteresis widthde vs P for
radius ratioa50.33.
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value of ReT varies for differenta and P, but the general
features of theg vs Re curve are preserved over a wide ran
of parameters. Table III lists the values of ReT under various
conditions.

The variation of ReT is probably due to the combinatio
of changing botha andP, rather than to the variation eithe
parameter separately. These are difficult to experiment
disentangle and the parameter space is large. For zero s
g is found to be independent ofP for P*10, but under shea
there is insufficient data to draw many conclusions about
P dependence ofg. If linear theory is any guide, we expec
there will in general be a greaterP dependence in the
sheared case. It was established in Ref.@3# that the linear
theory result forRc was independent ofP for Re50, but
weakly dependent onP for ReÞ0. It appears from the tabu
lated results that asP anda decrease, ReT increases.

The minimum value ofg as a function of Re also varie
for differenta andP. We will refer to the coordinates of this
special point asgmin and Remin . Table IV lists the minimum
values observed. A look at Fig. 11 shows that the minim
value is only known up to the density of data and to with
the scatter in the whole plot. The minimum is a local one a

FIG. 11. Measurements of the coefficient of the cubic nonline
ity g vs the Reynolds number Re ata50.47. The different symbols
denote data in various quartiles ofP.

TABLE III. Experimental measurements of the tricritical Re
nolds number ReT at whichg50.

Radius ratio Reynolds number P
a ReT range

0.47 0.1860.02 15.8,P,16.6
0.56 0.0360.02 75.4,P,85.4
0.60 0.0360.01 30.3,P,31.7
0.64 0.0860.06 29.1,P,61.2
0.80 0.0160.01 65.5,P,70.6
2-12
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is observed within ranges of Re that had different maxi
for different a.

Since the parameter space for the data is defined by
eral parameters it becomes difficult to make meaning
comparisons of the experimental results when more than
parameter changes. However, one fortunate comparison
be gleaned from Table IV. Ata50.47, the film hadP
515.3 while ata50.80,P512.0. Since the radius ratios a
very different and theP are not, it is not unreasonable t
directly compare the values ofgmin and Remin for these
cases. It is evident that the bifurcation is much more stron
subcritical ata50.80 than ata50.47, and the values o
Remin are also very different.

The coefficient of the quintic nonlinearityh as function of
Re is studied in Ref.@42#. Figure 12 shows the hysteres
width de5g2/4h as a function of Re fora50.47. The hys-
teresis when Re.0 is much larger than that described in t
previous section that was found for Re50 at smalla andP.

The Nusselt number of the convection is independen
the Hopf frequency~i.e., the traveling rate of the vortex pa
tern!. It would be interesting to measure this frequen
which is governed by the imaginary part of the compl
Landau equation, Eq.~2.9!, and depends one, a, Re, and

TABLE IV. Experimental measurements of the minimum val
of g and the corresponding Remin andP values.

Radius ratio Minimum Reynolds number Maximum
a g Remin P Re

0.47 23.6860.19 0.8360.18 15.3 2.59
0.56 25.1561.04 0.1160.05 63.3 0.22
0.60 21.7460.04 0.0560.02 32.1 0.13
0.64 24.3460.79 0.2360.02 53.4 0.25
0.80 29.1760.56 0.0460.01 12.0 0.10

FIG. 12. The hysteresis widthde vs the Reynolds number R
for radius ratioa50.47. The symbols denote the same quartiles
P as in Fig. 11.
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P. This would however require visualization of the flow pa
tern or some spatially localized probe of the amplitude.

V. DISCUSSION

Because of its rather simple symmetry and forci
scheme, annular electroconvection under applied shear
many similarities to other systems and models. In this s
tion, we discuss these similar systems with a view to putt
annular electroconvection into a general context.

Electroconvection is obviously analogous to buoyan
driven thermal convection. In fact, it can be shown that
linear stability problem for surface charge driven electroco
vection in thin films reduces to the 2D Rayleigh-Be´nard
problem if the nonlocal coupling between fields and char
is neglected@7#. Detailed calculations show that this ‘‘local
approximation is an accurate one, even when applied in
weakly nonlinear regime.

There have been some theoretical studies of 3D Rayle
Bénard convection~RBC! in the presence of aplaneCouette
shear flow@43#. The theory assumed the usual theoreti
geometry of a fluid layer confined between infinite, perfec
conducting horizontal planes. Our annular system
proaches the plane one in thea→1 limit. ~Thea,1 annular
geometry has finite extent and curvature; the implications
these are discussed below.! Linear stability analysis of a
plane Couette base state to RBC reveals stability differen
between transverse roll disturbances~with axes perpendicu-
lar to the shear flow!, and longitudinal roll disturbances~with
axes parallel to the shear flow!. Longitudinal-roll distur-
bances have identical stability properties to unsheared R
and are always more unstable than the transverse-roll dis
bances. In fact, longitudinal-roll disturbances have stabi
properties that are independent ofany unidirectional shear
flow along the axis of the rolls. In our 2D system, these m
unstable longitudinal roll modes do not exist and the vortic
we see correspond to truly 2D transverse rolls. Thus,
observe the analog of a state that would normally be p
empted by longitudinal rolls if the geometry were not co
strained.

