PHYSICAL REVIEW E, VOLUME 64, 036206
Periodic chaotic billiards: Quantum-classical correspondence in energy space

G. A. Luna-Acosta, J. A. Medez-Bermdez, and F. M. Izrailev
Instituto de Fsica, Universidad Autcoma de Puebla, Apartado Postal J-48, Puebla 72570, Mexico
(Received 13 April 2001; published 20 August 2001

We investigate the properties of eigenstates and local density of Sla&3S) for a periodic two-
dimensional rippled billiard, focusing on their quantum-classical correspondence in energy representation. To
construct the classical counterparts of LDOS and the structure of eiger(&&®sthe effects of the boundary
are first incorporatedvia a canonical transformatipnnto an effective potential, rendering the one-particle
motion in the 2D rippled billiard equivalent to that of two interacting particles in 1D geometry. We show that
classical counterparts of SES and LDOS in the case of strong chaotic motion reveal quite a good correspon-
dence with the quantum quantities. We also show that the main features of the SES and LDOS can be explained
in terms of the underlying classical dynamics, in particular, of certain periodic orbits. On the other hand,
statistical properties of eigenstates and LDOS turn out to be different from those prescribed by random matrix
theory. We discuss the quantum effects responsible for the nonergodic character of the eigenstates and indi-
vidual LDOS that seem to be generic for this type of billiards with a large number of transverse channels.
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[. INTRODUCTION established. The same model has been also [#ded study
certain quantumtransport properties through ballistic cavi-

The goal of this study is to deepen our understanding ofies. On the other hand, the analysis of the band-energy spec-
the quantum-classical correspondence for chaotic systems tium for aninfinitely long rippled channdl10] in the cases of
analyzing the properties of eigenstates and local density ahixed and global classical chaos provides insight into the
states(LDOS) in the energy representation. This approachuniversal features of electronic band structures of real crys-
has already been successfully applied to models of two intals[11]. In Ref.[12] a similar periodic billiard was consid-
teracting particlef1—3] and to a three orbital schematic shell ered in connection with the problem of chaotic diffusion in
model[4]. In this paper we extend this approach to chaoticthe systems with band spectra, see also R&é&14.
periodic billiards by incorporating the effects of the bound- An attractive feature of this rippled channel is that its
aries into the Hamiltonian operator and treating the degreeslassical phase space undergoes the generic transition to glo-
of freedom as independent “particles.” Some results of thisbal chaos as the ripple amplitudeincreases. Hence results
work were advanced ifb5]. obtained for this particular system are expected to be appli-

The outline of the paper is as follows. Section Il presentscable to a large class of systems, namely, nondegenerate,
some basic features of the classical dynamics of the rippledonintegrable Hamiltonians.
billiard, together with the necessary details of its quantum In the quantum description the model is given by the
description. In Sec. lll the classical representation of theHamiltonian
model is given. In Sec. IV we discuss the meaning of the
structure of eigenstatdSES and LDOS, and in Secs. V and A=
VII we define their classical counterparts. In Sec. VII we 2mg
compare the quantum and classical SES and LDOS. Section
VIl pertains to the individual properties of eigenstates andfor the wave functiort¥’(x,y) obeying the boundary condi-
LDOS. In Sec. IX we make some concluding remarks. tions ¥ (x,y)=0 aty=0 andd+aé&(x). There exist various
numerical methods that can be used to obtain the eigenvalues
and eigenfunctions of nonintegrable billiards, such as the
transfer matrix approacHl5], the scaling metho16], and

The system that we shall use to explore the quantumthe scattering approa¢hi2]. Here we shall employ a differ-
classical correspondence is a two-dimensid@a) billiard ~ ent technique that is tailored to explore the quantum-classical
with periodic boundary conditions along the longitudinal co-correspondence of the structure of eigenstates. It
ordinatex. The top profile is given by the functiop=d
+ag(x) with £(x+2m)=&(x), wherea is the amplitude of y y = d+ai(x)
the ripple andd is the width of the billiard whera is zero. d - /
The bottom boundary is flasee Fig. 1

The first studies of the classical dynamics of this system
were performed in Ref[6] in connection with the beam-
beam interaction problertsee alsd7]). More recently, the

PO h?
(PL+P))= = 5 (35 3) )

