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Entangling power of quantized chaotic systems
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Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India

~Received 4 December 2000; published 20 August 2001!

We study the quantum entanglement caused by unitary operators that have classical limits that can range
from the near integrable to the completely chaotic. Entanglement in the eigenstates and time-evolving arbitrary
states is studied through the von Neumann entropy of the reduced density matrices. We demonstrate that
classical chaos can lead to substantially enhanced entanglement. Conversely, entanglement provides a useful
characterization of quantum states in higher-dimensional chaotic or complex systems. Information about eigen-
function localization is stored in a graded manner in the Schmidt vectors, and the principal Schmidt vectors can
be scarred by the projections of classical periodic orbits onto subspaces. The eigenvalues of the reduced density
matrices is sensitive to the degree of wave-function localization, and is roughly exponentially arranged. We
also point out the analogy with decoherence, as reduced density matrices corresponding to subsystems of fully
chaotic systems, are diagonally dominant.

DOI: 10.1103/PhysRevE.64.036207 PACS number~s!: 05.45.Mt, 03.67.2a, 03.65.Yz
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I. INTRODUCTION

Entanglement has been studied since the early day
quantum mechanics and provides the essential ingredie
Einstein-Podolsky-Rosen phenomena@1#. It results when the
state of a system, which is composed of at least two s
systems, cannot be written as a product of states that re
entirely in the subsystems. This leads to the well-kno
unique quantum correlations that exist even in spatially w
separated pairs of particles. More recently, entanglement
been discussed extensively in the context of quantum in
mation theory. It has been recognized as a quantum reso
for quantum superdense coding and quantum teleporta
while helping to make quantum computations qualitativ
superior to classical ones@2#.

Usually the entangled subsytems are distinct identical p
ticles and the entanglement is created by symmetrizat
such as in the spin singlet state of a fermionic pair. Howe
entanglement may of course be created during time evolu
due to conventional interactions of a potential nature. In t
case, the ‘‘subsystems’’ may also be the many degree
freedom of the same particle. This is more general than
special case wherein the interaction preserves the perm
tion symmetry between the sayd ~formal! degrees of free-
dom, and may therefore be interpreted as representind
identical particles in one dimension.

Presented with the inexpensive resource of unentan
states, unitary operations may be devised to create po
tially useful entangled states. Thus an understanding of
range of entanglement produced by the wide range of uni
operations is of interest. If these unitary operators are ge
ated from Hamiltonians, then a natural question that arise
the connection between the dynamics generated by
Hamiltonian and the entanglement produced. In particula
has been recognized for some time now that the two extr
cases of classical dynamics, namely, the completely i
grable and the completely chaotic@3#, leave remarkably dif-
ferent traces on quantization@4#. In this paper we inquire into
the possible effects of quantum chaos on quantum entan
ment.
1063-651X/2001/64~3!/036207~10!/$20.00 64 0362
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Entanglement in eigenstates of some Hamiltonians h
begun to be studied. Largely, Hamiltonians from condens
matter physics have drawn attention as some form of s
chains are possible realizations of quantum registers. Fo
stance, the ground state of an antiferromagnetic model
been recently studied@5# in this context while entanglemen
in the Ising one-dimensional~1D! model has also been in
vestigated@6#. Previously the connection between entang
ment and quantum dynamical manifestation of chaos
been studied with the example of theN-atom Jaynes-
Cummings model@7#. It was found that decoherence rat
are considerably enhanced if the initial wave packet w
placed in a ‘‘chaotic’’ region; that is its phase-space rep
sentation, was dominated by a classically chaotic region
another work of a similar kind@8#, the authors have studie
the linear entropy production in coupled kicked tops a
related the rates to classical Lyapunov exponents. Thus
paper, which concentrates on stationary states and quan
scarring, may contribute to furthering our understanding
entanglement produced by qualitatively different dynami
A related issue is that of decoherence@9# and our treatment is
equivalent to treating the environment as a subsystem
quantum chaotic system, and may be seen in the context
body of work that has arisen wherein dephasing is stud
with the environmental degrees of freedom being either r
dom matrices@10# or low-dimensional chaotic systems@11#.