According to linear theory, transverse-roll disturbances
unbounded, sheared RBC, like our vortices, exhibit supp
sion, or added stability due to the shear, under plane P
seuille or plane Couette or any mixture of these two flow
The onset Rayleigh number for transverse rolls is a mo
tonically increasing function of the shear Reynolds numb
similar to what we found for electroconvection. Furthermo
the critical wave number of the most unstable transverse
turbance was found to be a monotonically decreasing fu
tion of the shear Reynolds number, which is analogous to
reduction ofmc by shear that we observed. Transverse ro
also travel under unidirectional plane Couette shear, ag
analogous to our traveling vortex state.

Whereas unbounded RBC with plane Couette shear c
not be realized experimentally, RBC has been studied exp
mentally and theoretically in narrow slots with open throug
flows @1,44,45#. Quasi-2D transverse rolls can be stabiliz
by wall effects in slots. The through-flow consists of a we
Poiseuille flow with a very small Reynolds number. Its e
f
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fects on RBC are well understood. In brief, the onset
convection is again suppressed, but the first instability
convective~i.e., it grows only downstream of a localized pe
turbation!, rather thanabsolute. The resulting convection
pattern drifts in the direction of the through flow. It is inte
esting that the clear distinction between convective and
solute instability is blurred in annular electroconvection w
shear, in which the ‘through’ flow loops back on itself. Th
annular geometry is naturallyclosed. The linear stability
analysis of Ref.@3# only treated absolute instability. In prin
ciple, the system might still be considered to be convectiv
unstable if localized perturbations grew only as they trave
azimuthally.

Taylor vortex flow ~TVF! @1# is an extensively studied
pattern-forming instability with geometric similarities to a
nular electroconvection. However, the instability leading
TVF depends crucially on axial disturbances to 3D Coue
flow. Purely 2D circular Couette flow is, in fact, linearl
stable @46,47#. TVF is the result of an instability of a 3D
shear flow, while what we have studied here is the effect o
shear flow on the electroconvective instability.

Agrait and Castellanos theoretically studied the effect o
3D Couette shear on an electrohydrodynamic instability
TVF geometry@16#. Their electrohydrodynamic system co
sisted of a nearly insulating fluid confined between meta
electrodes. Charge injection, a process by which charge
riers are created at the electrodes, occurs when strong ele
fields are applied. The interaction of this volume charge d
sity with the applied electric field leads to electroconvect
instabilities @14,15,17#. Agrait and Castellanos considere
electroconvection due to a radial field with charge inject
on either cylinder. Both cylinders were permitted to rotate
produce a general Couette shear. They found that shea
enhanced the instability, leading to a 3D flow that resemb
TVF. This is in direct contrast to the stabilizing effects w
observed in 2D.

Although shear and rigid rotation are conceptually qu
different, it is interesting to compare their effects on ins
bilities. Again, we find crucial distinctions between 2D a
3D systems.

The added stability in sheared annular electroconvec
is a consequence of the shear and not of rotation. Under r
rotation, where the inner and outer electrodes are co-rota
one can transform to rotating co-ordinates in which the e
trodes are stationary. This transformation introduces a C
olis term 22V ẑ3v¢522V“c in the Navier-Stokes equa
tion which may be absorbed into the pressure gradient t
“P and eliminated@3,30#. Thus, in a purely 2D system, rigid
rotation and the nonrotating, unsheared case have iden
stability. It also follows, since the transformation is gene
and the unsheared bifurcation is stationary, that the resu
nonlinear vortex pattern above onset must be stationar
the co-rotating frame.

This lack of dependence on rigid rotation may be co
trasted with a large class of 3D and quasi-2D rotat
Rayleigh-Bénard systems@4,48–52#, where rotation pro-
duces added stability but the absence of strictly 2D fl
results in a time-dependent~precessing! convection pattern
in the co-rotating frame. The precession seen in these
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tems is analogous to the traveling of the sheared patterns
we observed only to the extent that rotation and shear br
the same symmetry, which allows traveling patterns. Sy
metry aside, the physical origins of added stability and p
cession are fundamentally different between the 2D shea
and 3D rotating cases.

