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Bifurcations in annular electroconvection with an imposed shear
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We report an experimental study of the primary bifurcation in electrically driven convection in a freely
suspended film. A weakly conducting, submicron thick smectic liquid crystal film was supported by concentric
circular electrodes. It electroconvected when a sufficiently large voNages applied between its inner and
outer edges. The film could sustain rapid flows and yet remain strictly two dimensional. By rotation of the
inner electrode, a circular Couette shear could be independently imposed. The control parameters were a
dimensionless numbé&k, analogous to the Rayleigh number, whichag? and the Reynolds number Re of the
azimuthal shear flow. The geometrical and material properties of the film were characterized by the radius ratio
a, and a dimensionless numb®y analogous to the Prandtl number. Using measurements of current-voltage
characteristics of a large number of films, we examined the onset of electroconvection over a broad sange of
P, and Re. We compared this data quantitatively to the results of linear stability theory. This could be done with
essentially no adjustable parameters. The current-voltage data above onset were then used to infer the ampli-
tude of electroconvection in the weakly nonlinear regime by fitting them to a steady-state amplitude equation
of the Landau form. We show how the primary bifurcation can be tuned between supercritical and subcritical
by changinga and Re.
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[. INTRODUCTION amplitude equation as the experimental parameters are sys-
tematically changed. This coefficient determines the satura-
Phenomenological amplitude equation models are importion behavior of the convective flow velocity. We begin by
tant tools in the study of symmetry-breaking, pattern-establishing that the experimental system is well described
forming bifurcations[1,2]. They have proven particularly by a theoretical model that reduces to an amplitude equation
useful at the weakly nonlinear level. While their broad appli-near the onset of the pattern-forming instability. We test the
cation stems from the common symmetries that are shared tgdequacy of the theoretical model by direct comparisons be-
many different systems, it is the coefficients or specific patween the experimental results and theoretical predictions at
rameters in amplitude equations that distinguish each systerthe linear level[3]. We then proceed to describe how the
It is an interesting question to examine how these coefficoefficient of the lowest order nonlinear term depends on the
cients, especially those of the nonlinear terms, change as tlexperimental parameters. Interestingly, we find that the coef-
properties of the system are varied. There are only a feviicient can be made to change sign and thus that the primary
experimental systems, such as Rayleigm&e convection, bifurcation can be tuned between subcritical and superecriti-
Taylor vortex flow, and electrohydrodynamic convection incal. In this paper, we show from symmetry considerations
nematic liquid crystals, for which these coefficients havethat the amplitude equation that describes the sheared case is
been quantitatively determingd]. the complex Landau equatidi,2,4]. Elsewhere, we have
Three-dimensional, nonlinear systems are prone to dederived this result directly from the full electrohydrodynamic
velop complicated spatial and temporal patterns even wheaquations using a multiple-scales analy§is Calculation of
only weakly nonequilibriunj1]. The spatiotemporal patterns the parameter dependence of the coefficients of this equation
are often the result of successive symmetry-breaking bifuris beyond the scope of this paper, but in future, we expect to
cations. It is useful to study pattern formation in low- be able to compare the experimental results presented here
dimensional systems that are close to equilibrium but havevith theory at the weakly nonlinear level.
litle symmetry so that there are only a very limited set of Our system consists of a freely suspended annular smectic
symmetry-breaking bifurcations available. In general, onéA film that can be driven out of equilibrium by electrical
seeks the most complex dynamics that can be realized in derces and can be independently subjected to a shear flow as
simple and restricted a system as possible. In our systenshown in Fig. 1. It was previously described in R¢f. and
annular electroconvection, we exploit the strict two dimen-[6]. The film is suspended between concentric circular elec-
sionality of a submicron smecti8 liquid crystal film. The trodes and is driven by a voltage difference between the elec-
lower dimensionality greatly reduces the variety of possibletrodes. The inner electrode can be rotated about its axis,
pattern states and so makes it easier to experimentally studiiereby imposing a circular Couette shear. The flow pattern
the rich nonlinear properties of the basic pattern. that emerges when the film is driven sufficiently hard is re-
In this paper, we report an experimental study of the propferred to as electroconvection and consists of an array of
erties of the bifurcations in annular electroconvection with acounter rotating vortices. Our primary probe of the electro-
variable circular Couette shear. Our primary focus is to in-convective amplitude is the excess electric current carried
vestigate the variation of the cubic nonlinear coefficient of anconvectively by the flow. The annular geometry and electri-
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thick and while they flow readily, they seldom change thick-
ness; they are robustly two dimensional. Unlike soap solu-

3 tions [9,10], smectic liquid crystals have very small vapor
> d=r0- r; pressures, hence the film can be enclosed in an evacuated
environment. The reduction in ambient pressure leads to a

oa=r/r, proportional reduction in the air drag to which the film is

subjected9]. This system thus has several attractive features

for the study of bifurcations in simple nonlinear systems that

may be described by amplitude equation models. Our study

FIG. 1. The geometry of the annular film. Circular Couette sheargreatly extends and complements previous work on electro-
is produced by rotating the electrode holding the inner edge of theonvection in isotropic liquid§11-17, nematics[18,19,
film. smecticA [3,6,7,20—2% and higher smectic phasgz6—-29.

The paper is organized as follows. In Sec. Il A we de-
cal nature of the experiment make it possible to study radiScribe the results of a linear stability analysis of our system.
ally forced convection under steady shear, a combinatioh? the process we define the various dimensionless param-
more often associated with geophysical flows than witheters that characterize the experiment. In Sec. 1l B, we use
small laboratory systems. On the other hand, the accurate§YMMetry arguments to justify the form of the relevant am-
two-dimensional nature of the flow makes it far simpler thanPlitude equation. Our description of the experimental appa-
most planetary analogs, and thus more amenable to theord@Us and protocol follows in Sec. IIl. In Sec. IV A we out-
ical investigation. line our data anegS|s. procedure..V\'/e present experlmen'tal

The driving force originates from the interaction of the esults that pertain to linear analysis in Sec. IV B. An experi-
radial electric field and the surface charge density that devef€ntal determination of the cubic coefficient of the ampli-
ops on the film's free surfacdg]. Below the onset of con- tUde equation is found in Secs. IV C and IV D. Section V
vection, the film’s electrical state is independent of the im-diScusses the relationships between our results and those for
posed shear in the film. It is thus straightforward to other similar systems and Sec. VI presents a brief summary

superpose shear flows with the radial driving, as these ar@nd conclusion.
characterized by independent control parameters. The sim-
plest such shear flow is a steady azimuthal or circular Cou- Il. THEORETICAL BACKGROUND
ette flow. The annular geometry is naturally periodic so that
the shear flow is closed and leads to a net mean flow around In this section, we briefly review the linear and weakly
the annulus. nonlinear theory that is relevant to our data analysis and
The addition of a shear flow to the annular electroconvecresults.
tion alters the symmetries of the base state of electroconvec- A linear stability analysis of annular electroconvection
tion. When shear is absent, the base state is invariant undefith circular Couette flow was reported in RdB]. The
azimuthal rotation and reflection in any vertical plane con-theory is constructed with a number of simplifying assump-
taining the rotation axis through the center of the annulustions [3,7]. The fluid film is treated as an annular sheet of
The electroconvective state is then stationary and appeaisner radius;, outer radius ,, and thickness. A schematic
with the spontaneous breaking of the azimuthal invariancés shown in Fig. 1. An important geometric parameter is the
[6]. When sheared, the reflection symmetry of the base stat@dius ratioe=r;/r,. The film widthd=r,—r; is assumed
is not present. When driven, the pattern once again breake be much greater thasm The viscous fluid is assumed to
the azimuthal symmetry, but since the reflection symmetry iglow only in two dimensions, and be incompressible, Ohmic
absent due to shear, the pattern is free to travel azimuthallgnd of uniform electrical conductivity. We denote the fluid
in the direction of the mean flo#]. In addition, as we show density byp, its molecular viscosity by;, and its electrical
in detail below, the shear flow alters the primary bifurcation,conductivity byo. Only the charges due to free surfaces are
making it hysteretic. included and bulk dielectric effects inside the film are ne-
The equilibrium properties of freely suspended liquid glected[7]. The electrodes are assumed to be of negligible
crystal films have been extensively studied; see fffor a  thickness, and fill the rest of the plane not occupied by the
recent review. Smectic liquid crystals consist of layers ofannular film. Outside the plane of the film, we assume an
orientationally ordered long molecules that readily form sus-empty space of dielectric permittivity,. Couette shear in
pended films. In smecti@, the average orientation of the the theoretical model is imposed by specifying the appropri-
long axis of the molecules, and hence the optic axis, is norate velocity boundary conditions on the edges of the film.
mal to the layer plane. The layers are of uniform thicknesd.inear theory predicts the position of the onset of convection
and within each layer the distribution of molecules is isotro-and the degree to which onset is suppressed by the shear.
pic. SmecticA exhibits two-dimensional isotropic fluid prop- These are discussed in detail in Rf] and are further ana-
erties in the layer plane while flows perpendicular to thelyzed in Sec. IV B below.
layers are strongly inhibited. Other material properties such From very general symmetry considerations, we can de-
as the electrical conductivity and dielectric permittivity are duce the form of an amplitude equation that is valid in the
also isotropic in the plane of the layers. Uniform suspendedveakly nonlinear regime just above on$é{2,4]. Here, a
smectic films are always an integer number of smectic layersomplex-valued amplitude describes the slowly varying
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magnitude and phase of the spatially periodic physical fieldsyhich is a monotonically increasing function of Re for 2l
for example, the fluid velocity. We find an expression of theln Sec. IV B below, we extend the discussion in Ré&f by
well-known Landau forn{5]. The coefficients of the ampli- comparing these results to data for several differenand
tude equation can in principle be calculated from the underfor a wide range ofP.