Certain finite unitary matrices have been studied ext
sively in the quantum chaos literature and represent a
source of operators with a wide range of well-understo
dynamical behaviors in the classical limit. They may, f
instance, arise naturally while quantizing symplectic ma
on the torus@12–14#. However, most of the studies hav
been limited to the two torus, with essentially one degree
freedom, while entanglement studies necessarily deal w
the entanglement between two subsystems. Thus, while
degree of freedom Hamiltonian flows lead to one degree
freedom maps, we need to consider at least a fo
dimensional symplectic map to study entanglement direc
Another possibility is to treat a finite dimensional Hilbe
space~of appropriate dimensionality! as isomorphic to a
©2001 The American Physical Society07-1



th
nt

od
al
ti
io
l
s

e

e
u

to

n-
t

d
in

m
an
ed
e

a
e
en
rre

ce

sa
s

ee
eu
ly
e

m

th
n.
e

or
m

f.
that
n

es,
he
ve-
ding

the

s if

ent,

the
act

ave
ari-
s a
t if

n-
il-
ent

lly
ctic

pa-

. In

, for
ys-
re-

ARUL LAKSHMINARAYAN PHYSICAL REVIEW E 64 036207
product space of say qubits, as done for instance for
quantum baker’s map@15#, and consider the entangleme
among the qubits.

We use a coupled quantum standard map as the m
system. The standard map is well-understood classic
there is a smooth transition from the regular to the chao
and it has been the object of several quantum investigat
as well ~reviewed in Ref.@14#!, including an experimenta
realization@16#. The coupled map has been studied clas
cally, principally, to understand Arnol’d diffusion@17#. Thus
our results below also represent new results in the larg
sparse literature on higher-dimensional (d.1 for maps,d
.2 for flows! quantum chaotic systems. In particular, w
explore the usefulness of entanglement as a measure of q
tum chaos for such systems. Our results, largely explora
and numerical in nature, quantify what is intuitively~and
certainly linguistically! evident; the connection between e
tanglement and chaos. The larger the chaos, the more
entanglement that is induced by the dynamics, as oppose
entanglement due to symmetries. However we also find,
terestingly, that the reduced density matrices store infor
tion about localization of certain states in a systematic m
ner. By localization, we refer to localization in the combin
full Hilbert space. To be specific we refer to ‘‘phase-spac
localization or the phenomenon of quantum scars@18#. The
states that are most vividly scarred are also those that
nearly separable, in terms of single-particle states, and th
fore we should expect that these have low entanglem
More detailed work is needed to comment on generic sca
states.

Consider a bipartite quantum system whose state spa
H5H1^ H2, where dimHi5N ( i 51,2). The unitary op-
erator acts on vectors in the spaceH, where dimH5N2. We
consider the case where the two subsystems have the
dimensionality. Letuc&eH, and the reduced density matrice
be r15Tr2(uc&^cu) and r25Tr1(uc&^cu), where the first
matrix is obtained by tracing out the second degree of fr
dom and the second by tracing out the first. The von N
mann entropyS, referred to in the rest of the paper as simp
entropy, of the reduced density matrices, measures the
tanglement of the pure stateuc& in an essentially unique
manner

S52Tr1„r1 ln~r1!…52Tr2„r2 ln~r2!…. ~1!

The close analogy between this entropy and thermodyna
entropy has been noted and discussed earlier@19#.

The eigenvalues of the reduced density matrices form
~square of the! coefficients of the Schmidt decompositio
This decomposition expresses the state in the full Hilb
space as a linear combination ofN product states@1# instead
of N2 that is evident. If we were to write the eigenvector, f
instance, in the position basis and in the Schmidt deco
posed forms, we would have

uc&5 (
n1 ,n2

cn1n2
un1&un2&5(

j 51

N

Al j uf j&
Suf j8&

S. ~2!
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A simple proof of this is also found in the Appendix of Re
@20#. Thus there is a basis in each Hilbert space such
each basis vector inH1 is uniquely correlated with the one i
H2 as far as the stateuc& is concerned. The statesuf j&

S and
uf j8&

S are the eigenvectors of the reduced density matric
and form the basis of the Schmidt decomposition. T
Schmidt decomposition is not merely a mathematical con
nience but is understood to provide a deeper understan
of correlations between subsystems.