In general, 3D rotating convecting systems may also s
port strictly 2D ‘‘Taylor column’’ @53# solutions that do not
precess in the rotating frame and whose onset occurs a
same critical Rayleigh number as in the absence of rota
@4,30#. The system most analogous to ours is the interes
but experimentally unrealizable situation of 2D RBC in
rotating annular geometry with purelyradial gravity and
heating @30#. Theoretical studies found columnar solutio
that are very closely analogous to our vortices. One mi
hope to approach this limit in experiments using radial te
perature gradients imposed between rapidly rotating conc
tric cylinders. Purely columnar solutions have not been
served in any rotating RBC experiment because
boundary conditions at the top and bottom of the cylind
must be stress free@4,30#, a requirement that cannot be a
tained in terrestrial RBC experiments. In contrast, two
mensionality, stress free surface conditions and radial driv
forces all arise naturally in the electroconvection of an an
lar suspended film. Thus, the vortices that occur in annu
electroconvection without shear are accurate 2D analog
‘‘Taylor columns.’’

The similarity between our system and many other bet
studied systems and models suggests that many linear
nonlinear techniques developed for other problems can
fruitfully brought to bear on annular electroconvection.
addition, the system may allow the study of bifurcation sc
narios that are not experimentally realizable in other sim
systems.

VI. CONCLUSION

In this paper, we have reported a wide ranging experim
tal study of the primary bifurcation to electroconvection
sheared two-dimensional annular films. Our principal expe
mental probe was the excess current carried by the film
to convection, which can be directly related to the amplitu
of the convective flow. In all, we examined annuli with s
different radius ratiosa, with 0.33<a<0.80. For these, the
Reynolds number of the applied Couette shear varied
tween 0<Re,3. The explored range for the dimensionle
parameterP, which varied with film thickness and conduc
tivity, was 1,P,150.

We compared this data, in the first instance, with the p
dictions of linear theory@3#. The data for the critical voltage
Vc

0 for the onset of convection without shear could be co
bined for all six radius ratios and was shown to obey
scaling predicted by linear theory. This data could then
used in a slightly model-dependent way to fix the only
maining unknown material parameter, the fluid viscosity. W
could then compare the experimentally measured supp
sion of the onset by shear to linear theory in an essenti
parameter-free way. The agreement was satisfactory fo
wide range ofa, P, and Re. Using a simple visualizatio
2-14
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scheme, we also confirmed that the azimuthal mode num
m near onset was close to the most unstable critical valuemc
predicted by linear theory.

Nonlinear fits to current-voltage data above the onse
convection were then used to infer the real part of the a
plitude of convection. Under shear, the amplitude can
shown to obey a complex Landau equation. The data wer
to the real part of the time-independent steady state ver
of this equation in order to extract the coefficientg of the
cubic nonlinearity. When shear was absent, the primary
furcation was a pitchfork while with shear, the bifurcatio
was a pitchfork Hopf. We determined the functional depe
dence ofg as a, Re, andP were varied. When shear wa
absent, it was found that fora50.47, 0.56, 0.60, 0.64, 0.8
andP*13 thatg was independent ofP. In addition, in this
regimeg.0, hence the bifurcation was supercritical. Fora
50.33, g was found to be an increasing function ofP for
2,P,8. More importantly, it was found that the bifurcatio
was subcritical (g,0) for P&5 and supercritical (g.0) for
P*5. In overall trend, we found thatg was an increasing
function of a for zero shear. The largesta50.80 was suffi-
ciently close to the limiting case ofa→1 that we could
extrapolate the measured values ofg for comparison to the
value of g calculated from weakly nonlinear theory for th
corresponding ‘‘plate’’ electrode geometry. This quantitati
comparison gave reasonable agreement.

When shear was applied, it had a strong effect on
subcriticality of the primary bifurcation. Measurements ofg
as a function of the shear Reynolds number Re revealed
for a50.47, 0.56, 0.60, 0.64, 0.80 there existed a tricriti
ch

u-

s

e
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Reynolds number ReT below whichg.0 and the onset was
a supercritical Hopf bifurcation. For Re.ReT , g,0 and the
onset became a subcritical Hopf bifurcation with the deg
of subcriticality a nontrivial function of Re. Hence, the Re
nolds number formed an interesting second control par
eter in this system that could be used to vary the nature of
primary bifurcation.

The data presented in this paper represents only a sp
sampling of the full 3D parameter space ofg(a,P,Re).
Within this space, there presumably exist continuous 2D l
on whichg50 and the primary bifurcation is tricritical. On
other loci, the hysteresisde is a local maximum. As a func-
tion of a, linear theory@7# shows that there exist specia
values ofa at which two azimuthal mode numbersm and
m11 are simultaneously linearly unstable. All of theg re-
sults we have described pertain to theprimary bifurcation;
above onset we have also observed numeroussecondarybi-
furcations that take the form of hysteretic jumps inm. The
location of these secondary bifurcations is a function of R
These considerations suggest that more-or-less discontin
jumps in the behavior ofg may occur at parameter value
across which the azimuthal mode numberm of thenonlinear
pattern changes discontinuously. The rich phenomenolog
even the primary bifurcation presents a significant challe
to the weakly nonlinear theory of this instability.
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