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Entangling power of quantized chaotic systems
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We study the quantum entanglement caused by unitary operators that have classical limits that can range
from the near integrable to the completely chaotic. Entanglement in the eigenstates and time-evolving arbitrary
states is studied through the von Neumann entropy of the reduced density matrices. We demonstrate that
classical chaos can lead to substantially enhanced entanglement. Conversely, entanglement provides a useful
characterization of quantum states in higher-dimensional chaotic or complex systems. Information about eigen-
function localization is stored in a graded manner in the Schmidt vectors, and the principal Schmidt vectors can
be scarred by the projections of classical periodic orbits onto subspaces. The eigenvalues of the reduced density
matrices is sensitive to the degree of wave-function localization, and is roughly exponentially arranged. We
also point out the analogy with decoherence, as reduced density matrices corresponding to subsystems of fully
chaotic systems, are diagonally dominant.
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[. INTRODUCTION Entanglement in eigenstates of some Hamiltonians have
begun to be studied. Largely, Hamiltonians from condensed-
Entanglement has been studied since the early days afiatter physics have drawn attention as some form of spin
guantum mechanics and provides the essential ingredient ghains are possible realizations of quantum registers. For in-
Einstein-Podolsky-Rosen phenomdia It results when the stance, the ground state of an antiferromagnetic model has
state of a system, which is composed of at least two subbeen recently studiefb] in this context while entanglement
systems, cannot be written as a product of states that residie the Ising one-dimensiondllD) model has also been in-
entirely in the subsystems. This leads to the well-knownvestigated 6]. Previously the connection between entangle-
unique quantum correlations that exist even in spatially welliment and quantum dynamical manifestation of chaos has
separated pairs of particles. More recently, entanglement hdmen studied with the example of thd-atom Jaynes-
been discussed extensively in the context of quantum infor€ummings mode[7]. It was found that decoherence rates
mation theory. It has been recognized as a quantum resoureee considerably enhanced if the initial wave packet was
for quantum superdense coding and quantum teleportatioplaced in a “chaotic” region; that is its phase-space repre-
while helping to make quantum computations qualitativelysentation, was dominated by a classically chaotic region. In
superior to classical ondg]. another work of a similar kindi8], the authors have studied
Usually the entangled subsytems are distinct identical parthe linear entropy production in coupled kicked tops and
ticles and the entanglement is created by symmetrizationglated the rates to classical Lyapunov exponents. Thus this
such as in the spin singlet state of a fermionic pair. Howeverpaper, which concentrates on stationary states and quantum
entanglement may of course be created during time evolutioacarring, may contribute to furthering our understanding of
due to conventional interactions of a potential nature. In thientanglement produced by qualitatively different dynamics.
case, the “subsystems” may also be the many degrees direlated issue is that of decoheren®éand our treatment is
freedom of the same particle. This is more general than thequivalent to treating the environment as a subsystem of a
special case wherein the interaction preserves the permutguantum chaotic system, and may be seen in the context of a
tion symmetry between the sa/(formal) degrees of free- body of work that has arisen wherein dephasing is studied
dom, and may therefore be interpreted as represerting with the environmental degrees of freedom being either ran-
identical particles in one dimension. dom matriceg10] or low-dimensional chaotic systems1].
Presented with the inexpensive resource of unentangled Certain finite unitary matrices have been studied exten-
states, unitary operations may be devised to create potesively in the quantum chaos literature and represent a rich
tially useful entangled states. Thus an understanding of thsource of operators with a wide range of well-understood
