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Experimental observations of an almost symmetric electronic circuit show complicated sequences of bifur-
cations. These results are discussed in the light of a theory of imperfect global bifurcations. It is shown that
much of the dynamics observed in the circuit can be understood by reference to imperfect homoclinic bifur-
cations without constructing an explicit mathematical model of the system.
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[. INTRODUCTION ical study of a modified van der Pol oscillator, and in a wide
variety of other experiments including Taylor-Couette flows
The role of symmetries in determining the behavior of[3,4], optics[5,6], chemical oscillator§7,8], and liquid crys-
nonlinear physical systems can be crucial. Reflectmr? ) tal flows|[9].
symmetry is relevant to a wide range of experiments, and in In the presence of simple symmetries, homoclinic bifur-
such a system a pair of stable solutions may be created byaations may involve two or more homoclinic orbits. In the
supercritical pitchfork bifurcation as a parameter is variedsimplest cases the net effect is to destroy a pair of periodic
These new states break the original symmetry, but are synorbits, which are the images of each other under the symme-
metric images of each other. Of course, perfect symmetry isry and create a single symmetric branch of periodic orbits.
never achievable in any physical system. So, in practice, thghese symmetric periodic orbits cannot undergo period-
bifurcation may become disconnected having one branch thafoubling. So in the two-sided case, the period-doubling and
varies monotonically with the parameter and a second ongsyerse period-doubling bifurcations on branches of the sym-
that arises by a saddle-node bifurcation. This is most easilyetric orbit are replaced by an initial symmetry-breakiog

modeled by adding an imperfection term as a con_stant in_thFeverse symmetry-breakinbifurcation. The asymmetric or-
model normal form and this appears to work well in descrlb—bitS created in this way may, of course, be involved in

Lng th(_e”I:)ca_\I blllfurcatio_n structure. How;:‘vetrr,]_a _phy5|?al t‘?’ys'period—doubling bifurcations. This distinction will be useful
em will typically contain many Sources for this Impertection ; , , interpretation of the bifurcations observed below.
and some of them may be high dimensional in nature. There- . .

Whilst the effect of small symmetry-breaking terms on

fore, it is reasonable to ask whether a model with a singl . . . . .
imperfection term provides a good representation of the sy(si[-he bifurcations of stationary solutions has a long his(g

tem far from the bifurcation point. Specifically, we are inter- imperfection theory of Golubitsky and S_chaeﬁ[drO—lZ]) .
ested here in the effects of this local modeling on the globafl€re appears to have been no systematic attempt to describe
dynamics that result from homoclinic bifurcations. the equivalent modifications of global bifurcatiorisee
Our investigation is concerned with a class of global bi-[13,14 for a special cage Our aim here is to consider the
furcations involving homoclinic orbits, i.e., orbits that tend Simplest possible case and to compare the predictions with
to a stationary point of the model flow in both forward and the results of a complimentary experiment. Although we do
backward time. Typically, the existence of a homoclinic orbitnot take the precise details of the symmetry-breaking terms
is not a persistent property of a differential equation, but theyinto account, qualitative agreement with the experimental re-
occur on lines in two-parameter familiégechnically, they sults is found.
are codimension-1 bifurcationdn the absence of symmetry, We reconsider the experimental electronic oscilld@f
the net effect of such bifurcations is to create or destroy ahat exhibits a variety of almost symmetric global bifurca-
periodic orbit, whose period tends to infinity at the bifurca-tions and show how many features observed in the experi-
tion point. This may happen in one of two ways: one sided oments may be explained by reinterpreting some results on
two sided. In the one-sided case, the orbit approaches thmbdimension-2 homoclinic bifurcations so as to obtain a gen-
bifurcation point from one side of the bifurcation point as its eral imperfection theory for homoclinic bifurcations. These
period tends to infinity. In the two-sided case, such as theesults necessarily involve nonstationary solutions, and so
Shil'nikov case[1], the locus of the orbit in parameter space are likely to be applicable and observable in many more
oscillates about the bifurcation value creating the so-calledhteresting situations.
“Shil'nikov wiggle” as the period of the orbit tends to infin- The experiments were carried out using a van der Pol
ity. Moreover, there are period-doubling and reverse periodescillator. The bifurcation structure of this system has been
doubling bifurcations of the orbit together with more com- investigated in detail previouslj2] but with the implicit
plicated homoclinic bifurcations. This sequence of events haassumption of symmetry. It is the aim of the present study to
been reported previous[] in an experimental and theoret- investigate the global dynamics of the circuit and relate the
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observations to modern ideas on gluing bifurcations where 064 f
the mathematical abstraction of perfect symmetry is relaxed 4 |