lying electrohydrodynamic equations; a calculation of this

kind is in progress and will be reported separaféy The B. Nonlinear theory: The amplitude equation
magnitude of the complex amplitude is directly related to the

quantity we measured experimentally, the total current car- | "€ amplitude equation appropriate to our system follows

ried by the film. We can thus fit current-voltage data to theffom Symmetry consideratiorid,2,4. We defer a detailed

real part of the amplitude equation to experimentally deter@lculation of its numerical coefficients to future wdf.

mine its coefficients. This is done in Secs. IV C and VD N the absence of shear, the base state solution of the
below. electrohydrodynamic equations is invariant under azimuthal

rotations and reflections through any plane perpendicular to

the annular plane and containing its center. Just above onset,

we assume that all the physical fields are nonaxisymmetric
The theoretical treatment of Rdf3] examined the linear and proportional to a rapidly-varying spatial oscillatigfi?,

stability of the two-dimensional annular fluid film when it is wheremis an azimuthal mode number. This requires that the

subjected to a voltag¥ at the inner electrode of the annulus differential equation for the slowly-varying complex ampli-

while the outer electrode is held at ground potential. In adtudeA,, of modem, be unchanged under the transformations

dition, the theory allowed for the rotation of the inner edge .

of the annulus at angular frequenay while the outer edge 6—0+6", An—Anem, 2.9

is held fixed. The rotation drives a Couette shear flow in the

film below the onset of convection. It can be shown that anyand

arbitrary rotation of the inner and outer edges can be trans- .

formed to a rotation of only the inner edge by moving to the 0——06, Ap—An. (2.9

appropriate rotating coordinat¢8,30]. Such a coordinate

transformation has no effect on the dynamics as long as thia the above,f is an azimuthal angle, and the overbar de-

flow is strictly two dimensional. The theoretical model is notes complex conjugation. The most general amplitude

completely specified by the radius ratio and three addi- equation that is invariant under these symmetry operations

A. Outline of linear stability theory

tional dimensionless parameters, has the Landau form,
2\/2 — _ 2p _ N
eV € or.d 79:Am= €Am—d| Al “An—h|An*An—- -+, (2.5
REO—Z. p=—" " and Re’2C. (21 eme mm mi m
ons posd 7

where 7, g, andh are real-valued coefficients. The small

. - arametele is a reduced control parameter given b
The control parameteR is a measure of the external driving P P g y

force that is proportional to the square of the applied voltage
V while P is a ratio of the time scales of electrical and €=
viscous dissipation processes in the film. The Reynolds num-
ber Re is a measure of the strength of the applied shear, and
is regarded as a second control parameter. It has been est
lished [3,6] that the instability leads to a one-dimensional
pattern of m vortex pairs wherem is the azimuthal mode
number. Linear stability predicts the value of the critical con-
trol parametefR . and the critical mode numben, at which
the film becomes marginally unstab®, andm, are in gen-
eral functions ofe, P, and Re. A detailed discussion of the
calculated values oR. and m. under various conditions is
given in Ref.[3]. When Re=0 (i.e., with no applied shear
it was found thatR. and m; are independent gP. In the
following, these critical values for zero shear will be denoted —h(1+icy)|An*An—-- -, 2.7
R andm?.

When Re>0, it is found thatRc>R8, for any o« andP, where a,, is the imaginary part of the eigenvalue of the
i.e., that the shear always suppresses the onset of convectignstable moden at onset and the coefficienty, c,, c3
[31]. It is convenient to measure the relative degree of supare real valued. Equatig@.7), which here is simply deduced

pression for a giver andP in terms of the reduced quantity from symmetry considerations, has been rigorously derived
for annular electroconvection with shear from the basic elec-

-1, (2.6

id is a measure of the distance from threshold. The ampli-
ude equation is accurate for smalland describes a bifur-
cation from theA,=0 state €<0) to theA,,# 0 state with

2m vortices (€>0). A sharp bifurcation occurs &t=0.

If the fluid is subjected to a circular Couette shear, the
base state is only invariant under azimuthal rotations, Eq.
(2.3. In this case, the general amplitude equation takes the
complexLandau form

T(d—iaim)An= 6(1+iCO)Am_g(1+iC2)|Am|2Am

~ Ro(a,ReP) trohydrodynamic equationfs]. In general, it describes a
e(a,ReP)= c(;—’ -1, (2.2 Hopf bifurcation to a pattern with a complex amplitudg,
Rc(a) that travels in one azimuthal direction.
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In both Egs.(2.5 and (2.7), we have omitted terms in- shears. In overall structure, the apparatus consisted of the
volving the azimuthal gradients o&,,, which if included annular electrodes that were housed in a vacuum chamber, an
would give the so-called Ginzburg-Landau equatid].  electrometer circuit, and a stepper motor, both under com-
While such terms are potentially quite interesting, they daputer control. The chamber also allowed films to be drawn
not appear to be directly relevant to interpreting our currentunder vacuum and inspected under reflected white light to
voltage data. Our annular system is azimuthally periodic angheck thickness uniformity. A schematic is shown in Fig. 2.
thus lacks lateral boundaries at whigh,—0 where gradi-
ents would be importanf24]. Thus, any gradients i\,
would have to arise from purely dynamical effects, such as As in previous experimentf3,6,20—24, our study used
Eckhaus or other phase instabilitigs. smecticA octylcyanobipheny(8CB). 8CB has a smectié&

From current-voltage data, we can extract the reduce@hase between 21°C and 33.5°C. The electrical conductiv-
Nusselt numben, which is a global dimensionless quantity ity of “pure” 8CB is due to several ionic impurities of varied
defined as the ratio of current carried by convection to tha@nd unknown concentrations. In order to control the nature
by conduction. The reduced Nusselt numbes related to of the ionic species contributing to the electrical conductiv-
the electric Nusselt numbeY by n=A—1. One can show ity, we doped the 8CB with tetracyanoquinodimethane
[5,25] that the amplitude can be scaled so Ihat|Am|2. (TCNQ), a material believed to form charge transfer com-

To solve for the real and imaginary parts of the amplitudePlexes with the host, so that the dominant impurity species
equation, letA(t)=A(t)e'®®, where A(t) and ®(t) are  Wwas the dopant. To prepare the doped material, TCNQ was

A. The liquid crystal

real. Substitution into Eq2.7), gives dissolved in acetonitrile and added to the 8CB sample. The
acetonitrile was then evaporated in a vacuum oven while
o A=eA—gA>—hAS—. .. (2.8  warming the mixture so that the 8CB was in its isotropic
phase. The samples used had concentrations of 2.96
(0P —aym) = €Co— gCA%— - - - . (29 X104 1.11x104 and 7.6 10 °, of TCNQ by weight.