Il. DESCRIPTION OF THE MODEL

finite length version of this system was analyzed in R&F. °T .
as a model of a mesoscopic electron waveguide, where a
transport signature of chaos in the behavior of resistivity was FIG. 1. Geometry of a rippled billiard.
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consists of representing the Hamiltoniél) in new coordi-  where&,=dé&/du. Note that the effects of the rippled bound-
nates (1,v) in such a way that the effects of the boundary areary are fully incorporated into the Hamiltonian operator.
transferred to an effective interaction potential between th&ince the boundary conditions in the new coordinates corre-
two degrees of freedonu(v). That is, the coordinatesi(v) spond to those of a “flat” channel'(u,v)=0 atv=04d.

are chosen so that the new wave function satisfies “flat"For our purposes it is convenient now to separate the Hamil-
boundary conditions¥ (u,v)=0 atv =0,d. For our rippled tonian(8) as
channel, this can be accomplished by the transformation

H=H+V(uu,P,.P,), 9
u=x,
where
_ooyd oy
UTdtai(x) 1tefx)’ @ H0=2r1n (P2+P?) (10)

where e=a/d is a measure of the perturbation due to the

ripple [17]. The Schrdinger equation in the new coordinates with [cf. Egs.(4) and(7)]

can be obtained from the covariant expression for a particle R 1 R
moving (in the absence of potentialsn a Riemannian P,=—li#h|d,+ Zau In(g)|, P,=ihd,, (11)
curved spac¢lg],
2 72 andV stands for the rest of the terms.
— 5 — A ¥ (u,0)= 5—g Y29,9*#g % ,¥ (u,v). We remark that this representation allows us to treat the
2me 2me original model of one free particle in the rippled channel as a

) 1D model of two interacting “particles” identified with the

Here A, is the Laplace-Beltrami operatag, is the metric two degrees of freedomandv. HereH" is the Hamiltonian

andg?? is the metric tensor. Even though EG) is still the of t_wo noninteracting partiqle$The_eigenfun_ctions oH°
kinetic energy, the resulting differential equation takes & define the unperturbed basis in which the eigenstates of the

much more complicated form than the ordinary LapIaC|ant0ta| HamiltonianH (u,v,P,,P,) may be expanded. Such a
This is the price we have to pay when we transfer the effectepresentation turns out to be convenient for the study of
of the boundaries onto the operaftine explicit form of the chaotic properties of the model since one can use the tools
Schralinger equation in ,v) coordinates for the rippled and concepts developed in the theory of interacting particles
billiard is given in[10]]. Moreover, the coordinate represen- (see, for exampld,20]).

tation of the canonical momentum has now the f¢a] Since the Hamiltoniaii8) is periodic inu, the eigenstates
are Bloch states. This allows us to write the solution of the

P,=—if[d,+%a,In(g)]=—ihg Y49,g"4 (4)  Schralinger equation in the form Wg(u,v)
=exp(ku)®(u,v) with & (u+2,v)=>(u,v). For an in-
Substitution of this expression into the Sctfiryer equa-  finite periodic channel the Bloch wave vector k(E) takes
tion (3) determines the quantum Hamiltonian in covarianta continuous range of values, which we take to lie in the first
form [19], Brillouin zone (— 3<k<3).
By expanding®,(u,v) in a double Fourier series theh

N 1 . . i @ :
= _1,4Pagaﬁgl,zpﬁg_1,4 wf=up. (5 eigenstate of energi“(k) can be written as

2m
a ) — @ k
Substituting now the explicit expressions for the metric ten- v (U'U’k)_mz::l n;w Cinn(K) dmi(U,v), (12
sorg®? and metricg,
where
—evé,
1 1+€§ ¢ﬁ1n(uiv):<ulv|mvn>k
af—
g —evé, 1+ew2e | ® =7~ Y29~ Y4sinimzv/d)exdi(k+n)u]
1+eé  (1+eé)? (13
g=Det(g,p) =[1+ etul?, (7) are the eigenstates of the unperturbed Hamiltoﬁiﬁ(‘u,v)
with corresponding eigenvalues
we get
£ (1= 2| (e m [ M) (14)
.1 . 1+ €228, n.m 2m, d /|
H= 2—9_1/4 Pu(1+e£)P, Pz P
Me €& The factorm~Y?g~#in Eq. (13) appears from the orthonor-

mality condition in the curvilinear coordinates,p). Thus,

— P guP +P ufu Jta (8) the exact eigenstates are expanded in a complete orthonor-
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mal basis satisfying the boundary conditions of the problemhave to assign an indek labeling the basis statd ),
i.e., a Galerkin series expansifil]. =|m,n), to each pair of indiciegm, n (note that, although