0.62 |
Il. EXPERIMENT | oot |

A. The electronic oscillator - 06}
[en

The experimental study was performed using a van der o590 f
Pol oscillator circuit, the details of which are given in Healey
et al. [2]. It comprises an autonomoWwsCR oscillator with
two nonlinear conductances in the feedback circuit. Precise %37
variation of the two parameters that control the behavior of o356 |
the system was provided by switchable decades resistanc 'l £ . .
boxes. This means determination of the bifurcation structure 0.54 0.56 0.58 0.6 0.62 0.64
to a relative accuracy of better than 0.1% was possible. The o
two parameters are denoted by ,3; and they are nondi-
mensionalized forms of the resistandeg,R, that control
the nonlinear elements. Details of the nondimensionalizatio

areTﬂlven. n .Hlealeyet ?I.t[)Z]. . d . tions. The parameter region denoted 2" is where forward and
. e principle set 9 0 sgrvatlons were made using an OS('everse period doubling is observed on the asymmetric orbits.
cilloscope. Steady bifurcations were observed as changes in

the level of the dc output. On the other hand dynamical stateloci of these bifurcations almost coincide and are marked
were best monitored as Lissajous figures formed from a com*Hopf” in Fig. 1. The two asymmetric limit cycles that arise
bination of signals measured over the nonlinear elements. lat the Hopf bifurcations appear to glue together leading to a
this way, limit cycles, period-doubling sequences, chaos etdarge symmetric periodic orbit. This transition is denoted by
were readily displayed. Time series were also recorded anthe line marked “Hom” in Fig. 1 and will be discussed in
stored on a computer via a 12-BitD for further processing. detail below. This symmetric limit cycle undergoes different
This included phase portrait analysis using the method ofypes of bifurcation including symmetry breaking and period
delay coordinates. doubling and may also become chaotic. Finally, within the
The inductor used in the present circuit is 1.5269H com-oscillatory regime forward and reverse period-doubling se-
pared with 1.78H used by Healest al. [2]. This causes a quences have been observed and these can be related to the
shift of the bifurcation points relative to those previously Shil’nikov wiggle as shown by Healest al.[2]. The bound-
reported, though the bifurcation structure remains qualitaaries of this region are denoted B2 in Fig. 1.
tively the same. The imperfections in the circuit are tiny and
the resulting local bifurcation diagrams are very close to C. Imperfect gluing bifurcation
those we would expect from a perfect system. Although the

symmetry-breaking term arises from a variety of sources, we We fi_rst exa_lmine the influence of the imperfection on the
will refer to them throughout as a single imperfection. gluing bifurcation that occurs when the two asymmetric limit