Experiments with significantly higher or lower dopant con-

We will show in Sec. IV A how the raw current-voltage data centrations were found to be less useful due to irreproducible
can be transformed into measurementg ahdn, and hence  non-ohmic behavior below the onset of convectiaal.

be used to measure the real amplitl@ia a nonlinear fit
procedure. We focus on extracting the coefficignof the

cubic nonlinearity. The sign of determines whether the )
pitchfork bifurcation to electroconvection is supercritical ~The annular electrodes were constructed out of stainless

B. The annulus

(“forward,” g>0) or subcritical(“backward,” g<0). Atri-  Steel. The inner electrode was a circular disk of diameter
critical bifurcation occurs wheg=0. The results fog are  2Ti- The outer electrode was a circular plate of diameter
discussed in Secs. IV C and IV D. 9.00 cm with a central hole of diameter 2 The outer elec-
trode was 0.730.01 mm thick. By using several pairs of
Il EXPERIMENTAL APPARATUS inner and outer electrodes, we conducted experiments at six

different radius ratios betweea=0.33 anda=0.80. We
In this Section we describe the liquid crystal sample andused inner electrodes with radii ranging betwees 3.60
the experimental apparatus. We performed a large number ef 0.01 mm and;=5.26+0.01 mm. The radii of the outer
precise current-voltage measurements on electroconvectirgectrodes were between,=5.57-0.01 mm and r,
annular films with a wide range of radius ratios and applied=11.25+-0.01 mm.
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The annulus was housed in a vacuum chamber that wadone at atmospheric pressure. This visualization method,
evacuated by a rotary pump. The air was evacuated slowly sahile somewhat crude, was preferable to using suspended
as to prevent vigorous air flows that may cause the film tasmoke particles, which tend to perturb the conductivity of
rupture. The surrounding air was pumped down to an ambithe film [23].
ent pressure between 6:5.0 torr. At these pressures, the
mean free paths of Nand G are in the range 0.5 D. Current-voltage measurements
—0.05 mm. This was comparable to the film widthso that
the air drag on the film was negligib[®]. All experiments
were performed at the ambient room temperature of 2
+1°C, well below the smectic A-nematic transition at
33.5°C for undoped 8CB.

The inner electrode was made to rotate about its axis b
means of a high precision stepper motor operating at 25 60
steps per revolution. The motor was located outside th
vacuum chamber and was connected through a rotating se
The inner electrode was adjusted to rotate true to its axis t%
within 50um at angular frequencies up to=67 rad/s.

Since the current transported through the film was pico-
mperes in magnitude, particular care had to be exercised to
void stray currents. The inner rotating electrode was elec-

trically isolated from all other components by a highly insu-
lating sleeve. The current was carried onto the rotating elec-
ode by a set of silver-graphite slip rings inside the vacuum
amber. A Keithley model 6517 electrometer was used both
s a voltage source and a picoammeter. The “high” of the
rogrammable dc voltage source of the electrometer was
onnected to the rotating inner electrode, which was the only
part of the entire apparatus that was not at ground potential.
_ ] o The outer annulus was connected to the input of the elec-
C. Drawing the film and determining its thickness trometer that was held at very nearly ground potential. The
A motorized film-drawing assembly was housed in theouter annulus was electrically isolated from true ground by
vacuum chamber. The film was spread across the annular géglon washers that served to eliminate leakage currents that
between the electrodes using a stainless steel razor blagéould otherwise be added to the signal. The rest of the ap-
inclined at~25°. The blade was moved away from the an-paratus was grounded. Electrical noise was reduced by
nulus while voltage was applied, to avoid perturbing theshielding the electrodes and most of the experimental com-
electric fields near the film. ponents in a large Faraday cage that doubled as the vacuum
The thickness of the film was determined from the inter-chamber. Low noise triaxial cables and feedthroughs were
ference color of the film under reflected white light using aused to connect the outer electrode to the electrometer.
low power videomicroscope. Using standard colorimetric An example of a current-voltage characteristic in a film
functions[33—39 a color-thickness chart was calculated for without shear is shown in Fig. 3a. It consists of data obtained
8CB. Since smectic films are constrained to be an integefor incremental and decremental voltages. The current-
number of smectic layers thick, the film color can be used td/oltage characteristic clearly shows two regions: one for
identify the film thickness measured in smectic layers. Eaclyoltages smaller than a critical voltayg and one for volt-
layer of smecticA 8CB is 3.16 nm thicK36]. Most of the  ages greater thavi. . The critical voltage that separates these
experiments were performed with films between 25 and 83wo regions is in the vicinity of the kink in the current-
layers thick. Over most of the middle of this range, the filmVvoltage characteristic. In the regimé<V,, the current is
thickness can be determined to withir2 layers, while close linearly dependent on the voltage and the film is ohmic. Ex-
to the ends of the range a more conservative estimateSof ~periments in 8CB with significantly higher and lower con-
layers was used. The colorimetric method worked well forcentrations of TCNQ show, at least initially, nonohmic
film thicknesses where the strong interference color can beurrent-voltage characteristics even ¥V, due to elec-
unambiguously matched to a color chart. Very thin films thattrochemical effects.
appeared black and thicker, nearly white films were not used. We estimated/.. before each run then defined an approxi-
During the course of an experiment, the film color wasmate reduced control parameter (V/VE)2—1. Current-
monitored to check that it remained uniform in thickness tovoltage data was then obtained by making variable steps in
within =1 layer. Films drawn with nonuniform thicknesses, voltage in such a way as to make equal increments We
left to themselves, tend to anneal to become uniform inused severa¢ step sizes, which became finer near threshold.
thickness and hence uniform in color. The annealing procesSimilarly, we used a variable waiting time after each step,
can be accelerated by electroconvecting and shearing thehich allowed for longer relaxation times closentg. Very
films. long relaxation times were not feasible due to the drift of the

Current-voltage runs during which the film thickness electrical conductivity[37]. After the wait time, between

spontaneously became nonuniform were abandoned. A smdlD0—-200 measurements of the current, each separated by 25
number of visualization experiments were performed orms, were averaged. The error in the average was taken to be
films that had a nonuniformity in thickness of aboti2  the standard deviation of the mean or 1%, the reading error
smectic layers, or about 5% ef Usually these nonuniform of the picoammeter, whichever was greater. Each run con-
films had two thicknesses and in reflection displayed twosisted of incrementing up to a predetermined maximum
nearby interference colors. The advection of the thicknesand then decrementing it to zero voltage again. Once the data
nonuniformities was used to visualize the flow pattern anchad been acquired, more precisevalues at each voltage
thus to determine the azimuthal mode numipdsy counting  were found using drift-corrected values\éf from a fit pro-
vortices. For simplicity, some of these observations wereedure described in the following section.
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way, as well as to correct for small drifts in conductivity.

The first task was to determine the dimensionless param-
eters relevant to each current-voltage sweep: the radius ratio
«, the dimensionless rati® and the Reynolds number Re.
We could then properly nondimensionalize the current-
voltage data and fit it to an amplitude equation model. The
details of this fit are described in the Sec. IV A below.

In Sec. IV B, we consider the features of the data that are
predicted by the linear stability theory developed in R8f.

For zero shear, these are the critical mode nunmifr and

the critical voltageV?. We use the latter to fix the last un-
known material parameter, the viscosity We also compare
our data to the linear stability prediction for the shear sup-
pression of the onset of convection. This was done for six
values ofa, and for wide ranges oP and Re.

In the weakly nonlinear regime, the value of the coeffi-
cient of the cubic nonlinearityg in the amplitude equation,
was of primary interest. In Sec. IV C we report results dor
at variousa andP for Re=0, that is, in the absence of shear.
We find thatg can become slightly negative for smal| so
that the bifurcation is weakly backward. The result §pin
the limit Re=0, a—1 is compared to the theoretical result
for rectangular filmg25]. Finally, in Sec. IV D we describe
the results folg in sheared films, where ReD. We find that
increasing Re has a strong effect on the nature of the bifur-
cation, drivingg negative and making the bifurcation back-
ward.