range of entanglement produced by the wide range of unitargynamical behaviors in the classical limit. They may, for
operations is of interest. If these unitary operators are geneistance, arise naturally while quantizing symplectic maps
ated from Hamiltonians, then a natural question that arises isn the torus[12—14. However, most of the studies have
the connection between the dynamics generated by thieeen limited to the two torus, with essentially one degree of
Hamiltonian and the entanglement produced. In particular ifreedom, while entanglement studies necessarily deal with
has been recognized for some time now that the two extremile entanglement between two subsystems. Thus, while two
cases of classical dynamics, namely, the completely intedegree of freedom Hamiltonian flows lead to one degree of
grable and the completely chaofig], leave remarkably dif- freedom maps, we need to consider at least a four-
ferent traces on quantizati¢d]. In this paper we inquire into  dimensional symplectic map to study entanglement directly.
the possible effects of quantum chaos on quantum entanglémnother possibility is to treat a finite dimensional Hilbert
ment. space (of appropriate dimensionalityas isomorphic to a
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product space of say qubits, as done for instance for thé simple proof of this is also found in the Appendix of Ref.
guantum baker’s mapl5], and consider the entanglement [20]. Thus there is a basis in each Hilbert space such that
among the qubits. each basis vector iH4 is uniquely correlated with the one in
We use a coupled quantum standard map as the model, as far as the state)) is concerned. The stat¢e$j>5 and
system. The standard map is well-understood classicallij’}S are the eigenvectors of the reduced density matrices,
there is a smooth transition from the regular to the chaoticand form the basis of the Schmidt decomposition. The
and it has been the object of several quantum investigationSchmidt decomposition is not merely a mathematical conve-
as well (reviewed in Ref[14]), including an experimental nience but is understood to provide a deeper understanding
realization[16]. The coupled map has been studied classiof correlations between subsystems.
cally, principally, to understand Arnol’d diffusiofl7]. Thus In the literature on quantum chaos or localizatias,21],
our results below also represent new results in the largelyhe Shannon entropy has often been calculated, and for the
sparse literature on higher-dimensiona>1 for maps,d  above state it is given by
>2 for flows quantum chaotic systems. In particular, we
explore the usefulness of entanglement as a measure of quan- _ 2 2
tum chaos for such systems. Our results, largely exploratory Sshad |¥)) = _n;?\z |Cn1”z| In(|cn1n2| )-
and numerical in nature, quantify what is intuitive{gind
certainly linguistically evident; the connection between en- This quantity is, of course, basis dependent and vanishes if
tanglement and chaos. The larger the chaos, the more thke basis is chosen to have a direction alogty. The von
entanglement that is induced by the dynamics, as opposed Meumann entropy or entanglement is, to an important extent,
entanglement due to symmetries. However we also find, iniltnmune to arbitrariness by being invariant undgzal uni-
terestingly, that the reduced density matrices store informatary transformations, even though such is not the case for the
tion about localization of certain states in a systematic manShannon entropy. Local transformations are those that act
ner. By localization, we refer to localization in the combinedonly on individual subspaces. Indeed as long as we have
full Hilbert space. To be specific we refer to “phase-space”identified our subsystems, entanglement provides an invari-
localization or the phenomenon of quantum sdd®. The  ant measure. We wish to explore if it can also function as a
states that are most vividly scarred are also those that ameasure of the complexity of the state. The question is not if
nearly separable, in terms of single-particle states, and theréhe “complex” of complex looking states are always en-
fore we should expect that these have low entanglementangled, but whether it is generic for eigenstates of a Hamil-
More detailed work is needed to comment on generic scarrethnian to have a strong correlation between entanglement