cycles join without the presence of complicated dynamics.
We chosep; sufficiently large 3;=0.59 approximately
anda; close toB; so that the chaos that arises from period-
The stability diagram for the electronic circuit is shown in doubling sequences on a Shil’nikov wiggle is avoided and
Fig. 1. The overall structure shows lines of steady and dythe dynamics is almost planar. We present a “typical” set of
namic bifurcations, all meeting at the top right hand corneresults for the orbit structure of the oscillator in this regime
of the figure that is a codimension-2 point. The dynamicin Figs. 2 and 3 that were taken g =0.6000. Figure 2
bifurcations(Hopf and homoclinit are pairs of lines super- shows the period of the various simple orbits observed as a
posed and separated by the imperfections in the circuit. Thifunction of the parametet,, and Fig. 3 shows the form of
effect is very small and cannot be resolved on the scale of théhe corresponding orbits—the two small asymmetric orbits
figure but, as we will show below, it has a significant effectare labeled by “1” and “0,” respectively, and the large am-
on the global dynamics. plitude orbit is labeled by “10,” for reasons that will be
In the parameter range of interest, a perfectly symmetriexplained below.
system would have a trivial 0 V fixed point that would lose  If the electronic oscillator were symmetric then the devel-
stability to a pair of nonzero dc states at a supercritical pitchepment of the orbits shown in Fig. 3 far; =0.6041 would
fork bifurcation. As expected, in the experiment we see thahave a simple explanation in terms of gluing bifurcations
this bifurcation is disconnected to form a continuously con-{15]: two periodic orbits that are the symmetric image of
nected state and a separate solution branch that is terminateedch other approach a stationary point and are “glued to-
at its lower end by a saddle-node bifurcation denoted by SNjether” to form single symmetric orbit with code “10.” At
in Fig. 1. The stable nontrivial asymmetric dc states boththe bifurcation the two smaller periodic orbits touch at the
become time dependent via Hopf bifurcations; one on eachtationary point, i.e., they are no longer periodtwir period
branch. The imperfection in the circuit is very small, so thehas diverged to infinityand they form two homoclinic or-

FIG. 1. Experimental bifurcation set in the;,3; plane. SN
denotes the path of saddle-node bifurcations, “Hopf” the Hopf bi-
I?urcations to simple oscillations, and “Hom” the gluing bifurca-

B. Bifurcation set
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FIG. 2. Oscillation period of different periodic orbits FIG. 4. Bifurcation diagram of symmetry-breaking bifurcation

=0.6000 plotted as a function af;. “1” and “0” denote the orbits  Of periodic orbits ay3;,=0.6000. The mean d¥, over 5000 data
on the asymmetric branches and “10”, “01” are the glued orbits. Points is plotted.

bits, biasymptotic to the stationary point. fore the “0” orbit. This is precisely what is predicted by the

As is clear from Fig. 2, and as should be expected of addition of a constant term to the normal form. The orbits
real physical system, the oscillator is not perfectly symmetshown in Fig. 3 all coexist atr;=0.6041 and are typical
ric. Hence it is not surprising that the pair of homoclinic examples of the limit cycles involved in this gluing bifurca-
orbits that exist at a single parameter value in the symmetrigion. The fact that they can all coexist explains why hyster-
system seem to occur at different parameter values in thgsjs can be observed in the experiments.

oscillator. The results shown in Fig. 2 also suggest that there There are three features in Fig. 2 that we will seek to
is a third homoclinic bifurcation—the bifurcation that createsgyplain theoretically in the following section: the break up of

the large amplitude “10” periodic orbit. the gluing bifurcation, hysteresis, and also the extra bifurca-
It can be seen in Fig. 2 that the period of both the small, g oyigent at larger values af;. Before describing the

asymmetric orbits *1 _a_md 0 Increases aalu mcireas_es and theory we shall look at this latter sequence of bifurcations in
they finally lose stability and jump to the “10” orbit ak, more detalil

~0.6045, i.e., where the graphs of the variation of period are
almost vertical. Moreover, the “0” orbit remains stable for
slightly higher values ofx; than the “1” orbit, emphasizing
that the two orbits are not the images of each other under the |t is known that symmetric Systems cannot undergo
symmetry. It should be noted that the “1” orbit results from period-doubling sequences direcfty6] but must first break
a Hopf bifurcation on the monotonic branch of the discon-their symmetry. Hence, we would expect the large symmetric
nected pltCthfk bifurcation. Therefore it loses Stab”lty be'orbit formed by the g|u|ng of the two asymmetric ones to
undergo a symmetry-breaking bifurcation, as predicted for
the symmetric Shil'nikov wiggld17]. As expected, this bi-
furcation is disconnected in the experiment and has been
1 observed aB;=0.6000 witha, increasing from 0.6059. The
bifurcation was detected by measuring the mean voltage av-
eraged over 150 periods of the oscillation and plotting this as
O a function ofa4. The resulting bifurcation diagram is shown
in Fig. 4 where we see that it has the form of a disconnected
pitchfork. This diagram explains the creation of the orbit
labeled “01” in Fig. 2. Note that the original “10” orbit has
a larger period but smalléi/,) than the newly created “01”
orbit. Hence, the branches in Figs. 2 and 4 are apparently
10 reversed. Two typical asymmetric orbits on respective
branches are shown in Fig. 5 for «f,B;)
=(0.6067,0.6000). It was observed that the period of “10”
orbit (cf Fig. 2 on the connected branch varied rapidly for
a1>0.6065 and then loses stability. However, the period of
the “01” orbit is virtually constant over this range. At higher
FIG. 3. Phase portraits of coexisiting asymmetric (1,0) anda; values the periods of both orbits decreased. Each orbit
symmetric (10) periodic orbits at;=0.6041 and3;=0.6000. underwent period-doubling sequences to chaosrfovalues