A. Fitting the current-voltage data

Except for a small drift, the film is ohmic below the onset
of convection. We used fits in this range to determine some
important material parameters in order to scale the data.

Each voltage-current measurement in the ohmic regime,
(V,1), constitutes an experimental determination of the film’s
conductancec=1/V. For a film of radius ratiax, thickness
s, and conductivityo, the conductance is given by

2m7oS

In(la) “.

Interestingly, the conductance is independent of the size of

When the film was sheared by rotation of the inner electhe film, i.e., independent af; or r,. Sincea is merely a
trode, it was allowed at least 30 s after a change of shear rafgeometrical parameter, measurementscaodre effectively
to attain a steady state before the current-voltage characteieasurements ofs, eliminating the need to determine these
istics were obtained. In all runs, the shear rate was estalgeparately.
lished and then held fixed during a current-voltage sweep. Using Eq.(4.1), P, defined in Eq(2.1), can be expressed
Figure 3b) displays a representative current-voltage characin terms ofc as

teristic in a film under shear. The principal effects of the
shear are to suppress the onset of convection and, eventually,

to make the primary bifurcation hysteretic.

IV. EXPERIMENTAL RESULTS

€07 27€qn

"~ posd  p(ro—r)In(l/a)

1
o 4.2

where d=r,—r;. Similarly, the Reynolds number Re

With the exception of some simple flow visualization that = pwr;d/ » can be calculated from the measured angular fre-
used slightly nonuniform films, all our results were obtainedquencyw of the inner electrode in rad/s, givenand ». The
by fitting current-voltage data taken with uniform films. It is density p of 8CB at room temperaturg38] is 1.0
possible to fit the data in such a way as to extract all thex10® kg/m®. In both P and Re, the only remaining unde-
unknown material parameters in a nearly model-independeriérmined material parameter is the viscosijtyWe fixed this
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parameter using a combination of experimental and theoreSince the electrical conductivity is not constant, the value of
ical results, as described in Sec. IV B. The result was V. required to calculate slowly changes during the course

=0.18+0.03 kg/ms. of an experiment. Combining Eg&t.1) and (4.6) yields
Thus, for each current-voltage sweep, we were able to
determineP and Re. The drift in conductivitj37] caused a
o . spR:In(l/a)c
drift in ¢ and hence irP over the course of a sweep. Fur- Ve(©)=\—F——— 4.7
thermorec is only known directly during the ohmic parts at 2me

the beginning and end of each sweep. We associated a mean
‘P with each sweep by averaging owedata before and after. We corrected for the drift iic by tracking its value during the
This results in~10% errors inP for any one sweep, and a ohmic parts of the sweep and using a linear interpolation

slow, uncontrolled evolution oP from sweep to sweep. during the portion of the sweep when the film was convect-
A substantial range of current-voltage data is fit to theing. In this way,eachvoltage and current measurement was
amplitude equation model. Equatiai2.7) gives the full, nondimensionalized with its own value afand V.(c) to

time-dependent complex coefficient amplitude equation reproduce fittable values of and A. We also transformed the
quired by symmetry. Only the real and steady state part oérrors in the current measuremenik into amplitude errors

Eq. (2.7), given by AA.
5 5 We approached the fitting problem in the following boot-
eA—gA —hA>+f=0, (4.3 strap fashion. It was easy to ascertain bounds/gy in-

specting the current-voltage characteristics, see, for example,
?igs. 3a) and 3b). Each current-voltage characteristic was
scrutinized and two voltage intervals were chosen. The first
interval contained the critical voltage at which the conduct-
‘ng state became unstable to the convecting state. The second
interval contained the voltage at which the convecting state
became marginally unstable to the conductive state. Guesses
of V. in both these intervals were chosen at random using a
uniform deviate random number generdt®8]. The conduc-

| | tancesc were then determined for the ohmic regimes and
—1=——-1=A2% (4.4  from a linear interpolation for the convecting portion, as de-
lcond cV scribed earlier. The raw current-voltage data was then trans-
formed intoe and A+ AA and fit to Eq.(4.3) by varying

only the three parameterg, h, and f in a weighted

is required to model the current-voltage data. Here we hav
truncated at the quintic order and augmented(Eg) with a
phenomenological field terf This term models the round-
ing of the bifurcation due to nonideal systematic effects tha
are slightly symmetry breaking, resulting in an “imperfect”
bifurcation[1]. For all of the fits, we found <1.

As discussed in Sec. Il B, the amplitudethat appears in
Eq. (4.3 is related to the reduced Nusselt numbery

n=

while the reduced control parameteis given by

R V)2 Levenberg-Marquardt nonlinear fitting procedure that mini-
e=——1= —) —1. (4.5  mized x*. We then did a Monte Carlo optimization of the
Re Ve randomly choseV,. [39,40. The besV/ . was taken to be the

one that minimizedy? over the Monte Carlo sample. The
uncertainty inV, was the standard deviation of the uniform
deviate on the constraint interval. Corresponding to this best
V. were the three best fit parameters h, andf. The uncer-
tainties ing, h, andf were estimated by a Monte Carlo data
decimation step with/, constrained to its best fit value.

For several reasons, it was necessary to restrict the fit to
the neighborhood oé~0. In the first place, amplitude equa-
tion models are only rigorously valid in the limé<1, al-
%hough in practice they have been found to apply over a more
?gtended rangg23]. Second, restricting the range efre-
uced the impact of the residual, uncorrected component of
the conductivity drift. In many cases, the drift effects were

As discussed in Secs. IV C and IV Dg,h,f) can be influ- L . L .
enced by small systematic effects in the data leading to scai‘-uvl:/fg:r'g?ittly large that only the data acquired with increasing

ter that is larger than the statistical uncertainties in the fits.
Nevertheless, the general trends are robust.

Equations (4.3 —(4.5 contain  five parameters,
¢, V., g, h, andf. While ¢ has a nearly constant initial
slope andV. is marked by a relatively obvious kink in the
raw (I,V) data, the amplitudd is indirectly deduced via the
pair of transformations Eq$4.5 and (4.4) that are nonlin-
ear. This amplitude is in turn fit using E4.3), which is
again nonlinear. Thus, the parametegsh(f) are rather dis-
tantly related to the rawl (V) data. Ifg<<0, the bifurcation

is hysteretic, andA is multivalued over some ranges ef
Also, the nature of the model necessarily involves several fi
parameters that are not independent. Consequently, the det%
mination of these parameters is much more difficult thian

Figure 4 shows a typical result of transforming current-

. - o . _voltage data to reduced Nusselt numbeend amplitudeg\
The drift of the film's conductivity, and hence its conduc and fitting to Eq.(4.3). The transition from conduction to

tance ¢, introduces some additional complications. Reca”convection is continuous and the best fit paramegei0,

that the onset of convection occurs when the control ParaMi dicating that the bifurcation is supercritical. Figure 5 shows
eterR equals a critical valu& given by 9 b -9

the analogous result for a film under a strong shear. For this
22 S case, the transition from conduction to convection is discon-
_fo¥le o V= = Reo 7. (4.6  ftinuous andy<<0; the bifurcation is subcritical. In all fits, we

0

¢ ons? foundh>0, and 0<f<1. We performed a large number of
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TABLE |. Experimental measurements of the marginally stable

E 0351 mode number for zero shean? .Theoretical values are from Ref.
2 [3].
E] L . : . .
Z. 0.2 Radius ratio Experimental Theoretical
[ a m? m?
& i <
B 015 "8 0.33 4 4
€ 3 0.47 6 6
= = 0.56 8 7
g e
% 01 £ 0.60 8 8
2 < 0.64 10 10
=
! 0.80 20 19
-Zc 0.05
5] ]
o .
= I o ° n,increasinge | Ref. [3]. The simplest feature of linear theory that can be
&’ 0] % A, increasing€ 10 compared with experiment concerns the critical mode num-

ber for zero sheam®. As mentioned in Sec. Ill, some ex-
periments were performed in films with slight thickness non-
uniformity. This permitted the qualitative visualization of the

FIG. 4. The amplitudeA and the reduced Nusselt number flow field and a quantitative determination of the mode num-
=A? vs the control parametes for a film with radius ratioa  berm of the stationary pattern of vortices. Unless the bifur-
=0.64. The solid and dashed lines are a fit to the Landau amplitudgation is strongly subcritical, we expett= mg close to on-
equation. set. The observed zero shear mode number was in excellent

agreement with predictions of linear stability analysis. Table

such fits and surveyed the dependencg of «, P, and Re. | summarizes the results. Rapid rotation of the vortex pattern
In addition, the fits provided determinations of the critical and larger hysteresis prevented a systematic studywfder
voltageV, as a function ofa, P, and Re via the bootstrap shear. Qualitative observations confirm the general predic-
process described above. These results are discussed in Sagsh thatm.(Re>0)<m?, i.e., that shear reduces the number
IV C and IV D below. of vortices.