In the literature on quantum chaos or localization@14,21#,
the Shannon entropy has often been calculated, and for
above state it is given by

Sshan~ uc&)52 (
n1 ,n2

ucn1n2
u2 ln~ ucn1n2

u2!. ~3!

This quantity is, of course, basis dependent and vanishe
the basis is chosen to have a direction alonguc&. The von
Neumann entropy or entanglement is, to an important ext
immune to arbitrariness by being invariant underlocal uni-
tary transformations, even though such is not the case for
Shannon entropy. Local transformations are those that
only on individual subspaces. Indeed as long as we h
identified our subsystems, entanglement provides an inv
ant measure. We wish to explore if it can also function a
measure of the complexity of the state. The question is no
the ‘‘complex’’ of complex looking states are always e
tangled, but whether it is generic for eigenstates of a Ham
tonian to have a strong correlation between entanglem
and other measures of complexity.

II. FOUR-DIMENSIONAL STANDARD MAP

We now define the four-dimensional~4D! standard map
@17#. It is composed of two pendulums that are periodica
kicked and are also coupled to each other. The symple
transformation of the phase-space variables (q1 ,q2 ,p1 ,p2),
connecting states just before two consecutive kicks, se
rated by unit time, is the classical map

q185q11p18 , ~4a!

p185p11
K1

2p
sin~2pq1!1

b

2p
sin„2p~q11q2!…, ~4b!

q285q21p28 , ~4c!

p285p21
K2

2p
sin~2pq2!1

b

2p
sin„2p~q11q2!…. ~4d!

The phase space is restricted to the unit four-torusT4, and
therefore mod 1 operations are understood in all of Eq.~4!. If
b50, the system falls into two uncoupled standard maps
this limit, much is known of the dynamics@3#; briefly, if K
50 ~referring now to eitherK1 or K2), the dynamics is
integrable, while atK'1, the last KAM rotational tori
breaks, heralding large-scale diffusion in the phase space
K,5, the phase space is that of a typical Hamiltonian s
tem, a mixed phase space with both regular and chaotic
7-2
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ENTANGLING POWER OF QUANTIZED CHAOTIC SYSTEMS PHYSICAL REVIEW E64 036207
gions. WhenK@5, the dynamics are practically complete
chaotic with possible appearances of very tiny stable isla
through tangent bifurcations. ForbÞ0, little is known, due
to the dimensionality of the phase space, although this m
has been used in studies of Arnol’d diffusion. We sugge
and substantiate below, that in cases such as these, w
finite unitary matrices may be constructed as quantizat
the quantum maps can be used to actually find transition
classical chaos. As we noted for the general case earlie
the case whereK15K2, the system possesses permutat
symmetry between the two degrees of freedom and may
interpreted astwo interacting particles in a 1D standard ma
external potential.

The quantization of the symplectic transformation in E
~4! is a finite unitary matrix, whose dimensionality isN2, and
N51/h, whereh is a scaled Planck constant. The classi
limit is the largeN limit. The quantization is straightforward
as there exists a kicked Hamiltonian generating the class
map. The quantum standard map on the two torus in
position representation is

U~n8,n;K1 ,a,b!5
1

N
expX2 iN

K1

2p
cosS 2p

N
~n1a! D C

3 (
m50

N21

expS 2
p i

N
~m1b!2D

3expS 2p i

N
~m1b!~n2n8! D . ~5!

The position kets are labeled byn50,N21 and the position
eigenvalues are (n1a)/N while the momentum eigenvalue
are (m1b)/N, m50, . . . ,N21. Here a and b are real
numbers in@0,1) which represent quantum boundary con
tions and are convenient devices for breaking phase-s
reflection symmetry~the phasea) and time-reversal symme
try ~the phaseb). The 4D quantum map is but a simp
extension:

^n18n28uUun1n2&5U~n18 ,n1 ;K1 ,a,b! U~n28 ,n2 ;K2 ,a,b!

3expH 2 iN
b

2p
cosF2p

N
~n11n212a!G J .

~6!