D. Symmetry-breaking bifurcation of large periodic orbit
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FIG. 6. The two parameter plane for the imperfect gluing bifur-
cation in the planar case. A one-parameter family(iofperfecy
FIG. 5. Phase space portrait of coexisiting “large” periodic or- systemsS s indicated by a curve through the plane close 0.
bits 10 and 01 a3,=0.6000 andx,=0.6067. The arrows indicate the direction in which orbits are created.

greater than the range displayed in Fig. 2. The extra compli@nd G1, but at different parameter values, so there will be
cations of period doubling and instability are topics for fu- two simple homoclinic bifurcations at nearby parameter val-
ture research ues on such a path.

The intersection of the loci of two homoclinic bifurcations
(each to the same stationary poirg a codimension-2 phe-
nomenon that has been studied by a number of authors

It is natural to think of the bifurcations observed in the [15,18—-24. The most important feature that all these bifur-
system in terms of two parameters. One of these, ;5ais cations have in common is that at least two other curves of
the parameter of théictional) symmetric system that has a hemoclinic orbits emanate from the intersection@{ and
gluing bifurcation as described in Sec. Il C. The second paS1: Oné ine>0 labeledG,,, and the other ir<0 labeled
rameter, say, is a measure of how far the oscillator is from Goy. The labeling (_jescnbes the orden t|m¢) that thg O.rb't .
being perfectly symmetric, i.e. it is some measure of imperpasses through neighborhoods of the basic homoclinic orbits.

fection with =0 corresponding to the perfectly symmetric These homoclinic orbits are precisely the bifurcations needed

; . to destroy or creatéasymmetri¢ periodic orbits with code
system. Just as the standard imperfection theory for the b|.-10,, or “01.” Thus a typical path close toe=0 will inter-

furcations of stationary poinfd 2] allows one to describe the sectGy, G, and one of the curveSy; or Gy. This explains

effect of asymmetry in terms Qi ande, our aim he_re IS to the third homoclinic bifurcation observed in Fig. 2. Roughly
give an analogous description for general global bifurcations

We note that this is in the spirit of the work of Glendinning Speaking, the difference between orbits created by paths

. i -~ crossingG,, and those created by crossi@y, is the differ-
g&:l(]:az:iré?]SCox[l’&] for the particular case of Lorenz-like bi ence between the orbits shown in Fig. 5.

The details of the two-parameter bifurcation plane close
to the intersection o5, andG,; depends upon the nature of
the stationary point, the configuration of the homoclinic or-
bits and a measure of the amount of twisting of solutions