The primary theoretical result of Rdf3] is the prediction
of the critical voltageV, required for the onset of electro-
convection.V, is given for the general case by E@L.6).

This section compares the experimental measurementsyen though the viscosity is not well known, we can test
with the predictions of the linear Stablllty theory giVen in the Zero Shear theory for Various thicknessmd Conduc-
tivities o using the following scheme. Denoting the zero

025 0 025 05 075 1 1.25
€

B. Tests of linear stability theory

betweenv? andc? in which the viscosityy is the only un-

& n, increasing € | knoyvn parameter. Consistency with this proportionality over
0 st o A, increasinge ¢ a wide range of parameters serves as a test of the linear
—— theory forvg as well as a determination of. There is one
02 0 0.2 04 0.6 caveat: this analysis is not entirely experimental but requires

€ the theoretical value o’Rg(a). The quantityv, which we
FIG. 5. The amplitudeA and the reduced Nusselt numher ~ '€fer to as the scaled critical voltage, was found as follows.
=A? vs the control parameter for radius ratioa=0.80 with an  FOr each set of current-voltage data, the fit procedure out-

applied shear. The solid and dashed lines are a fit to the Landdined in Sec. IV A was used to deduce a critical voltage
amplitude equation. and conductance at onset. The film thickness was de-

i 205 shear value o¥, by V2, we write
— 0257
: ] 2

| ons

% - 04 (VD2(a)=| ——|R A ). (4.9
= 0.2 [ 1 )
S
2 [ 103 <« Using Eg. (4.1, Eqg. (4.8 can be expressed more conve-
g 0.15 | 1™ g niently as
= | B
S 1., & an?a (V) a)
2 o Jo2 & pr= T @9
2 < [In(L/a)]“R ()
@ 0.05 | :0,1 Written in this way, Eqg.(4.9) expresses a proportionality
=
-
Q
(=7

036212-8



BIFURCATIONS IN ANNULAR ELECTROCONVECTION. .. PHYSICAL REVIEW B4 036212

103:‘. ey 147\ — T T T .Hi

¢ a=033 I (a) o
’g o  a=047 ] I N
2 1o alow 2 o ]
<© o =0 L ’

G 10F < =064 . ol . |
8 t s 0=0.80 ] I

2 I

~ 8 ]
?Mo L

o 10ME . w

£ ] 6 1
k-] I

B 4 ]
=] -

[ 0L ]

O> 10 I 3 i

= 2r ]
Y -

: N -« Local theory
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FIG. 6. The scaled critical voltage vs the square of the conduc- b
tance for various films at six different. The solid line is a one- (b)
parameter fit with a single constant of proportionality that deter-
mines the viscosityy=0.18+0.03 kg/ms.

duced from the color of the film. Using the measured radius

ratio @ and Eq.(4.1), o was calculated. Finally, the numeri- 3
cal result forRS(a) was used to find)? that was plotted
againstc?. Figure 6 shows the results obtained from 228
current-voltage runs at six differeat, numerous differens 2r
and conductivities in the range X940 8<¢<8.4
x1077Q"*m~1. Consequently, the range @ is very

broad. Within some scatter, Fig. 6 exhibits the predicted pro- 1k
portionality over several decades. Hence, the theory properly
accounts for the scaling of the critical voltage with respectto | [l eurflt”>~ 77777 Local theory
the film thickness and radius ratio. ol . | — Nonlocal theory |
A single-parameter linear fit to?= 7c? gives 7=0.18 0 005 ol  ois oz o2
+0.03 kg/ms. This is a reasonable value for the viscosity; Re
while it has not been independently measured, it is believed
to be of order of 0.1 kg/mg41]. FIG. 7. A comparison between the measured suppressies

We now turn to the case of nonzero shear. The main preRe and the predictions of the local and nonlocal theories of [Rgf.
diction of the linear stability analysis is that the onset ofin (a) @=0.47. The different symbols denote tfequartiles: 13.3
electroconvection is suppressed by Couette shear. This sup-O<15.4<@<17.5<[0<19.6<A<21.7. The theoretical lines
pression is bothy and P dependent. Returning to E(R.2),  are for the mearP=16.3 of the data. Similarly, ifb) «=0.64,
the degree of suppressi&nis given by 29.1<0<37.1< @<45.2<[0<53.2< A<61.2 and the theoretical

lines are for the mea®=45.2. Note the very different scales.

R.(a,ReP)

€a,ReP)= Rg(a)

way each experimental value &fcould be computed for a
constantc. The uncertainty irfe was dominated by the un-
certainty in the drift correction tv2. The conductance for
each’¢ can be used to calculate its associated valué’.of
Thus, we arrive at sets of experimental value%@t,ReP)
¥or fixed @ and Re and ranges @1. These can be compared

ng‘é’ign\é\gi;ﬁ?ﬁ; frgrr?ctr:grnsontlalgea{tf|t,aal<l)1r;%ewn2rth§)in detail to the theoretical results for suppression as a func-
u particu weep. 1t was SSaY 10tion of these parameters given in Ref3,42. Figures 7a)

correctVY(«) for the drift of ¢ in order to calculatee. This  gng 1b) show this comparison at=0.47 anda=0.64, re-

was done using values ofZ(a) taken from zero shear spectively. In each case the theoretical curves are calculated
sweeps performed before and after each sheared sweep. Tfag the mean value of the range Bfspanned by the data. For
variation ofV9(a) with c was modeled with a linear fit that a discussion of the distinction between the local and nonlocal
was used to find the drift-corrected value\}(«). In this  approximations, see Ref3].

Vo(a,Re ) 2
- -1
Ve(a)

(4.10

We used the two equivalent expressionsdan Eq. (4.10 to
calculate the suppression theoretically and experimentall
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Note that the ranges of Re for these tware different by PN ' T ' ]
a factor of 10 and that the suppressions are also very differ- 2| (a) 5 ]
ent. It is quite interesting that a rather mild shear (R3¢ ]

suppresses the onset of electroconvection so stronglyethat ]
~14(i.e.,R.= 15722). We have also studied the suppression 1T % i
at «=0.33, 0.56, 0.60, and 0.80. The results are similar to o 1
those in Fig. 7. The suppression data covers the range 10 I @ ]
<P<130 and G=Re<3. In each case the agreement be- s O 9 %§ ”””””””
tween theory and experiment is fair, with the theory slightly

underestimating the suppression in most cases. The upper
bound on Re could easily be extended using increased rota- Ir % §
tion rates, while smaller® would require larger, thicker
films.

The degree of agreement shown in Figs. 7 is essentially %
independent of the value of. Recall thaty was determined o=0.33 ]
by a single parameter fit to E1.9). Since then dependence S SRS AR RS
in the Re scaling of both the theory and the experiment are 2 3 4 5 6 7 8
proportional to 1#, any change iny multiplies both by the P
same factof3]. This simply results in a rescaling of the Re 1T —
axis in Figs. 7a) and 7b), with no change in the quality of (b)
the agreement.

We close this section with some brief speculation on what
might account for the scatter in Fig. 6 and for the remaining [ ]
discrepancies between theory and experiment in the suppres- 5r ]
sion curves. [ 3 ]

The most likely sources of these discrepancies are the [
imperfect geometry of the film and its finite thickness. The oo |
two-dimensional(2D) theoretical model assumed that the }

flow velocity is independent of position over the thickness of D ]

the film. This may be inexact for thicker films. Since the [ E# ODD 00 o ]

electrical forcing is localized near the free surfaces, it seems 2f 9T ¢ §:§ 2 ez ©° |

; . ; SIS i o} T ]

likely that the surfaces are preferentially driven in thick films T f § - Q o

so that the motion is not accurately 2D. The film’s edges are 1 f

also imperfect because small wetting layers unavoidably ex- [ Q o

ist on the circumferences of the inner and outer electrodes. !