U is a unitary matrix inH, and will induce mixing between
the two subsystems. We have assumed the quantum pha
both the subsystems to be identical. Throughout this pa
we usea50.35 andb50 as the quantum phases.

III. RESULTS

A. Stationary state properties

If bÞ0, an unentangled initial state, such asun1 ,n2&
[un1& ^ un2&, would eventually get entangled by the repea
action of the unitary operatorU. The entangling propertie
depend on the entanglement already inherent in the sta
ary states or eigenstatesuc i&, i 51, . . . ,N2, of U. Thus we
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first calculate the average entropy of the eigenstates w
K150.1,K250.15 as a function of the coupling constantb.
At these values ofKi , the uncoupled standard maps are
most wholly regular. We calculate

S̄5
21

N2 (
i 51

N2

Tr1„r1i ln~r1i !…, r1i5Tr2~ uc i&^c i u!, ~7!

wherer1i is the reduced density matrix after tracing out t
second degree of freedom. The quantityS̄ is a gross quantity
averaged over the entire spectrum, and gives an idea o
average entanglement we can expect on using the operatU.
In Fig. 1 we see the entropy increasing from zero atb50
and attaining a nearly constant value beyondb'3.

The increase in the entropy proceeds along with a grad
increase of chaos in the system, flattening out after con
erably uniform chaos has been achieved, a fact that is c
firmed by iterating the classical map, Eq.~4!. In fact this
suggests a compact way of exploring theclassicaltransition
to chaos, which is otherwise mired in problems of visual
ing 4D sections. Thus entanglement is clearly a function
the nature of the underlying classical dynamics. That
entropy increases as an approximate power law before
tening out is shown in the inset. Roughly we getS̄'b.4. We
note here that the Shannon entropy would behave differe
since even whenb50 there is a nonzero Shannon entropy,
general. If there is large scale chaos in the subsystems~as in
our model if K1 and K2 are greater than five! it will be
reflected as a large Shannon entropy; however the entan
ment would be zero. For large coupling between the s
systems, both the entropies appear to be well correlated

Subject to the constraint that Tr1(r1i)51, the maximum
entropy is ln (N), and corresponds to the ‘‘microcanonic

FIG. 1. Average entropy as a function of the couplingb. From
top to bottom: the cases correspond toN525, 20, and 15, respec
tively. The inset is a ln-ln plot of the same.
7-3
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ARUL LAKSHMINARAYAN PHYSICAL REVIEW E 64 036207
ensemble’’ with all the eigenvalues (l j , j 51, . . . ,N) of r1i
being equal to 1/N. The entanglement entropy induced by t
dynamics of quantum chaos falls short of this and in fact
eigenvalues, if arranged in decreasing order, are expone
and reminiscent of the ‘‘canonical’’ ensemble; see the disc
sion below. From the data of Fig. 1, it appears that at sa
ration S̄' ln (0.59N). Thus roughly 0.59N pairs of corre-
lated states from the two subspaces, make up a typical s
The meaning of this is that of the optimal minimum numb
of components present in the full state, given the freedom
choose a basis from each subspace. If we are given su
choice in the full Hilbert space, we would have just o
component with the basis having one of its directions align
along the eigenstate, and the von Neumann entropy of
pure state at zero. This may also be compared to
M-dimensional random matrix eigenvector, belonging to
Gaussian orthogonal ensemble~GOE! @22# whose Shannon
entropy is approximately ln (0.5M ).

We turn now to a somewhat more detailed study of
entanglement inherent in individual eigenstates. In Fig. 2
plotted the individual entropies corresponding to all t
states of a fairly chaotic system. While most of the sta
have already achieved the entropy corresponding to the s
ration value of ln (0.59N) ~small dots!, there are many state
that are prominently low in entanglement~those with an en-
tropy less than 3 are marked with a circled dot!. The Shan-
non entropy, not displayed here, of the~small dot! states is to
a large accuracy ln (0.5N2) ~as the dimensionality isM
5N2), while there are also minima that largely match tho
in Fig. 2; therefore these are expected to be localized sta
In Fig. 3 is shown two wave functions, one a typical chao
state and the other a localized state corresponding to the
prominent minima of the entanglement entropy shown
Fig. 2 (i 5212).