Suppose thaty, €) =(0,0) denotes the point in parameter about these orbits. The nature of the stationary point is de-
space at which there are two symmetrically related hotermined by the eigenvalues of the Jacobian matrix of the
moclinic orbits. Consider either one of these orbits. Since théjow that are closest to the imaginary axis. If, up to complex
existence of homoclinic orbits is codimension 1, there will conjugation, these ave; and\, with Rex ;<0< Re\, then
be a curve in parameter space through (0,0) on which syshe saddle indexs defined by
tems have a homoclinic orbit that is a continuation of the
given orbit. Thus, for typical two-parameter families of sys- o=—Re\;/Re\, 1
tems, there will be two curves of homoclinic orbits in param-
eter space, saf, andG,, which intersect at the origin and plays an important role. The two-parameter space near the
that do not intersect the line=0 again locally. The curve intersection oGy andG; in the planar case is shown in Fig.
Gy (respectivelyG,) is the locus of a homoclinic bifurcation 6 (A, and\, are real, where the symmetry is a point sym-
that creates or destroys the periodic orbit with codeged  metry about the stationary point and the direction of time
spectively, 1. The one-parameter families of nearly symmet-may be chosen so that>1. Each simple homoclinic bifur-
ric systems such as the example considered in the precedimgtion creates a periodic orbit in the direction indicated by
section would then correspond to some curve in this twoarrow on the bifurcation curve. The parameter plane is di-
parameter space that has, for example 0 and that passes vided into six regions by the curves of bifurcations, and the
close to (u,e)=(0,0). Such a curve will intersect botA,  periodic orbits(from the local theorythat exist in each re-

Ill. THEORY

A. The basic picture
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FIG. 7. Bifurcation diagran{period against paramejeon the FIG. 8. Bifurcation diagram{period against paramejeof the
one-parameter pat8 of Fig. 6. modified global bifurcation as suggested by Fig. 2.

gion are indicated by their codes. The bifurcations observe
on the one-parameter pagin Fig. 6 are shown in Fig. 7,
which is the more conventional representation.

gufﬁcient to explain the orbits observed in the experiment. It

is worth emphasizing that this can be damighoutconstruct-

ing the model equations explicitly, simply by suggesting that

B. Relationship with the experiment any model equation must have various dynamical features.
The curves sketched in Fig. 7 are in reasonably good C. Other cases

agreement with the experimental ones in Fig. 2 except for the

extra complications at larger parameter values described in !N the literature, codimension-2 global bifurcations are
Sec. II D. Also the fact, mentioned at the end of Sec. Il c,9enerally described witks, and G, (the loci of the simple
that all three of the orbits labeled “0.” “1.” and “10” coexist nomoclinic bifurcationsas the coordinate axes of the bifur-

for some values ofr;. However, even these aspects can befation analysis. In this case the symmetric system may be
incorporated into our picture of imperfect global bifurca- assumed to lie on the diagonal of the parameter space. It is,

tions. For smaller values g8, Shil'nikov wiggles are ob- however, important to bear in mind that in.models of physi-
served, suggesting thai<1 (and \; is complex in this cal systems the curvés, andG; intersect with a very small

parameter regime. In this case, as earlier, there may gle of intersection, whereas the standard analysis depicts

symmetry-breaking and reverse symmetry-breaking bifurcath€ intersection to be at right angles. Provided the intersec-

tions of the symmetric orbitin the perfectly symmetric sys- tion is transve_rsal the analysis holdsj although ift do_es mean
tem) [17]. The bifurcations observed in Fig. 2 and describedthat the true plcture for the asymmetrlc perturbation is a very
in more detail in Fig. 4 are not in the asymptotic region of Skewed version of the standard pictures. _
applicability of the homoclinic theorflarge period, close to  All the relevant types of bifurcation we have considered
homoclinic bifurcation and so we invoke an extra pair of have a basic feature in common. As the bifurcation param-

assumptions on the underlying symmetric system for oufter # is varied, a(more or less complicat¢dsequence of
model: that there is a symmetry-breaking and reversifurcation is observed with the net effect that a pair of pe-

symmetry-breaking bifurcation on the symmetric orbit andfiodic orbits (those we have labeled “0” and *1is de-
that 5< 1. stroyed, and a single large periodic orbit is created. The pre-

cise details of the bifurcations depend on the system, but it is

If <1 then the curves of homoclinic bifurcations are X
essentially as in Fig. 6 but the direction of the bifurcations isStlll Possible to make a number of general statements.