These may produce electrical or velocity boundary condi- 30 40 50 60

tions that are not exactly those assumed by the theory. In P

general, however, the linear stability theory works remark-

ably well considering its rather simple assumptions. FIG. 8. (a) Measurements of the coefficient of the cubic nonlin-
earity g for zero shear v for (a) «=0.33 and(b) «=0.64.

C. Coefficient of the cubic nonlinearity without shear est at smalky, so the runs with the smalleBtoccur for small
In this section, we consider the experimental results in the.
nonlinear regime, beginning with the unsheared-Recase. The nonlinear coefficieng(«,P) was determined as de-

These are expressed in terms of the cubic Landau coefficiestribed in Sec. IV A. Figures (8 and 8b) show g as a

g of the amplitude equation, E¢4.3). Even with Re fixed at  function of P for two differenta. The scatter that is manifest

zero, we will show that this coefficient is an interesting andin these plots exceeds the statistical uncertainty of the fit. As

nontrivial function of the remaining dimensionless quanti-discussed in Sec. IV A, the scatter originates from systematic

ties, P and a. effects due to the nonideal features of the experiment. Nev-
The radius ratiav is a fixed geometric parameter for each ertheless, the gross features of tRedependence of can

run, determined only by the choice of the electrode dimenstill be extracted.

sions. TheP appropriate to each film was deduced after each At a=0.33, the measurements explored the rangeP2

run as described in Sec. IV A. Singeis proportional to the  <8. These were the smalleBtreached in the experiment. It

conductivity, which exhibits a slow drift, a wide range Bf is clear from Fig. 8) that g increases withP, and passes

could be investigated. While they are independent in printhrough zero for small enoudgh. Thus, fora=0.33, we find

ciple, « and’P are not easy to separate experimentally. Thisthat the bifurcation from the conduction state to the-4

practical constraint derives from E@.2) in which Pxd ™!,  vortex state is subcriticalgl<0) for P<5 and supercritical

where the width of the filnd=r,—r;. In practiced is larg-  (g>0) for P=5. NearP=5 we pass a tricritical point. It is
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TABLE II. Experimental measurements of the coefficient of the ir T T T
cubic nonlinearityg without shear. L
Radius ratio  Experimental P Theoretical 3 T
a g range g [ ]
0.33 —0.74=0.23 2.KP<4.4 2 [ o) § ]
0.47 1.64-0.06 13.5xP<20.7 [ (o)
0.56 0.73£0.15 59.4P<100.8 [
0.60 2.72-0.34  31.3P<38.9 °0 1F 3
0.64 1.87:0.10 25.2P<63.0 [
0.80 2.210.29 15.KP<142.8 0 e
1.00 (plate P=co 2.842 [ §
interesting to observe that in each case the bifurcation in-
volves thesametwo symmetry states, yet its subcriticality . L
depends orP. 02 0.4 0.6 0.8 1

For all the other, larges investigatedg was found to be
independent ofP. This is illustrated in Fig. &) for «
=0.64 and was also true fer=0.47, 0.56, 0.60, and 0.80. FIG. 9. Measurements of the coefficient of the cubic nonlinear-
However, for all of these caseB,was never less than 10 and ity g for zero shear vs the radius ratie. The short dashed line
can be as large as 150. Thus, it is unclear whether the sulkhows the theoretical value fgiin the limits P— o andae— 1 from
criticality at «=0.33 is due to the smallness &f or the  Ref.[25].
smallness ofy, or some combination. It would be interesting
to determine whetheg also becomes negative for largeas ~ able forg at arbitrary« and P. However, we expecy to
P decreases. The regime of largeand smallP, while ac-  approach a limiting value quite rapidly as—1. This limit
cessible in principle, would require significantly larger elec-corresponds to an unbounded lateral geometry in which the
trodes or much thicker films. All electroconvection experi- film is a strip of fluid suspended at its long parallel edges by
ments on free|y Suspended films in the rectangu|ar geometrvvo semi-infinite plate electrodes. In this limit the discrete
have reported supercritical bifurcatiofi0—23. However, —azimuthal mode numbers are replaced by a continuous
these experiments were also at la@and so the possibility Wwave numbek=m/r, wherer=(r;+r.)/2 is the mean ra-
of a subcritical bifurcation in rectangular films cannot bedius. From linear theory, we found that the critical param-
excluded. etersR 2 andk?=m2/T at «=0.80 are already very close to

The case of largéP is easier to understand. In the gov- the limiting values fora—1 [3].
erning electrohydrodynamic equatiofsee Ref|3]), the pa- This limiting behavior is reasonable given the large di-
rameter analogous to tffgandtl number only appears as the mensionless circumference for large The relevant aspect
inverse,P~ 1, multiplying certain nonlinear terms. Hence, it ratio A is the circumference at the mean film radias(r;
is perhaps not surprising thatbecomes independent &  +r,), divided by the width of the filmd=r,—r;, so that
for P=10, where these terms become negligible. A=m(1l+a)/(1—a). At «a=0.80, A~28. Almost all the

In order to examine how depends o, we removed the experiments performed in the rectangular geometry had
P dependence by averaging over data at variBugor the <10 [20-24 and were well modeled by the theory for an
five largest, g is independent oP over broad ranges .  unbounded strip for which\=«. It is thus reasonable to
A weighted average off was obtained for these cases. Forexpectg at «=0.80 to be close to its limiting value far
a=0.33, where som® dependence was evident, ogyal- =1. Similarly, as the largex data also involve very large
ues in the narrow range 21P<<4.4 were averaged. values of P, we may also employ the theory in tife—o

In this averaging, the systematic scatterginvas treated limit.
as random. It is thus likely that the true uncertainty in the Weakly nonlinear analysis of unsheared electroconvection
average values of will be much larger than the standard in the “plate” electrode geometry was presented in R28|
deviation of the mean. The ultimate test of this procedure liegor the caseP=«. The result of that analysig=2.842 is
in the comparison of the averaged valuegyafith theoreti-  shown in Fig. 8. It is in good agreement with a reasonable
cal predictions. As we describe below, the limited compari-extrapolation of the data to the—1 limit.
son we are able to make at present is not unfavorable. The Wheng<0, the onset of convection becomes hysteretic
line in Fig. 8b) shows the average value gffor the plotted  and the quintic term with coefficiefiitin Eq. (4.3) becomes
data. All of the results fog(«) are tabulated in Table Il and significant[42]. Since 0<f<1, the width of the hysteresis
plotted in Fig. 9. loop Se in € is given by Se=g?/4h. Wheng=0, de=0.

It is clear from Fig. 9 that, overalfy(«) increases withe.  The hysteresis width with zero applied shear is plotted in
As discussed above, the larger data are also associated Fig. 10 for «=0.33 and variou$®. Note that the hysteresis
with largerP. At present, no theoretical prediction is avail- vanishes forP=5 and even when nonzero, is always rather

radius ratio o
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FIG. 10. Measurements of the hysteresis widi vs P for FIG. 11. Measurements of the coefficient of the cubic nonlinear-
radius ratioa=0.33. ity g vs the Reynolds number Re at=0.47. The different symbols
denote data in various quartiles Bf
small, 5e~0.02. This is in contrast with the sheared case,
discussed in the following section, for whigke~0.1. value of Re varies for differenta and P, but the general
features of they vs Re curve are preserved over a wide range
D. Coefficient of the cubic nonlinearity with shear of parameters. Table lll lists the values of{Render various

conditions.