FIG. 2. Entropy of all the 1600 states for the caseK150.1,
K250.15, b52, and N540. The straight line is at the valu
ln (0.59N), while the states below an entropy of 3 are indicated
circles. The localized state (i 5212) is the second encircled point
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Many of the low entropic states are similar to the loc
ized state in Fig. 3, and suggests a ‘‘scarring’’@18# mecha-
nism. In fact this results from a scarring due to a fixed po
of mixedstability, and may be called semiscarred if one is
strictly define scarring as due to unstable, hyperbolic orb
@23#. The initial condition (q150.5,p150,q250,p250) is a
fixed point for all values of the parameters. Whenb52, the
eigenvalues of the Jacobian at this point has a real pair,
responding to hyperbolic motions and a complex-conjug
pair corresponding to stable motions. This fixed point
poised to completely lose stability just after 2~at '2.01).
While providing a new example of scarring in highe
dimensional systems due to orbits of mixed stability typ
this shows that entanglement is sensitive to eigenfunc
localization or scarring. We might expect this to be true fo
large class of strongly scarred states.

The structure of the reduced density matrices correspo
ing to these two states are displayed in Fig. 4 and reveal
connection to decoherence phenomena. The reduced de
matrices are typically diagonally dominant in the presence
large-scale chaos. It is interesting that the localized states
more ‘‘cleanly’’ diagonal than the typically delocalized stat
There is a rather rapid transition from a nondiagonal to
predominantly diagonal density matrix as the system und
goes a transition to chaos; even mixed phase spaces see
lead to sufficiently diagonal density matrices. This is sho
in Fig. 5 where the average~of the absolute value squared! of
the density matrices corresponding to the entire spectrum
shown. The reduced density matrices of nonstationary st
also tend to a diagonal structure very rapidly when the s
tem is chaotic, as will be demonstrated later.

Due to the reduced density matrices being diagona

y
FIG. 3. Eigenfunctions (u^n1 ,n2uc i&u2) of a typical state~top,

i 56) and a localized state~bottom, i 5212). Parameter values ar
the same as that of the previous figure.
7-4
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ENTANGLING POWER OF QUANTIZED CHAOTIC SYSTEMS PHYSICAL REVIEW E64 036207
dominant, it is not obvious if they themselves have rand
matrix properties. However the state in the full Hilbert spa
possesses properties of eigenvectors of random matrice
the GOE~or COE! type. We may then use this to understa
the typical diagonal nature of the reduced density matric
The diagonal term is~dropping the state indexi in favor of

FIG. 4. The reduced density matrices (ur1i u), obtained by trac-
ing out the second degree of freedom, for the delocalized state~top,
i 56) and the localized state~bottom, i 5212) of the previous fig-
ure.

FIG. 5. The spectral average of the square of the elements o
reduced density matrices for the cases ofb50.05 ~above! and b
52 ~below!. N520, K150.1, andK250.15 in this figure.
03620
e
of

s.

the indices indicating the position in the reduced density m
trix!:

r1nn5(
k

u^n kuc&u2. ~8!

A typical ~ensemble averaged! value of u^n kuc&u2 is 1/N2,
which one can see easily from the normalization conditi
Therefore the typical diagonal element is of order 1/N. The
‘‘strength’’ of the diagonal elements, as measured in
spectral average, and shown in Fig. 5, will be

^ur1nnu2&;
1

N2
. ~9!

The off-diagonal element is given by

r1nn85(
k

^n kuc&^cun8 k&. ~10!

The ensemble average of this quantity vanishes. The stre
of these elements is

^ur1nn8u
2&;K (

k
u^n kuc&^cun8 k&u2L ;N

1

~N2!2
5

1

N3
,

~11!

where we have used the GOE result@22# that

^^u^ i uc&^cu i 8&u2&&5
1

M ~M12!
'

1

M2
~ iÞ i 8!, ~12!

and M5N2 is the dimensionality of the matrix. Thus th
average off-diagonal element will be smaller than the dia
nal by a factor ofAN. This is borne out to a large extent b
the numerical results. The reduced density matrices are
agonally dominant and not completely diagonal. The ar
ment used above from assumptions of random matrices
substantiated by numerical calculations, indicate that this
agonal property will be preserved for any local basis and t
there is nothing special about the position states.