So far, there has been no need to specify the ripple fundhe energy spectra is independent of the assignmaint)(
tion £(x), except that it is periodicé(x+2m)=£&(x). For ~ —I, the structure of the eigenstates is)ndthe size of the
concreteness, we consider from now on the dependenddamiltonian matrix is determined by the maximum values of
£(x)=cosk). The ripple profile is given by=d+acosk) N andm:—Nq,<SN<Np,and I=sm=M .
wherex, y, d, anda are dimensionless quantities. The latter A natural assignment is the following one. Let us fix the
are defined from the expressidiD + A cos(27X/B) scaled  lowest value ofn (=N, and sweep all values oh (1
to the period B. Therefore,x=27X/B, y=27Y/B, d <mM=<Mpy,). This gives|=12,... M. Then do the
=27D/B, anda=2wA/B, whereX, Y, D, A, andB are  same forn=—Npa+1, which gives Myt 1<I<2Mpay
dimensional quantities. and so on, till finally we have €£1<L,., whereL .

This approach to solving the Sclidinger equation was =(2Npaxt1)Mpa, defines the matrix sizd, 5 X Lyax. This
used to calculate the energy-band structure and Husimi digule results in a block structure of the Hamiltonian matrix,
tributions of the rippled channglL0], and to obtain the en- with block size equal tdM,,. Figure 2 shows the central
ergy level statistics under the conditions of full and mixedpart of a 4034030 matrix with Nmax,Mma)=(32,62).
chaoq22]. Specifically, in Ref[22] the energy level spacing Here we can see a number of blocks of sizex62 corre-
distribution was shown to be Poisson, Wigner-Dyson, or in-sponding ton,n’=0,=1,=2,%3. In this representation the
termediate between these two, for regular, globally chaoticiatrix is clearly a band matrix. The finite size of the band is
or mixed classical motion, respectively, in agreement withdue to the short range coupling between different blocks,
the well-known RMT conjecturg23]. Most relevant to our namely, the strength of the matrix elements decrease as
work here is the fact that these distributions were found to be/n=n'l  ¢n=n"=1] o ln=n"+2| (gee details if10]).
the same for all values & within the Brillouin zone, except The above way of ordering the unperturbed basis is typi-
k~0 for which the parity symmetry should be taken into cal: it corresponds to the “channel representation” since the
account. Thus, without loss of generality we fix the vakue indexm labels a specific transverse chanfwlmods for the
=0.1. We shall also use in all our calculations the following propagation of the wave through the billiard, see E).
values for the amplituda and widthd of the rippled chan- However, for our purposes it is essential to use the “energy
nel: a/27=0.06 andd/27=1.0. These values produce rep- representation,” according to which the unperturbed basis is
resentative global chaotic motion in the classical lifsiée  ordered in increasing energi’, ,(k)=EP(k). This defines
below). a new rulel—I,e,=!pen(n,m). Figure 3 shows the differ-

In order to study the structure of eigenstates of the totagnce between these two ways of ordering of the basis, giving

Hamiltonian A (u,v) one needs, first, to choose a way of the normalized unperturbed energiE?(k)=EP(k)/E*
ordering the unperturbed basis in which to represent the- (q/7)2(n+k)2+m? with E*=(2/2m.)(7%/d?), as a

Hamiltonian matrix H, ;,(k)=(I|H|I"),. Specifically, we function ofl.
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A nonmonotonic dependence of the energy occurs in Fig=(4/m)l,,, can be derived analytically from Weyl’s for-
3(a) because the first rulgm,n) described above produces mulaN(E) = SEmy/2#2, valid for 2D billiards with aress
minimum values in the energy fon=1. In contrast, in Fig. (also valid for periodic 2D billiards[24].