The variation of Re is probably due to the combination
f changing bothw andP, rather than to the variation either
arameter separately. These are difficult to experimentally
disentangle and the parameter space is large. For zero shear,
g is found to be independent &f for P=10, but under shear
there is insufficient data to draw many conclusions about the
P dependence of. If linear theory is any guide, we expect
there will in general be a greateP dependence in the
%heared case. It was established in R8f.that the linear
theory result forR, was independent oP for Re=0, but

In the presence of shear, the coefficignof the cubic
nonlinearity is strongly dependent on the Reynolds numbe
Re of the Couette flow imposed in the base state. We fin(g
that the shear driveg negative, producing a hysteretic Hopf
bifurcation to convection in the form of traveling vortices. In
this section, we describe the Re dependence, afhich, as
in the previous section, is also a function of the radius ratio
and the dimensionless rati®.

Figure 11 shows a representative example of the Re d
pendence of, in this case fow=0.47. At Re=0, the value

of g is found, as described in Sec. IV C, by averaging over %eakly dependent o for Re#0. It appears from the tabu-
range ofP, which was always>10. In the case shown in

. _ lated results that da d Rei .
Fig. 11, g(Re=0)=1.64+0.06 with a mearP of 16.3. The iy results that ab anda decrease, Reincreases

The minimum value ofj as a function of Re also varies
plottedg da}ta for Re'>0 had 13.3-P<21.7. or differenta and’P. We will refer to the coordinates of this
Our main result is that Re plays the part of a secon

. ) . pecial point agn,i, and Rg,i,. Table IV lists the minimum
control parameter that allows the primary bifurcation to elec?values observed. A look at Fig. 11 shows that the minimum

troconvection to be tuned between supercritical and subcrltl\—/alue is only known up to the density of data and to within

cal. For @=0.47, the bifurcation is supgrcrltlcal at Re .. the scatter in the whole plot. The minimum is a local one and
and weakens as the Reynolds number increases. The bifur-

cation becomes tricritical at Re0.2 and is subcritical there- . _—
L . o . TABLE lll. Experimental measurements of the tricritical Rey-
after. The subcriticality at first deepens with increasing Rey- S
. o nolds number Reat whichg=0.
nolds number, until at Re0.85 a minimum value ofg
=-—3.7 is reached. For Re0.85, the bifurcation remains

L ’ . ) Radius ratio Reynolds number P
subcritical butg becomes an increasing function of the Rey-
. . a Re; range

nolds number. For the range of Reynolds numbers investi-
gated the bifurcation does not become supercritical again. 0.47 0.18-0.02 15.8<P<16.6

There is some scatter in the data, nonetheless, the overall 0.56 0.03-0.02 75.4P<85.4
trends are clear. The systematic deviations are comparable to  0.60 0.03-0.01 30.<P<31.7
those in Figs. @) and 8b). The results were qualitatively 0.64 0.08-0.06 29.KP<61.2
similar for «=0.56, 0.60, 0.64, and 0.80. The tricritical 0.80 0.010.01 65.5<P<70.6

Reynolds number at which=0 will be denoted Re. The
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TABLE IV. Experimental measurements of the minimum value P. This would however require visualization of the flow pat-

of g and the corresponding Rg and 7 values. tern or some spatially localized probe of the amplitude.
Radius ratio  Minimum  Reynolds number Maximum V. DISCUSSION
a g Renin P Re
0.47 3.68:0.10 0.62018 153 559 Because of its rather simple symmetry and forcing
0.56 75.151 1'04 0.1110'05 63.3 0'22 scheme, annular electroconvection under applied shear has
0.60 _1'74+0'04 0'0&0'02 32'1 0'13 many similarities to other systems and models. In this sec-
0l64 4'34: 0'79 0'2&0'02 53'4 0'25 tion, we discuss these similar systems with a view to putting
' It ' ' ' ' annular electroconvection into a general context.
0.80 —9.17+0.56 0.04:0.01 12.0 0.10 9

Electroconvection is obviously analogous to buoyancy-
driven thermal convection. In fact, it can be shown that the
linear stability problem for surface charge driven electrocon-

is ob_served within ranges of Re that had different maxima .00 thin films reduces to the 2D RayleighirBed
for different a.

Since the parameter space for the data is defined by Seg_roblem if the nonlopal coupling_between fields a_nd charges
eral parameters it becomes difficult to make meaningfufs neglected7]. Detailed calculations show that this “local”

comparisons of the experimental results when more than orfdPProximation Is an accurate one, even when applied in the

arameter changes. However, one fortunate comparison ¢ akly nonlinear regime. . . .
Ee gleaned frorgl TabIeWI\\// Atw=0 47u the film Fr)lacliP There have been some theoretical studies of 3D Rayleigh-

=15.3 while ate=0.80,7=12.0. Since the radius ratios are Benard convectioriRBC) in the presence of planeCouette
very different and theP are not, it is not unreasonable to shear flow[43]. The theory assumed the usual theoretical
directly compare the values qj - and Re,, for these geometry of a fluid layer confined between infinite, perfectly
min n H H
cases. It is evident that the bifurcation is much more stronglfondlmtIng horizontal planes. Qu_r annular system ap-
subcritical atae=0.80 than ata=0.47, and the values of proaches the p'.af‘e one in the- 1. limit. (Thea§1 a_nnu_lar
Re.,.. are also very different ' geometry has finite extent and curvature; the implications of
in . ) . Y .

The coefficient of the quintic nonlinearityas function of these are discussed belpwinear stability ang]yss_ of a
Re is studied in Ref[42]. Figure 12 shows the hysteresis plane Couette base state to RBC rev_eals stability dlffe_:rences
width se=g2/4h as a function of Re for=0.47. The hys- between transverse roll disturbandesth axes perpendicu-

teresis when Re 0 is much larger than that described in the lar to the shear floyy and longitudinal roll disturbancéwith

i X axes parallel to the shear flpwLongitudinal-roll distur-
previous section that was found for R@ at smalle andP. . . . ;
B ances have identical stability properties to unsheared RBC,
The Nusselt number of the convection is independent o

. . and are always more unstable than the transverse-roll distur-
the Hopf frequencyi.e., the traveling rate of the vortex pat- b In f lonaitudinal-roll disturb h bili
tern). It would be interesting to measure this frequency ances. In fact, longitudinal-roll disturbances have stability

o . . 'properties that are independent arfy unidirectional shear
which is governed by the imaginary part of the complex

. i flow along the axis of the rolls. In our 2D system, these more
Landau equation, Eq2.9), and depends o8, a, Re, and unstable longitudinal roll modes do not exist and the vortices

we see correspond to truly 2D transverse rolls. Thus, we
- observe the analog of a state that would normally be pre-
% ] empted by longitudinal rolls if the geometry were not con-
strained.
According to linear theory, transverse-roll disturbances in
] unbounded, sheared RBC, like our vortices, exhibit suppres-
% . sion, or added stability due to the shear, under plane Poi-
* ] seuille or plane Couette or any mixture of these two flows.
% 0 The onset Rayleigh number for transverse rolls is a mono-
a % 5 i § L] ] tonically increasing function of the shear Reynolds number,
o similar to what we found for electroconvection. Furthermore,
0 § 1 the critical wave number of the most unstable transverse dis-
§ ] turbance was found to be a monotonically decreasing func-
§ e ] tion of the shear Reynolds number, which is analogous to the
© reduction ofm; by shear that we observed. Transverse rolls
: also travel under unidirectional plane Couette shear, again
ol o= =047 | analogous to our traveling vortex state.
o 05 1 15 2 '2'5' ' Whereas unbounded RBC with plane Couette shear can-
Re not be realized experlmenFaIIy, RBC has be_en studied experi-
mentally and theoretically in narrow slots with open through-
FIG. 12. The hysteresis widtfie vs the Reynolds number Re flows [1,44,45. Quasi-2D transverse rolls can be stabilized
for radius ratioa=0.47. The symbols denote the same quartiles ofby wall effects in slots. The through-flow consists of a weak
P as in Fig. 11. Poiseuille flow with a very small Reynolds number. Its ef-
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fects on RBC are well understood. In brief, the onset oftems is analogous to the traveling of the sheared patterns that
convection is again suppressed, but the first instability isve observed only to the extent that rotation and shear break
convectivei.e., it grows only downstream of a localized per- the same symmetry, which allows traveling patterns. Sym-
turbation, rather thanabsolute The resulting convection metry aside, the physical origins of added stability and pre-
pattern drifts in the direction of the through flow. It is inter- cession are fundamentally different between the 2D sheared
esting that the clear distinction between convective and ab@nd 3D rotating cases.