()

states. and other measures of complexity.
Consider a bipartite quantum system whose state space is
H=H1®H,, where dinf;=N (i=1,2). The unitary op- Il. FOUR-DIMENSIONAL STANDARD MAP

erator acts on vectors in the spagewhere dinf{=N?. We ) . .

consider the case where the two subsystems have the sameWe now define the four-dimension@dD) standard map
dimensionality. Lety)eH, and the reduced density matrices [17]- It is composed of two pendulums that are periodically
be p1=Tr(|¢)(¢]) and p,=Tr(|¥)(]), where the first kicked and_are also coupled to each pther. The symplectic
matrix is obtained by tracing out the second degree of freelransformation of the phase-space variablgs, 2,p1.p2),

dom and the second by tracing out the first. The von Neugonnecting states just before two consecutive kicks, sepa-
mann entropys, referred to in the rest of the paper as simply rated by unit time, is the classical map

entropy, of the reduced density matrices, measures the en- , ,

tanglement of the pure stafe)) in an essentially unique 41=d1F P (4a)
manner

K b
Pi=P1t 5 SiN2my) +5—sin2m(d1+ o)), (4b)
S=—Tri(p1In(p1))=—Tra(p2In(p2)). 1)

Uz=0z2+ P2, (40)
The close analogy between this entropy and thermodynamic
entropy has been noted and discussed eddig} , Ky | b
ThFe)yeigenvaIues of the reduced density matrices form the ~ P2= P2+ 5_SiN(270z) +5—sin2m(q,+0z)).  (4d)
(square of thg coefficients of the Schmidt decomposition.
This decomposition expresses the state in the full Hilbert The phase space is restricted to the unit four-tdrthisand
space as a linear combination Mfproduct state§l] instead  therefore mod 1 operations are understood in all of(By.If
of N2 that is evident. If we were to write the eigenvector, for b=0, the system falls into two uncoupled standard maps. In
instance, in the position basis and in the Schmidt decomthis limit, much is known of the dynamids]; briefly, if K
posed forms, we would have =0 (referring now to eitherK; or K,), the dynamics is
integrable, while atK~1, the last KAM rotational tori
N breaks, heralding large-scale diffusion in the phase space, for
_ _ I A \S| A7\S K<5, the phase space is that of a typical Hamiltonian sys-
) n%\z Cnn, Inz)In2) 121 \/)\—JM)’) |¢‘> - @ tem, a mixFe)d phase space with both regular and chaotic re-
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gions. WhenK>5, the dynamics are practically completely T T ' T T
chaotic with possible appearances of very tiny stable island: L g
through tangent bifurcations. For#0, little is known, due
to the dimensionality of the phase space, although this maj
has been used in studies of Arnol’d diffusion. We suggest,
and substantiate below, that in cases such as these, whe =2 [~
finite unitary matrices may be constructed as quantization, -
the quantum maps can be used to actually find transitions tc L
classical chaos. As we noted for the general case earlier, il
the case wher&;=K,, the system possesses permutation/”2
symmetry between the two degrees of freedom and may b .
interpreted aswo interacting particles in a 1D standard map 1= |
external potential. L
The quantization of the symplectic transformation in Eq.
(4) is a finite unitary matrix, whose dimensionalityNg, and
N=1/h, whereh is a scaled Planck constant. The classical
limit is the largeN limit. The quantization is straightforward -
as there exists a kicked Hamiltonian generating the classica ¢ |-
map. The quantum standard map on the two torus in the Lo b L L e
position representation is

J""""""|"" -

0.5

FIG. 1. Average entropy as a function of the couplmg-rom
top to bottom: the cases correspondNe- 25, 20, and 15, respec-
tively. The inset is a In-In plot of the same.

) 1 Ky 2w
U(n ,n;Kl,a,,B)=Nex —|Nﬁco W(n+a)
Nt i
X D, exp — —(m+ B)2
m=0 N

first calculate the average entropy of the eigenstates when
K;=0.1,K,=0.15 as a function of the coupling constdmt

At these values oK;, the uncoupled standard maps are al-
most wholly regular. We calculate

2i
><exp<W(m+ﬂ)(n—n’)>. (5)

2
The position kets are labeled Ioy=0,N—1 and the position N

— -1
eigenvalues aren(+ «)/N while the momentum eigenvalues S= N2 Z:l Tri(pain(p1)),  pu=Tra(lt){wil), (7)
are (m+B)/IN, m=0,... N—1. Here @« and B are real
numbers in[0,1) which represent quantum boundary condi-yhere . is the reduced density matrix after tracing out the

tions and are convenient devices for breaking phase-space nd dear f freedom. Th e . ntit
reflection symmetrythe phaser) and time-reversal symme- Seco egree ot freedom. 1he quansils a gross quantity

try (the phaseB). The 4D quantum map is but a simple averaged over the entire spectrum, and gives an idea of the
extension: average entanglement we can expect on using the opéfator