Is there any advantage in using the reduced density
trix, rather than say the Shannon entropy as a measur
eigenfunction properties, in particular of localization
Clearly the reduced density matrix contains much more
way of information, and the von Neumann entropy deriv
from it is just one piece of information that gives a glob
idea of localization. If we have the complementary reduc
density matrix obtained by tracing out the first degree
freedom we will have complete information about the wa
function, via the Schmidt decomposition. We now study t
spectral properties of the reduced density matrices and
serve how information about localization is stored in a
markably graded manner.

The eigenvalues (l j ; j 51, . . . ,N) of the reduced density
matrix, assumed to be arranged in increasing order,
naturally contain information about localization. As we not
earlier these eigenvalues fall off exponentially as seen in F
6. The localized state seems to have at least two expone

he
7-5



F

r
ea

tial
ot

rt
-
ilib-

fic
e
nt
tate.
de-

tion
ew

re-

in
free-
e
r
two
ase-
lat-
of

cs.
ipal
sity
ates
ed
on-

to be
em-

tr
cl
ve

ARUL LAKSHMINARAYAN PHYSICAL REVIEW E 64 036207
scales while the generic delocalized state has only one.
the latter class of states, we find numerically that

l j;expS 2
g j

N D , ~13!

whereg is anN independent constant. While this is valid fo
a few of the most significant eigenvalues, there is a cl

FIG. 6. Principal eigenvalues of the two reduced density ma
ces in Fig. 4 are shown with the open circles and the closed cir
corresponding to the delocalized and localized states, respecti
Note that the scale is ln linear.
03620
or

r

deviation of this for smaller eigenvalues and the exponen
law seems modulated by a polynomial one that we will n
investigate in more detail.

The role of the ‘‘temperature’’ is played by the Hilbe
space dimensionalityN. This may be compared to the ‘‘tem
perature of the eigenvalue gas,’’ which measures the equ
rium ~fully chaotic! distribution of the level velocities, which
is also proportional toN, but the proportionality constant~the
‘‘Boltzmann constant’’! may be a measure of system speci
classical correlations@24#. The localized state seems to b
cleanly split into two parts, one with a localization domina
part, and the other that behaves like a generic extended s
The degree to which there are two distinguishable scales
pends on the particular localized state. Thus the informa
about the state’s localization is present in the first f
Schmidt states of the reduced density matrix.

We now study the corresponding eigenvectors of the
duced density matrices. These are the Schmidt statesuf j&

S in
the expansion of Eq.~2! for eigenstates. Since these are
N-dimensional subspaces spanned by either degree of
dom, they correspond classically to ‘‘projections in th
(qi ,pi) space.’’ Herei 51,2 while tracing out the second o
the first degree of freedom, respectively. We see them in
ways: one is the usual position basis, the other is a ph
space representation, such as a Husimi distribution. The
ter will reveal phase-space scarring effects, provided
course that we know enough about the classical dynami

The position basis representation of some of the princ
eigenvectors or the Schmidt vectors of the reduced den
matrices of two states, is shown in Fig. 7. One of these st
is a typical nonlocalized state while the other is the localiz
state discussed above. While the Schmidt vectors of the n
localized state are essentially unremarkable and appear
random, those that belong to the localized state are th

i-
es
ly.
-

FIG. 7. The six principal

Schmidt vectors for a typical cha
otic state~left! and for the local-
ized state (i 5212) ~right!.
7-6
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ENTANGLING POWER OF QUANTIZED CHAOTIC SYSTEMS PHYSICAL REVIEW E64 036207
selves localized and appear arranged in the manner typic
eigenstates with increasing node numbers. Beyond the
states shown here, Schmidt vectors of the localized state
look random and indistinguishable from the delocaliz
state, as is already evidenced in the sixth state. This ag
with the fact that the eigenvalues of the Schmidt vectors a
seem to share common trends beyond this point. Thus in
mation about state localization is stored in the Schmidt v
tors in a graded manner.