reversedmore precisely, the diagram is reflected aboutehe
axis) and the orbits created are saddlegther than stable, as
would be the case i6>1). This now suggests the new in-  If the direction of time can be chosen so thatis real
terpretation of Fig. 2 that is shown in Fig. 8. The major newand 6>1 [cf. Eq. (1)] then the codimension-1 bifurcations
feature is that since the orbits are created in the oppositen Gy and G, are one sided and fairly general statements
direction to the case with>1 in Fig. 6 and are unstable, the about the bifurcations involved in the range of validity of the
points at which the orbits cannot be followed further,( rigorous argument: large period and parameters close to the
=0.6041 for the “10” orbit anda; =0.6025 for the “0” and  intersection oG, andG; are possibl¢22]. First, there are at
“1” orbits in Fig. 2) are now assumed to be saddle-nodemost two periodic orbits, and second, any periodic orbit has
bifurcations. There are a number of possible interpretationg very particular description in terms of the symbols “0” and
for the disconnected symmetry-breaking bifurcations, and1” introduced above. Technically, the sequences are rota-
one of these is shown in Fig. 8, although we make no claintion compatible sequencg®2], but in practice a simple con-
that it is the most likely. Note that the new arrangement ofsequence is that periodic orbits have codes of the form
the homoclinic bifurcations does provide a region of param-
eters where the orbits “0,” “1,” and “10,” coexist and are 01M01"01"01™01™ . . ., v
stable, as seen in the experiment.

The important feature of the analysis above is that twowhere for alli, n;e {m,m+ 1} for somem=>0 (or the same
assumptions about the underlying mathematical model ar@ith the roles of 0 and 1 exchanged/oreover, the limitp

1. The one-sided case
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of the number of % in the sequence to the length of the 0.03 - - - -
sequence exists and is called the rotation number of the orbit
In one casdthe so-called stable orientable Lorenz-like case, 1 cj a 0
seg[21]), there is an infinite set of bifurcations along a typi- 0.025 [
cal path and at any one parameter after crossing the firs P2 4

bifurcation curve, there is at most one periodic orbit. More- »«ﬂﬂ”ﬁ )"’;0

over, the rotation number varies continuously along the bi-\;j 0.02 W P4 P2 _
P2

furcation path, implying the existence of parameter values
with nonperiodic(but nonchaotig attractors. e —

If N\, is complex then the range of bifurcations is more 0.015 | B 1
complicated and depends on the precise path taken throug Jo-oes) 3 )ﬁ,&—eﬁﬁ*ﬁ'o
the parameter space. Here there are regions of coexistence P4 P4 P2 P2 1
certain periodic orbits—those whose rotation numipgr&y, 0.01 . : . .
andp,/q, are Farey neighbors, i.dp;q,—q.p,|=1—but 0.559 0.56 0.561 0.562
typical curves in parameter space do not intersect most o oy

these regions. A more complete list of the possibilities can be
found in Re_fs.[17318,2]]. . L noted with[ ] corresponds to the “1” and witli ) to the “0” orbit
All the bifurcations of the rigorous analysis involve one- respectively.
sided global bifurcations, and there are no local bifurcations
on the branches of each periodic orbit. If these occur it is
necessary to appeal to effects outside the rigorous region of
validity of the mathematical results—this is made much The gluing process in the non-planar region of parameter
easier by an understanding of the two-sided bifurcations. space involves complicated orbits that evolve on a
Shil'nikov wiggle. A pair of these wiggles are shown in Fig.
9 where the period is plotted as a function ®f at fixed
B1=0.5317. Here the period of the orbit approaches infinity
The symmetric bifurcation diagram of the Shil'nikov case through a sequence of folds where alternate branches are
(N1 complex,\, real andé<1) is given in Ref[17]. The unstable and indicated by dashed schematic lines in the fig-
locus of the pair of orbit$*0” and “1” ) in parameter-period ure. The stable solutions undergo forward and reverse
space oscillates as the period increases to infinity, witperiod-doubling sequences on the first two folds whereas the
period-doubling and reverse period-doubling bifurcations orhighest period orbits only exist over a tiny range of the pa-
every other branch. The symmetric orbit oscillates in a simifameter. In a perfectly symmetric system these two wiggles
lar way, but with symmetry-breaking bifurcations on everyWould overlap completely. The effect of the imperfection in
other branch. Breaking the symmetry of the system will havehe circuit is to displace the two curves from one another.
two effects—the global bifurcations that coincide in the sym- A Shil'nikov wiggle has also been observed on the sym-
metric system will be split apart and the symmetry-breakingMetric orbit and the results are show.n in F|.g. 10. Thgre we
bifurcations will typically become disconnected as described@n see three levels of the wiggle with period-doubling se-
above. In the two-parameter diagram close to the intersectiouences. The “10” orbits in this case were asymmetric but
of Gy andG4, curves of more complicated bifurcationS {;
andG;) oscillate rapidly and intersect each otlidrere are 0.03 - - - -
infinitely many other curves of homoclinic bifurcations to
complicate matters furthgrFor a typical asymmetric path \
there will be a single intersection witG, and G,, but po- 0.025 | IO*Eu .
tentially several intersections witB,o and Gy;. The orbits DY 10
created in the bifurcations involvinG, and G; will lie on
the usual Shil'nikov wiggle in the parameter-period plane asZ g2 | < _
observed experimentallgsee Fig. 9. The symmetric orbit, 10 m)\
“10,” can also be followed experimentallysee Fig. 1§ ;
there are multiple intersections of the parameter path with 0.015 | e
G, i.e., extra bifurcations that create and destroy the orbits SO
labeled “10*.” Between the conjectured intersection of the 10‘“*““‘;()2 """