In Fig. 1 we see the entropy increasing from zerdat0
and attaining a nearly constant value beydre3.
The increase in the entropy proceeds along with a gradual
] increase of chaos in the system, flattening out after consid-

<niné|u|nln2>:U(nivnl;K]JaaB) U(néan;K21a1ﬁ)

erably uniform chaos has been achieved, a fact that is con-

firmed by iterating the classical map, E@). In fact this
(6) suggests a compact way of exploring ttiassicaltransition

to chaos, which is otherwise mired in problems of visualiz-
U is a unitary matrix in?{, and will induce mixing between ing 4D sections. Thus entanglement is clearly a function of
the two subsystems. We have assumed the quantum phasestie nature of the underlying classical dynamics. That the
both the subsystems to be identical. Throughout this papesntropy increases as an approximate power law before flat-

b 27
xXex —INECO W(n1+n2+2a)

we usea=0.35 andB=0 as the quantum phases. tening out is shown in the inset. Roughly we @etb*. We
note here that the Shannon entropy would behave differently,
Ill. RESULTS since even wheb=0 there is a nonzero Shannon entropy, in

general. If there is large scale chaos in the subsystemm
our model if K; and K, are greater than fiyeit will be

If b#0, an unentangled initial state, such g ,n,) reflected as a large Shannon entropy; however the entangle-
=|n,)®|n,), would eventually get entangled by the repeatedment would be zero. For large coupling between the sub-
action of the unitary operatdi. The entangling properties systems, both the entropies appear to be well correlated.
depend on the entanglement already inherent in the station- Subject to the constraint that {[p4;) =1, the maximum
ary states or eigenstatég;),i=1,... N2 of &. Thus we entropy is In N), and corresponds to the “microcanonical

A. Stationary state properties
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|(r1ma i) |?

FIG. 2. Entropy of all the 1600 states for the caée=0.1,
K,=0.15, b=2, and N=40. The straight line is at the value
In (0.5N), while the states below an entropy of 3 are indicated by

circles. The localized staté £ 212) is the second encircled point. FIG. 3. Eigenfunctions|(ny,n,|;)|?) of a typical state(top,
. ) ) i=6) and a localized stat@ottom,i=212). Parameter values are
ensemble” with all the eigenvaluea , j=1,... N) of p5;  the same as that of the previous figure.

being equal to M. The entanglement entropy induced by the

dynamics of quantum chaos falls short of this and in fact the Many of the low entropic states are similar to the local-
eigenvalues, if arranged in decreasing order, are exponentiided state in Fig. 3, and suggests a “scarrind8] mecha-
and reminiscent of the “canonical” ensemble; see the discusnism. In fact this results from a scarring due to a fixed point
sion below. From the data of Fig. 1, it appears that at satuef mixedstability, and may be called semiscarred if one is to
ration S~In (0.59N). Thus roughly 0.58 pairs of corre- strictly define scarring as due to unstable, hyperbolic orbits
lated states from the two subspaces, make up a typical staf@3]. The initial condition ¢;=0.5p;=0,9,=0,p,=0) is a
The meaning of this is that of the optimal minimum numberfixed point for all values of the parameters. WHen 2, the

of components present in the full state, given the freedom teigenvalues of the Jacobian at this point has a real pair, cor-
choose a basis from each subspace. If we are given suchrasponding to hyperbolic motions and a complex-conjugate
choice in the full Hilbert space, we would have just onepair corresponding to stable motions. This fixed point is
component with the basis having one of its directions aligneghoised to completely lose stability just after(&t ~2.01).
along the eigenstate, and the von Neumann entropy of thgv/hile providing a new example of scarring in higher-
pure state at zero. This may also be compared to adimensional systems due to orbits of mixed stability type,
M-dimensional random matrix eigenvector, belonging to thethis shows that entanglement is sensitive to eigenfunction
Gaussian orthogonal ensemiil8éOE) [22] whose Shannon |ocalization or scarring. We might expect this to be true for a
entropy is approximately In (OMN3). large class of strongly scarred states.