The Husimi of the Schmidt vectors will reveal more abo
the classical structures that influence the localization.
have asserted previously that the localized state we h
been analyzing is influenced by the fixed point (0.5,0,0,
While this is plausible from the state vector in the positi
basis already displayed, it is confirmed by the Husimi of
Schmidt vectors. Thus we plot

W~q,p!5u^q,puf&Su2

in Fig. 8, whereuq,p& is a coherent state on the two torus
developed in Ref.@25#. We have also plotted the compleme
tary Schmidt vectors from tracing out the first degree of fr
dom and will therefore give the (q2 ,p2) coordinates of any
classical structure. The fixed point (0.5,0,0,0) is clearly s
projected onto the two subspaces in the Husimis, thus c
firming our earlier statement that the state is ‘‘scarred’’
this orbit. In general we may expect that periodic orbits sc
ring the states will be seen in their projections in the Husim
of their principal Schmidt vectors.

FIG. 8. The Husimi representationW(q,p) of the principal
Schmidt vectors of the localized state (i 5212). The top corre-
sponds to tracing out the second degree of freedom and the bo
the first.
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The full Husimi distribution is of course 4D and taxes o
visualization abilities. The above may be compared to a si
lar approach that has already been in use when 4D Hus
of 2D eigenfunctions of chaotic oscillators with two degre
of freedom were analyzed via their ‘‘quantum surface of s
tions’’ @26#. The difference is that the Schmidt states provi
a much more complete and systematic way of analyz
higher-dimensional wave functions than the somewhatad
hoc, though useful, constructions thus far in use. It has b
shown for 2D maps and two degree of freedom flows~which
are equivalent! that the zeros of the Husimi distribution
dubbed as ‘‘stellar representations,’’ provide a unique
scription of the eigenfunctions@27#. The stellar representa
tion of Schmidt vectors may provide a way of avoiding com
plex functions in two variables; as each vector and
correlated partner will haveN zeros each and there areN
such pairs, we would have a total of 2N2 zeros. Of course
these in themselves are not sufficient to specify the state~as
we need the eigenvalues of the reduced matrix as well!, but
we have seen that important information about the state
already present in the Schmidt vectors and must be refle
in their zeros. Calculations not presented here indeed con
this.

B. Time-dependent properties

We dwell briefly on time-dependent properties. While f
wave functions on the full Hilbert space, time-depende
properties may largely be derived from the stationary o
the situation is not entirely obvious when we restrict ou
selves to reduced density matrices, or ‘‘shadows’’ in
stricted subspaces, if we take an arbitrary~nonstationary!
stateuf0& and evolve it according touf(T)&5U Tuf0&. The
reduced density matrix at any timeT cannot be derived base
solely on the reduced density matrices of individual states

r1~T!5Tr2~ uf~T!&^f~T!u!5(
k

u^ckuf0&u2 r1k

1(
kÞ l

exp„i ~ck2c l !T…^ckuf0&^f0uc l&

3Tr2~ uck&^c l u!, ~14!

whereck are eigenangles of the corresponding eigenstate
we assume a nondegenerate spectrum, the reduced de
matrix, averaged over all time, is the first sum of the above
expression and is simply a weighted sum over the redu
density matrices of individual eigenstates.

Thus we expect, based on our previous discussion of
agonally dominant density matrices of eigenstates, that
arbitrary state’s reduced density matrix will rapidly evolve
a predominantly diagonal one. This is of course reminisc
of ‘‘decoherence’’ phenomena@9,28# and indeed as far a
each degree of freedom individually is concerned, it is
open system from which phase information can flow out
decohere. However, the state will evolve in such a way t
even the diagonal part of the density matrix is significan
altered, i.e., it is not comparable to a situation wherein a p
state is ‘‘reduced’’ to a classical ensemble by a measurem

om
7-7
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FIG. 9. Time evolution of an
initial reduced density matrix
shown in the left topmost figure
The left panels correspond to th
case b50.1 for evolution over
three time steps, while the righ
corresponds tob52 for evolution
over four time steps.
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like process. Figure 9 shows the evolution of an initial sta
which is the sum of two well-separated Gaussians in posi
representation. The initial reduced density matrix has la
off-diagonal parts. The evolution under a weak coupling p
duces interesting structures. After even one time step, for
couplings we see the that density matrix has the off-diago
parts significantly reduced. In fact this picture ‘‘looks’’ lik
03620
,
n
e
-
w
al