3(b) a linear dependence of the unperturbed energy on the A crycial point is that the eigenstates of the total Hamil-
indexl ney is shown, apart from large values|gt,, where the  tonjan in the “energy representation” have a very convenient
finiteness of the matrix results in the distortion of the spectrasym for the analysis. The advantage of the “energy repre-
The numerical obtained linear dependende=E/E* sentation” is clearly seen in Fig. 4 where an arbitrarily cho-
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sen eigenstate is given in the two representations. One can
see that in one case the eigenstate has a kind of regular and H
extended structure, while in the other, the eigenstate is com-

pressed around the unperturbed state whose energy is Clogich can be obtained from the quantum Hamiltoni@nby

to the energy of the perturbed state. In the latter case ongmmuting all momenta and coordinafes.

may use a statistical approach to describe the global proper- For completeness, the canonical transformation between
ties of such eigenstates, see RE2E,25,26. Specifically, we (x.y,Py.P,) and (u,0,P, ,P,) are given by Eq(2) together
may characterize such eigenstates by introducing an envegiih Pu=P,+YP,/(1+€f) andP,=(1+ €&)P, . Inserting
lope around which the components are expected to fluctuaige metric tensory equatiof®) into Eq. (17) andy regrouping

ina p_seudorandom way. We stress that by ysing this energ¥rms, the Hamiltonian can be written Hs= H+V, where
ordering one can relate the global form of eigenstates in the

energy representation with its classical counterpart, see be-

~ L gepp 1
_Zmeg at B (7)

low. HO=5—(Pi+P)) (18)
e
Ill. CLASSICAL REPRESENTATION OF THE MODEL and
Clearly, the type of motion of a particle in the ripple bil- i+ e E2+ 282
liard depends on the values of the geometrical parameters, yv=_— ie el UZ N 3 28 P.P,|.
namely, on the ripple amplitudeand the average widith If 2me (1+e€d) 1+eg
the channel is narrovd<2, the Poincaresection reveals a (19

large resonance island surrounded by the typical Po'incarg/

Birkhoff structure[6,8,10. This island is formed by the li-

brational motion along ther direction in the neighborhood of

x=0. On the contrary, for wide channelsi®2) global

chaos occurs even for small amplitudes due to a strong over- V. STRUCTURE OF EIGENSTATES AND LDOS:

lap of resonances. In this work we shall limit ourselves to the DEFINITIONS

study of global chaos, i.e., wide channels. _ Once the matriH, |, (k) has been diagonalized, its eigen-
The condition of global chaos can be derived a”alyt'ca"ystates\P“(k)=2C“(k) d)k are also reordered in energy:

for the case of small amplituda<d where the following  Ca+1— e e adclnpt thel convention that the greek superin-

approximate map is valif27], dex (latin subindex denotes the exadunperturbed state.

The amplitude<C{*(k) from the “state vector matrix.” The
elements along the row of this matrix are the components

of the ath eigenstate in the representation of the unperturbed
energy-ordered basis. Correspondingly, the elements along
Here x,, is the position of a particle and, is the angle the columnl give the unperturbed stateexpanded in the
between thex axis and the velocity of the particle, right after energy-ordered perturbed basis. For our purposes, we exam-
thenth collision with the upper wall. The standard lineariza- ine the matrixw{'=|C(k)|* (see Fig. 5, which plays the

represents the interaction between the two “particlas”
andv (hereé,=dé&é/du ande=a/d).

ans 1= @yt 2asin(x,),

(19

Xp+1=Xpt+2d cot( @, 1) (Mmod 2ir).

tion around fixed points of period one yields central role in our approach.
The rows of the matriw* show how a specific eigen-
dan 1= Sant Kk SIN(AXp), function (eigenstatea)) is expanded in the unperturbed basis
(16 |I). Since the average “bandwidth” ofi* smoothly depends
AXn+1=AXy+ danyy (Mod 2m),  k=2da/m, on the indexa (equivalently on the energi?), it is conve-

nient to averagey,” over a small range of eigenstates. In this

. . ; . way, one can obtain the so-called SES in the unperturbed
fixed point, play the role of the action and angle variables, . &ic * | \what follows, we are interested in the SES in the

respectively. Equatiofil6) has the form of thetandard map energy representation, which is defined(28]
with « as the nonlinear parameter. Hence, Chirikov's over- '

lapping criteria predicts the onset of global chaos #e¢1. ) )