We turn now to a somewhat more detailed study of the The structure of the reduced density matrices correspond-
entanglement inherent in individual eigenstates. In Fig. 2 isng to these two states are displayed in Fig. 4 and reveal the
plotted the individual entropies corresponding to all theconnection to decoherence phenomena. The reduced density
states of a fairly chaotic system. While most of the statesnatrices are typically diagonally dominant in the presence of
have already achieved the entropy corresponding to the satiarge-scale chaos. It is interesting that the localized states are
ration value of In (0.58l) (small dot3, there are many states more “cleanly” diagonal than the typically delocalized state.
that are prominently low in entanglemefttiose with an en- There is a rather rapid transition from a nondiagonal to a
tropy less than 3 are marked with a circled)ddthe Shan- predominantly diagonal density matrix as the system under-
non entropy, not displayed here, of tfemall do} states isto  goes a transition to chaos; even mixed phase spaces seem to
a large accuracy In (ONF) (as the dimensionality isvi lead to sufficiently diagonal density matrices. This is shown
=N?2), while there are also minima that largely match thosein Fig. 5 where the averadef the absolute value squaeaf
in Fig. 2; therefore these are expected to be localized statethe density matrices corresponding to the entire spectrum, is
In Fig. 3 is shown two wave functions, one a typical chaoticshown. The reduced density matrices of nonstationary states
state and the other a localized state corresponding to the firatso tend to a diagonal structure very rapidly when the sys-
prominent minima of the entanglement entropy shown intem is chaotic, as will be demonstrated later.

Fig. 2 (1=212). Due to the reduced density matrices being diagonally
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|p1i(n1,m7)]

FIG. 4. The reduced density matricdp{;|), obtained by trac-
ing out the second degree of freedom, for the delocalized &tgig
i=6) and the localized statottom,i=212) of the previous fig-
ure.

PHYSICAL REVIEW B4 036207

the indices indicating the position in the reduced density ma-
trix):

Plnn:zk |<n kll//>|2 8

A typical (ensemble averaggdalue of [(n k| ¢)|? is 1IN?,
which one can see easily from the normalization condition.
Therefore the typical diagonal element is of orded.1The
“strength” of the diagonal elements, as measured in the
spectral average, and shown in Fig. 5, will be

., 1
{|p1anl >~m ©)
The off-diagonal element is given by
plnn/=2k (nKy)(gin’ k). (10

The ensemble average of this quantity vanishes. The strength
of these elements is
1

(N2)2 N3
11)

o= S KnKu)in’ W[2) N

dominant, it is not obvious if they themselves have random
matrix properties. However the state in the full Hilbert spacewhere we have used the GOE reqd@®p] that

possesses properties of eigenvectors of random matrices
the GOE(or COE type. We may then use this to understand

the typical diagonal nature of the reduced density matrices.

The diagonal term ig¢dropping the state indeixin favor of

(lp1i(na, 1)1

20

of

. . 1 1
<<|<'|¢>(¢|">|2>>:m~w (i#i"), (12

and M=N? is the dimensionality of the matrix. Thus the
average off-diagonal element will be smaller than the diago-
nal by a factor ofyN. This is borne out to a large extent by
the numerical results. The reduced density matrices are di-
agonally dominant and not completely diagonal. The argu-
ment used above from assumptions of random matrices and
substantiated by numerical calculations, indicate that this di-
agonal property will be preserved for any local basis and that
there is nothing special about the position states.