FIG. 9. Coexisiting Shil'nikov wiggle aB8=0.5317. The branch

IV. EXPERIMENT II

2. The two-sided case: Shil'nikov’s wiggle

Chaos
Chaos

parameter path witls, and G, it is possible to observe a 0.01 , , ,
stable orbit with code “100.” Such an orbit can be created ' 0.559 0.56 0.561 0.562
from homoclinic orbits obtained from the gluing of the orbits o

“10” and “0.” These bifurcations are expected due to the !

intersection ofG, andGy, in the two-parameter analysisf. FIG. 10. Shil'nikov wiggle and gluing process of the “10” orbit
the 6>1 case iM22]) that create extra curves of homoclinic at 8=0.5317. The period of the “10” orbits and the “100" orbit is
orbits Gy and G- rescaled by 2 and 3, respectively.
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we were unable to find the mirror image pairs of solutions in V. CONCLUSION
this case. We were, however, able to observe them at smaller
values of ;. The gluing process takes place on the third

level with intervening sequences of chaos and a stable *1007,re careful examination of experiments can reveal features
orbit; as expected from the discussion at the end of Segnat do not appear in the symmetric models. In particular, we
Il C. Note, we also observed the “10that is an integral  haye focused here on global bifurcations that involve peri-
part of the gluing process as discussed in Sec. Il C above. dic states of the system, and we have shown how a number
set of time series and phase portraits are displayed in Fig. 1bf complicated bifurcation diagrams observed in the experi-
The “0” orbit on the disconnected branch glues to the “10” ments can be interpreted by appealing to a theory of imper-
large scale orbit via two chaotic phases with an intermediatéect homoclinic bifurcations.

period-3 “100” sequence. A standard approach to the modeling of physical phenom-

Although symmetric equations are frequently used to
model almost symmetric systems, we have shown that a
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ena is to construct a mathematical model of the experimentorrespondence between the model, theory, and experimental
and use this to either predict or explain features of the exresults quantitative rather than qualitative. This is a worth-
periment. This entails both the construction of the model andvhile project, but not one we have attempted here.

the analysis of the model constructed. It is noticeable that in  Bifurcation diagrams consistent with those of Sec. llI
the approach taken here we have appealed to properties ofave now been observed in more physically interesting sys-
model without having to either construct or analyze the tems. Abshagert al. [25] has found bifurcation diagrams
model. We have simply argued that any mathematical modelith a striking similarity to Fig. 6 in experimental data from

of the experiments must have certain features, and that theggiig flow. We believe that the approach taken here will find
features lead to certain conclusions by the application of gloapplication in a broad variety of experiments in which sym-

bal bifurcation theory. Clearly, a more precise description of
! ’ metry, or rather, almost symmetry, plays a role.
the symmetry-breaking terms would be needed to make the Y y Y, pay
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