the one resulting from decoherence@28#. However we are
doing a numerically exact computation without using a
approximate Master equation. For later times, the case
small coupling or low chaos leads to fairly nondiagonal de
sity matrices, while in comparison the right panel shows
evolution of the same initial state for the first four time un
and one sees that effective diagonality is rapidly achieve
7-8
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ENTANGLING POWER OF QUANTIZED CHAOTIC SYSTEMS PHYSICAL REVIEW E64 036207
The time-evolving density matrices represent t
‘‘Schmidt paths’’ @20#. If we start with an initially disen-
tangled state, the dynamics when completely chaotic,
quickly rotate the state into those in which there is maxim
entanglement in some sense. Is this entanglement diffe
from that observed for stationary states? In fact from num
cal calculations not shown here, it seems that these are i
tical modulo fluctuations. This is unlike the case of t
Shannon entropy, which for a time-evolving pure state
different from a stationary state, basically due to the fact t
the time evolving state is in general complex while~for time-
reversal symmetric systems as we are currently discuss!
the stationary state is real. The typical behavior of the
tropy, is as expected, a rise from zero to the constant valu
ln (0.59N) with a rapidity that is a function of the couplin
strengths and hence of the chaos in the system.

We briefly also comment on the case when time-reve
invariance is broken. That is achieved in the model studie
this paper by choosing a nonzerob, which is equivalent to
an introduction of a magnetic-flux line. While of cours
much of what has been said already carries over to this c
there may be quantitative differences. For one, the ave
entanglement of eigenstates is slightly higher at ab
ln (0.61N). Thus time-reversal breaking interactions may
the average produce more entanglement, and the red
density matrices are sensitive to time-reversal breaking.

IV. DISCUSSION

We have presented a variety of essentially numerical
sults concerning reduced density matrices of chaotic s
tems. We have studied the entanglement of eigenstates
its possible relationship to localization. Schmidt vectors p
vide graded information about the nature of localization.
have seen how chaos aids entanglement and it is a small
to extend the universality observed from quantum chao
reduced density matrices. However, we have not sufficie
explored the density matrices to be able to comment on t
randomness or the type of universality we may expect.

There are various ways in which the analysis can be
tended. One important direction would be to have more t
cs

tu

t

nt

ev
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two coupled maps, or in general, many particle interact
systems. Such higher-dimensional systems force us to
several problems. One is that Schmidt decomposition is
longer possible, and entanglement becomes much hard
quantify. Ways to measure entanglement in multipartite s
tems have been proposed recently that may prove to be
ful. The other is the increasing complexity of the classic
system~if there is one!, and the exponentially growing nu
merical task. Loss of quantum coherence was studied
simple models in Ref.@20# by coupling two state systems t
larger Hamiltonians with matrix representations having ra
domly chosen elements. A natural situation in this cont
and in the spirit of this paper, is to look at bipartite quantu
chaotic systems as we have, but whose dimensionalit
unequal.

An important step toward a fundamental understanding
why random matrix modeling must be successful at all w
achieved by the use of semiclassical methods and peri
orbit sums@29#. A further direction would be to derive an
use semiclassical orbit sums for ‘‘partial traces.’’ This obv
ously has close links with the Feynman-Vernon path-integ
treatment of quantum dissipation. We note that

(
T

exp~2 icT! Tr2~U T!5(
k

(
m

d~c2ck22pm!r1k ,

~15!

whereck is the eigenangle corresponding to the state wh
reduced density matrix isr1k . The partial trace of the propa
gator is therefore naturally a quantity of interest. The clas
cal orbits that will be the stationary paths, will be ‘‘partiall
periodic’’ orbits, which for a given timeT connect two con-
figuration space points in subsystem 1, while appearing
riodic in subsystem 2. In general, such semiclassical anal
of partial traces may provide a deeper understanding of v
ous aspects of quantum open systems.
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