Is there any advantage in using the reduced density ma-
trix, rather than say the Shannon entropy as a measure of
eigenfunction properties, in particular of localization?
Clearly the reduced density matrix contains much more by
way of information, and the von Neumann entropy derived
from it is just one piece of information that gives a global
idea of localization. If we have the complementary reduced
density matrix obtained by tracing out the first degree of
freedom we will have complete information about the wave
function, via the Schmidt decomposition. We now study the
spectral properties of the reduced density matrices and ob-
serve how information about localization is stored in a re-
markably graded manner.

The eigenvalues\;;j=1, ... N) of the reduced density
matrix, assumed to be arranged in increasing order, also

FIG. 5. The spectral average of the square of the elements of th@aturally contain information about localization. As we noted

reduced density matrices for the caseshef0.05 (above and b
=2 (below. N=20, K;=0.1, andK,=0.15 in this figure.

earlier these eigenvalues fall off exponentially as seen in Fig.
6. The localized state seems to have at least two exponential
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0 — — T T deviation of this for smaller eigenvalues and the exponential
law seems modulated by a polynomial one that we will not
investigate in more detail.

The role of the “temperature” is played by the Hilbert
space dimensionaliti. This may be compared to the “tem-
perature of the eigenvalue gas,” which measures the equilib-
rium (fully chaotig distribution of the level velocities, which
is also proportional t?, but the proportionality constafthe
“Boltzmann constant] may be a measure of system specific
classical correlation§24]. The localized state seems to be
cleanly split into two parts, one with a localization dominant
part, and the other that behaves like a generic extended state.
The degree to which there are two distinguishable scales de-
pends on the particular localized state. Thus the information
about the state’s localization is present in the first few
Schmidt states of the reduced density matrix.

We now study the corresponding eigenvectors of the re-
duced density matrices. These are the Schmidt s|t¢l;¢§ in
the expansion of Eq(2) for eigenstates. Since these are in
i N-dimensional subspaces spanned by either degree of free-
J dom, they correspond classically to “projections in the
(g;.,p;) space.” Herei =1,2 while tracing out the second or

FIG. 6. Principal eigenvalues of the two reduced density matri first d f freed tively. Wi th int
ces in Fig. 4 are shown with the open circles and the closed circleg1e IrSt degree of ireedom, respectively. Ve see them in two

corresponding to the delocalized and localized states, respectively/@YS: One is the usual position basis, the other is a phase-
Note that the scale is In linear. Space representation, such as a Husimi distribution. The lat-

ter will reveal phase-space scarring effects, provided of

scales while the generic delocalized state has only one. F&oUrse that we know enough about the classical dynamics.

the latter class of states, we find numerically that _ The position basis representation of some of the principal
eigenvectors or the Schmidt vectors of the reduced density

matrices of two states, is shown in Fig. 7. One of these states
is a typical nonlocalized state while the other is the localized

state discussed above. While the Schmidt vectors of the non-
wherey is anN independent constant. While this is valid for localized state are essentially unremarkable and appear to be
a few of the most significant eigenvalues, there is a clearandom, those that belong to the localized state are them-

: 13

0.15
0.1
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FIG. 7. The six principal
Schmidt vectors for a typical cha-
otic state(left) and for the local-
ized state (=212) (right).
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(g, p|)|? The full Husimi distribution is of course 4D and taxes our

\ visualization abilities. The above may be compared to a simi-
lar approach that has already been in use when 4D Husimis
of 2D eigenfunctions of chaotic oscillators with two degrees
of freedom were analyzed via their “quantum surface of sec-
tions” [26]. The difference is that the Schmidt states provide
a much more complete and systematic way of analyzing
higher-dimensional wave functions than the somewdot
hoc though useful, constructions thus far in use. It has been
shown for 2D maps and two degree of freedom flgwhich
are equivalentthat the zeros of the Husimi distribution,
dubbed as “stellar representations,” provide a unique de-
scription of the eigenfunctionf27]. The stellar representa-
tion of Schmidt vectors may provide a way of avoiding com-
plex functions in two variables; as each vector and its
correlated partner will hav®l zeros each and there aké
such pairs, we would have a total ofN# zeros. Of course
these in themselves are not sufficient to specify the stete
we need the eigenvalues of the reduced matrix as)wmlit
we have seen that important information about the states is
already present in the Schmidt vectors and must be reflected
in their zeros. Calculations not presented here indeed confirm
this.