This was confirmed by computing numerically the actual W(E?lE“)=E W S(EP—E®), (20

path of the particle as it travels along the channel. Specifi- o

cally, for k=1 the Poincaresection ¢, ,x,) shows global L, ,

chaos for wide channels. In this paper we shall consider #herew;" =wj* /N with N as the number of eigenstates’)

wide channel with small ripple amplitude, specified by thein the vicinity of a givena. The structure of eigenstates

parametersd/2,d/27)=(0.06,1.0), thereforex~1.5. W(E,°|E“) gives the dependence on the unperturbed energy
Let us now write, as in the quantum description, the clasE? for eigenstates with total energy close E6. This sum

sical Hamiltonian in the{,v) coordinates so that the effects can be approximated by an integral that involves the density

of the rippled boundary can be incorporated as a kind obf statesp(E®) providing the transition from the basis to the

coupling between two degrees of freedom. The classicatnergy representation. This function SES plays the key role

Hamiltonian is in the determination of important physical quantities, such as

where the anglé« and the positiom\x, measured from the
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Ferured FIG. 5. Left upper part of the matriw/* cor-

responding td\,,,=32 andM ,,,=62.

by substituting the trajectories ®(t)
=(X(1),y(t),px(t),py(t)) generated by the HamiltoniaH

Analogously, one can analyze the columns of the matriXyith energyE onto the unperturbed Hamiltonid®. Since

w/*, which give information about a givamperturbedstate
[y spanned oveexact eigenstatega). Therefore, one can
define the following quantity

w(E“EP)=2 W}, 8(E“~E}), (D)
II

which is well known in nuclear physics as tegength func-
tion, and in solid state physics as the LDOS. In E2{l) the
summation(average is done oveN basisstateg!’) around

a fixed statgl), wj,=w;,/N. Therefore, this quantity is con-
sidered as a function of the energy. It shows how a given
unperturbed statég,) is coupled to the exact states due to
the interactionV. The width of this function(spreading

the unperturbed enerdg®(t) along these trajectories varies
in time, it fills the so-callecenergy shelcharacterized by its
width AE. Therefore, for chaotic total Hamiltoniams, the
classical analoiV(E°|E) of the quantum SES can be easily
obtained frome®(t).

In Fig. 6(@ we show the energy of the unperturbed
HamiltonianH® as a function of time after the substitution of
a single chaotic trajectory(t) generated by the perturbed
HamiltonianH into H®. The classical distributiolV(E°|E)
[see Fig. )] is constructed fronE’(t), averaged over a
sufficiently long time. Alternatively, since the dynamicshbf
is chaotic, the same distribution can be obtained by averag-
ing over many different orbits at a shorter time. For concrete-
ness, in what follows we chode=1.

width) determines the energy range associated with the “de- It is important to understand the origin of the shape of the
cay” of a given unperturbed state into other states when thélassical distributiorfisee Fig. €)] in view of its correspon-

interaction is switched on.

V. CLASSICAL ANALOG OF THE STRUCTURE
OF EIGENFUNCTIONS

An essential point is that both the structure of eigenstate

dence to the quantum SES. For this, let us examine in detail
characteristic time intervals of the plot BP(t) together with
plots of P2, P2, andv, see Figs. ®—7(d). From Fig. &a) it

is clear that the main contribution to the central peak of the
distribution W,(E°|E) comes from the continuous time in-

tervals whereE®~1. These intervals in turn correspond to

and the local density of states have well-defined cIassichﬁ~2 (the maximum valugeand to Pﬁ~0 [see Figs. )

analogs[29]. Let us first start with the SES. Sindg/
=(¥* ¢) as a function ofl is the projection of the per-

and 7c)]. During these time intervals the particle travels
almost parallel to the axis (u axis). In fact, from the plot of

turbed state onto the states of the unperturbed system, thet) [Fig. 7(d)] one can see that the particle hits only once

classical counterpart of{*=|C{*|? as a function of energg,
can be defined as tharojection of the total HamiltoniarH
onto the unperturbed ort¢®, whereH=H%+V, whereV is
the perturbation29]. This projection can be numerically

the bottom boundary during a relatively long time. The con-
tribution to the central peak can also be seen directly from
the expression&l8) and(19). Indeed, sinc@fwo, we have
E%(t)~3% P2~E=1.
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FIG. 6. (a) Energy of the unperturbed Hamiltoni&q(t) as a function of timéin arbitrary unit3 for E= 1. Note the intermittent structure
(from noiselike to stablelikein E°(t). (b) Classical distributioW(E°|E) constructed fronE%(t).
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t