solute instability is blurred in annular electroconvection with [N general, 3D rotating convecting systems may also sup-
shear, in which the ‘through’ flow loops back on itself. The POrt strictly 2D “Taylor column”[53] solutions that do not
annular geometry is naturallglosed The linear stability ~Precess in the rotating frame and whose onset occurs at the
analysis of Ref[3] only treated absolute instability. In prin- Same critical Rayleigh number as in the absence of rotation
ciple, the system might still be considered to be convectively4-30- The system most analogous to ours is the interesting

unstable if localized perturbations grew only as they traveledUt €xperimentally unrealizable situation of 2D RBC in a
azimuthally. rotating annular geometry with purelsadial gravity and

Taylor vortex flow (TVF) [1] is an extensively studied heating[30]. Theoretical studies found colu.mnar solutio_ns
pattern-forming instability with geometric similarities to an- that are very closely analogous to our vortices. One might
nular electroconvection. However, the instability leading toh©Pe to approach this limit in experiments using radial tem-
TVF depends crucially on axial disturbances to 3D Couettd€rature gradients imposed between rapidly rotating concen-
flow. Purely 2D circular Couette flow is, in fact, linearly {ric cylinders. Purely columnar solutions have not been ob-
stable[46,47. TVF is the result of an instability of a 3D Seérved in any rotating RBC experiment because the
shear flow, while what we have studied here is the effect of #0undary conditions at the top and bottom of the cylinder
shear flow on the electroconvective instability. must be stress frefed,30], a requirement that cannot be at-

Agrait and Castellanos theoretically studied the effect of ained in terrestrial RBC experiments. In contrast, two di-
3D Couette shear on an electrohydrodynamic instability inmensmnahty, stress free.surface conditions ar_ld radial driving
TVF geometry[16]. Their electrohydrodynamic system con- forces all arise r!aturally in the eIec.troconvectlon of_ an annu-
sisted of a nearly insulating fluid confined between metallid@" suspended film. Thus, the vortices that occur in annular
electrodes. Charge injection, a process by which charge caflectroconvection without shear are accurate 2D analogs of
riers are created at the electrodes, occurs when strong electricaylor columns.”
fields are applied. The interaction of this volume charge den- The similarity between our system and many other better-
sity with the applied electric field leads to electroconvectiveStudied systems and models suggests that many linear and
instabilities [14,15,17. Agrait and Castellanos considered Nonlinéar techniques developed for other problems can be
electroconvection due to a radial field with charge injectionfruitiully brought to bear on annular electroconvection. In
on either cylinder. Both cylinders were permitted to rotate to?ddition, the system may allow the study of bifurcation sce-
produce a general Couette shear. They found that sheariftf"10S that are not experimentally realizable in other similar
enhanced the instability, leading to a 3D flow that resemble@YStems.

TVF. This is in direct contrast to the stabilizing effects we
observed in 2D. - _ , VI. CONCLUSION

Although shear and rigid rotation are conceptually quite
different, it is interesting to compare their effects on insta- In this paper, we have reported a wide ranging experimen-
bilities. Again, we find crucial distinctions between 2D andtal study of the primary bifurcation to electroconvection in
3D systems. sheared two-dimensional annular films. Our principal experi-

The added stability in sheared annular electroconvectiomental probe was the excess current carried by the film due
is a consequence of the shear and not of rotation. Under rigith convection, which can be directly related to the amplitude
rotation, where the inner and outer electrodes are co-rotatin@f the convective flow. In all, we examined annuli with six
one can transform to rotating co-ordinates in which the elecdifferent radius ratiosy, with 0.33<a=<0.80. For these, the
trodes are stationary. This transformation introduces a CoriReynolds number of the applied Couette shear varied be-
olis term —2Q02xV=—2Q0V ¢ in the Navier-Stokes equa- tween O<Re<3. The explored range for the dimensionless
tion which may be absorbed into the pressure gradient terrparameterP, which varied with film thickness and conduc-
VP and eliminated3,30]. Thus, in a purely 2D system, rigid tivity, was 1<P<<150.
rotation and the nonrotating, unsheared case have identical We compared this data, in the first instance, with the pre-
stability. It also follows, since the transformation is generaldictions of linear theory3]. The data for the critical voltage
and the unsheared bifurcation is stationary, that the resulting? for the onset of convection without shear could be com-
nonlinear vortex pattern above onset must be stationary ibined for all six radius ratios and was shown to obey the
the co-rotating frame. scaling predicted by linear theory. This data could then be

This lack of dependence on rigid rotation may be con-used in a slightly model-dependent way to fix the only re-
trasted with a large class of 3D and quasi-2D rotatingmaining unknown material parameter, the fluid viscosity. We
Rayleigh-Bmard systems4,48-53, where rotation pro- could then compare the experimentally measured suppres-
duces added stability but the absence of strictly 2D flowsion of the onset by shear to linear theory in an essentially
results in a time-dependefirecessing convection pattern parameter-free way. The agreement was satisfactory for a
in the co-rotating frame. The precession seen in these sysvide range ofa, P, and Re. Using a simple visualization
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scheme, we also confirmed that the azimuthal mode numb&geynolds number Rebelow whichg>0 and the onset was
mnear onset was close to the most unstable critical vaue a supercritical Hopf bifurcation. For ReRe;r, g<0 and the
predicted by linear theory. onset became a subcritical Hopf bifurcation with the degree
Nonlinear fits to current-voltage data above the onset obf subcriticality a nontrivial function of Re. Hence, the Rey-
convection were then used to infer the real part of the amnolds number formed an interesting second control param-
plitude of convection. Under shear, the amplitude can beeter in this system that could be used to vary the nature of the
shown to obey a complex Landau equation. The data were farimary bifurcation.
to the real part of the time-independent steady state version The data presented in this paper represents only a sparse
of this equation in order to extract the coefficignof the ~ sampling of the full 3D parameter space gf{a,P,Re).
cubic nonlinearity. When shear was absent, the primary biWVithin this space, there presumably exist continuous 2D loci
furcation was a pitchfork while with shear, the bifurcation ©" Whichg=0 and the primary bifurcation is tricritical. On
was a pitchfork Hopf. We determined the functional depen-other loci, the hysteresige is a local maximum. As a func-
dence ofg as a, Re, andP were varied. When shear was tion of «, linear theory[7] shows that there exist special
absent, it was found that far=0.47, 0.56, 0.60, 0.64, 0.80 Valués ofa at which two azimuthal mode numbens and
and P=13 thatg was independent oP. In addition, in this m+1 are simultaneously linearly unstable. All of there-

regimeg=>0, hence the bifurcation was supercritical. or SultS we have described pertain to gemary bifurcation;
=0.33, g was found to be an increasing function Bffor ~ aP0ve onset we have also observed numesessndanybi-

2<P<8. More importantly, it was found that the bifurcation :‘urcgtionsftr;‘at take the dformb?cf hysteretic jurfnpsn'm Thef R
was subcritical §<0) for P<5 and supercriticald>0) for _Ic_)r::atlon 0 t_dese seconaary i l;rctatlons IS ? un((j:_tlon 9{. e.
P=5. In overall trend. we found thaj was an increasing 1 €Se considerations suggest that more-or-less discontinuous

function of « for zero shear. The largest=0.80 was suffi- jumps in the behav!or 0§ may occur at parameter values
ciently close to the limiting case ofi—1 that we could across which the azimuthal mode numbeof the nonlinear
extrapolate the measured valuesgofor comparison to the pattern cha_nges d'$°°”“r.‘“°“3'y- The ”Ch. ph_e_nomenology of
value ofg calculated from weakly nonlinear theory for the even the primary bifurcation presents a significant challenge

corresponding “plate” electrode geometry. This quantitativeto the weakly nonlinear theory of this instability.
comparison gave reasonable agreement.

When shear was applied, it had a strong effect on the
subcriticality of the primary bifurcation. Measurementsgof This work was supported by the Natural Science and En-
as a function of the shear Reynolds number Re revealed thgineering Research Council of Canada and the U.S. Depart-
for «=0.47, 0.56, 0.60, 0.64, 0.80 there existed a tricriticalment of Energy under Contract No. W-7405-ENG-36.
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