B. Time-dependent properties

FIG. 8. The Husimi representatiow/(q,p) of the principal We dwell briefly on time-dependent properties. While for
Schmidt vectqrs of the localized state<212). The top corre- oy functions on the full Hilbert space, time-dependent
spoqu to tracing out the second degree of freedom and the bOttOB]’Operties may largely be derived from the stationary one,
the first. the situation is not entirely obvious when we restrict our-

. . ., selves to reduced density matrices, or “shadows” in re-
selves localized and appear arranged in the manner typical gfricted subspaces, if we take an arbitrénpnstationary

eigenstates with increasing node numbers. Beyond the si ate and evolve it according tha(T)) =T The
states shown here, Schmidt vectors of the localized state al§8du c|::eb(§)>d ensity matrix at any tirﬂgecgﬁgopbe de|r(i<)/oe>d based

look rano!om and |nd_|st|ngmshable fr_om the delo.cal'zedsolely on the reduced density matrices of individual states as
state, as is already evidenced in the sixth state. This agrees

with the fact that the eigenvalues of the Schmidt vectors also

seem to share common trends beyond this point. Thus infor-  p2(T)=Tra(| (TN AT =2 [(thl do)|? pax
mation about state localization is stored in the Schmidt vec- :

tors in a graded manner.

The Husimi of the Schmidt vectors will reveal more about + 25 expli (= ) T o) ol 1)
. . . . k#l
the classical structures that influence the localization. We
have asserted previously that the localized state we have X Tro(| ) {nl), (14)

been analyzing is influenced by the fixed point (0.5,0,0,0).
While this is plausible from the state vector in the positionwherey are eigenangles of the corresponding eigenstates. If
basis already displayed, it is confirmed by the Husimi of thewe assume a nondegenerate spectrum, the reduced density

Schmidt vectors. Thus we plot matrix, averaged over all timeis the first sum of the above
expression and is simply a weighted sum over the reduced
W(q,p)=1(q,pl¢)%? density matrices of individual eigenstates.

Thus we expect, based on our previous discussion of di-
in Fig. 8, wherelg,p) is a coherent state on the two torus asagonally dominant density matrices of eigenstates, that any
developed in Ref.25]. We have also plotted the complemen- arbitrary state’s reduced density matrix will rapidly evolve to
tary Schmidt vectors from tracing out the first degree of free-a predominantly diagonal one. This is of course reminiscent
dom and will therefore give thegg,p,) coordinates of any of “decoherence” phenomengd,28] and indeed as far as
classical structure. The fixed point (0.5,0,0,0) is clearly seerach degree of freedom individually is concerned, it is an
projected onto the two subspaces in the Husimis, thus corepen system from which phase information can flow out or
firming our earlier statement that the state is “scarred” bydecohere. However, the state will evolve in such a way that
this orbit. In general we may expect that periodic orbits scareven the diagonal part of the density matrix is significantly
ring the states will be seen in their projections in the Husimisaltered, i.e., it is not comparable to a situation wherein a pure
of their principal Schmidt vectors. state is “reduced” to a classical ensemble by a measurement-
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T=0 T=1

|P1(n1, n'1)|2

FIG. 9. Time evolution of an
initial reduced density matrix
shown in the left topmost figure.
The left panels correspond to the
case b=0.1 for evolution over
three time steps, while the right
corresponds tio=2 for evolution
over four time steps.