FIG. 7. EnergyE® and Pﬁ, Pg, v as a function of timgin arbitrary unit$ on a short time scale after the substitution of a trajectory
¢(t) eH ontoH® for E=1.
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FIG. 8. The same as in Fig. 7 for a different time interval.

In the same way one can understand the origin of twaamics generated bi®=E® onto the HamiltoniarH =H?°

side-band peaks in the form &¥4(E°E), clearly seen in
Fig. 6(b). The data reported in Figs(#—8(d) show that for
small time intervals, e.g., 0.2£2<0.216 and 0.23&t
<0.234 the value oE® is practically constantE®~1.12 and
E°~0.88, respectively These values oE° correspond to
the right and left peaks in Fig.(6). Contrary to the data in
Fig. 6 explaining the origin of the central peak, in the two
time regions of Fig. 8 the value &2 is nearly zero and?
is nearly maximunjsee Figs. &) and 8c)]. In these regions
the motion of the particle is almost perpendicular to the
axis (u axis).

The form of the profileg(u) =cos() in our ripple channel

results in two periodic orbits of period 1: the stable one for

P,=0,u=0 and the unstable one fé¥,=0, u= 7. Putting
these values foP, andu into expression$l8) and(19), we
find the values foP2. This allows us to obtain the value of
HO for these two periodic orbitsE°=E(1+ €)2~1.12 and
E°=E(1—¢€)%~0.88, respectively foru=0 and u=n.
Thus, the left(right) peak of the distributionV(E°|E) is
formed by trajectories dwelling near the unstafsigble pe-
riodic orbits of period 1.

VI. CLASSICAL ANALOG OF THE LDOS

+V. Here, becausk? is integrable, severdtegulan trajec-
tories ofH? have to be substituted inte and then averaged
in time, in contrast with the classical SES where only one
(chaotig trajectory over a sufficiently long time is needed to
form the distribution. The result of this procedure is exem-
plified in Fig. 9a) whereE(t) is shown for 36 regular tra-
jectories, whose initial conditions were chosen to lie on a
mesh of points distributed uniformily in the planB(,u) (v

is fixed andP,, is determined by the constant enefg}=1).
The classical LDOS distributiom(E|E®), see Fig. &),
was obtained fronE(t) [Fig. ¥a)].

In the construction of Fig. (@), six initial conditions foru
(taken from the interval—r, 7r]) were used for each of the
six initial values ofP, [from the interval ¢ 2E°,2E?)].
Hence the appearance of six similar sets formed by six small
time intervals. The very first time intervgl0, 0.25) yields
E=1 and is produced by a trajectory with initial condition
P,=—v2 andu= -, i.e., a grazing trajectory. The next
interval [0.25, 0.3, a bar-code-like structure extending over
the whole energy shell, is produced by the initial condition
P,=—0.6V/2, u= —, and the third interva]0.5, 0.79, the
noiselike one, is produced by the initial conditid®,=

In analogy with the quantum LDOS, the classical LDOS—0.2/2, u=— . The next three intervals are produced by

distribution wq(E|E®) is constructed by projecting the dy-

mirror initial conditions(P,=0.2v2 0.6v2, and <v2 with u
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FIG. 9. () EnergyE(t) of the full HamiltonianH as a function of timg(in arbitrary unit$ after the substitution of 36 trajectories
¢°(t) e H® onto H for E°=1. (b) Corresponding classical LDO&(E|E®) constructed fronE(t). Note that each trajectory contributes in
a different way to the classical distribution as can be seen in F&y, @r details see the text.

=—q). The initial conditions for the next sets are the same AID=(BID)(7/N)=2mh . (22)
as for the first set, exceptis shifted subsequently byn25.