like process. Figure 9 shows the evolution of an initial statethe one resulting from decoheren28]. However we are
which is the sum of two well-separated Gaussians in positiomloing a numerically exact computation without using any
representation. The initial reduced density matrix has largepproximate Master equation. For later times, the case of
off-diagonal parts. The evolution under a weak coupling pro-small coupling or low chaos leads to fairly nondiagonal den-
duces interesting structures. After even one time step, for lowgity matrices, while in comparison the right panel shows the
couplings we see the that density matrix has the off-diagonatvolution of the same initial state for the first four time units
parts significantly reduced. In fact this picture “looks” like and one sees that effective diagonality is rapidly achieved.
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The time-evolving density matrices represent thetwo coupled maps, or in general, many particle interacting
“Schmidt paths”[20]. If we start with an initially disen- systems. Such higher-dimensional systems force us to face
tangled state, the dynamics when completely chaotic, wilseveral problems. One is that Schmidt decomposition is no
quickly rotate the state into those in which there is maximalonger possible, and entanglement becomes much harder to
entanglement in some sense. Is this entanglement differeftiantify. Ways to measure entanglement in multipartite sys-
from that observed for stationary states? In fact from numeritems have been proposed recently that may prove to be use-
cal calculations not shown here, it seems that these are idefill. The other is the increasing complexity of the classical
tical modulo fluctuations. This is unlike the case of thesystem(if there is ong, and the exponentially growing nu-
Shannon entropy, which for a time-evolving pure state, ignerical task. Loss of quantum coherence was studied via
different from a stationary state, basically due to the fact thasimple models in Ref.20] by coupling two state systems to
the time evolving state is in general complex whifler time-  larger Hamiltonians with matrix representations having ran-
reversal symmetric systems as we are currently discubsingiormy chosen elements. A natural situation in this context
the stationary state is real. The typical behavior of the enand in the spirit of this paper, is to look at bipartite quantum
tropy, is as expected, a rise from zero to the constant value @haotic systems as we have, but whose dimensionality is
In (0.59N) with a rapidity that is a function of the coupling unequal.
strengths and hence of the chaos in the system. An important step toward a fundamental understanding of

We briefly also comment on the case when time-reversalvhy random matrix modeling must be successful at all was
invariance is broken. That is achieved in the model studied ichieved by the use of semiclassical methods and periodic
this paper by ChOOSing a nonzeﬂ) which is equiva|ent to orbit SUmS[Zg]. A further direction would be to derive and
an introduction of a magnetic-flux line. While of course use semiclassical orbit sums for “partial traces.” This obvi-
much of what has been said already carries over to this cas@Usly has close links with the Feynman-Vernon path-integral
there may be quantitative differences. For one, the averagéeatment of quantum dissipation. We note that
entanglement of eigenstates is slightly higher at about
In (0.6IN). Thus time-reversal breaking interactions may on >, exp( —iyT) Tro(U) =2, >, S(h— h—27M)py,
the average produce more entanglement, and the reduced™ kom

density matrices are sensitive to time-reversal breaking. (15
wherey, is the eigenangle corresponding to the state whose
IV. DISCUSSION reduced density matrix is;, . The partial trace of the propa-

gator is therefore naturally a quantity of interest. The classi-

We have presented a variety of essentially numerical re : . . . .
sults concerning reduced density matrices of chaotic Sys(;al orbits that will be the stationary paths, will be “partially

tems. We have studied the entanglement of eigenstates aRS”Od!C orbits, Wh'.Ch f(_)r a given timg connect two con-

its possible relationship to localization. Schmidt vectors pro_f{gu_rat}on space points in subsystem 1, wh_|Ie appearing pe-

vide graded information about the nature of localization. Wer'Od'C n subsystem 2. In general, such semmlasspal analys!s

have seen how chaos aids entanglement and it is a small Stghpamal traces may provide a deeper understanding of vari-

to extend the universality observed from quantum chaos {§Us aspects of quantum open systems.

reduced density matrices. However, we have not sufficiently

explored the density matrices to be able to comment on their

randomness or the type of universality we may expect. The author thanks Jayendra Bandyopadhyaya for pointing
There are various ways in which the analysis can be exeut Ref.[7], and the Indian public for their continued sup-

tended. One important direction would be to have more thaiport.
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