Any trajectory reveals one of these three types of behavior oHere we only need to know the number of the eigengiase
E(t); E=1, bar-code-like, and noiselike structure. The aver-opposed to the energyo determine the ratia\ /D.

aging over these time intervals yields the distribution shown  Figure 10 showsw/* for four representative statesy
in Fig. 9b) quite different from the classical SEEig. 6 =111, 712, 1362, and 20D2f different energy regions as a
although it also has the central peak and two other peaks oginction of the unperturbed enerds? scaled toE®. The

each side. classical SES is also shown. As it may be expected, these
figures show that ad .4 becomes smaller, the number of
VII. QUANTUM-CLASSICAL CORRESPONDENCE: unperturbed states needed to form the perturbed state in-

GLOBAL PROPERTIES creases. Specifically, level states around111 are still far
from the semiclassical regime\(D~0.17); the details of
the rippled boundary cannot be resolved and, thus, there is

. . . . 0
turelsE EE tthggSS'cal d'Str'bu“onWC'gr']E IE) iﬁEﬂ? and only a weak mixing of the unperturbed states. In contrast, for
wq(E[E7) ( ), we now compare them wi € COITe" the statew=2002 its de Broglie wavelength is a smaller

sponding quantum quantities. Although the SES for a giVe'?raction of the width of the channelA(D~0.04) and the
a, see Eq(20), is actually the average over a set of perturbednurnber of participating components is larger.

states in the neighborhood @i, it is convenient, first, to It is important to note that although the number of unper-

examine typicaindividual states in different energy Tegions v, rheq states needed to construct the perturbed state increases
[31]. In order to compare the quantum and classical behaviot;

. . . as the energy increases, they all fall within the range of en-
we use the quantum energy of interBgt(whereE, is E“ in 9y y 9

. ergies determined by the classical distribution. This range
the case of SES arig} in the case of LDOSto construct the  yefines theenergy shelbf the eigenstate under consideration.

classical distributionsEq = Eg). The ratio of the de Broglie G the other hand, it is clear that even the lexet 2002
wavelengthA =2y 7/2meE to some characteristic length oes not seem to have much of a resemblance with the clas-
of the billiard may be used as a semiclassical parameter sjcq) distribution. For this and similar states, we have calcu-
call that there are two length parameters defining the flafateq the distribution of fluctuations around the classical
channel,D andB; in this work we have use®=B). For  ¢yrve and found that they deviate strongly from a Gaussian
example A/D =2mfi <1, wherefies=7i/DV2mMcE, tells us  distribution as predicted by RMT consideratiof&l]. This
how large the energy of the eigenstate should be for its wavenay be related to the fact that the de Broglie wavelength of
length to be many times smaller than the width of the chantevel 2002 is still not much smaller than the amplitudlef

nel. Substitution of  Weyl's formula N(E) the ripple (A/A~0.66, recallA/D=0.06. That is, even
=(BDmy/27#?)E into the above expression for gives a  though A/D may be small, a more relevant parameter to
more useful formula, characterize the semiclassical regime for particular eigen-

Having understood the dynamical origin of the main fea-
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FIG. 10. Individual eigenfunctions( in the energy representation and the classical distribMig(E®|E) (thick curve as a function of
the energyEP/E‘* for a=(a) 111,(b) 712,(c) 1362, andd) 2002. The effective Planck constai is (a) 0.027,(b) 0.011,(c) 0.008, and
(d) 0.006, respectively. The entropy localization lengdlefined in Sec. VIl 1, is (a) 23.6,(b) 158.9,(c) 483.6, and(d) 709.

states isA/A. Nevertheless the strong fluctuations exempli-Fig. 11), we analyze the structure afidividual eigenfunc-
fied by the levela=2002[Fig. 10d)] can be smoothed out tions. In Fig. 13 three consecutive typical eigenfuncti¢ms
by averaging over a range of perturbed states. This actually:1952, 1953, and 1954re shown. The difference between
corresponds to the definitioi20) of the structure of eigen- the statea=1954 and the other two is clearly qualitative.
statesW(Ey|E“). More specifically, while the statea=1952 and 1953 are

Remarkably, as Fig. 11 shows, such an average does rgsiendedin energy states, constituted by practically all un-
veal a good quantum-classical correspondence even thou rturbed eigenstates within the energy shell, the state

the fluctuations are strong. Specifically, the global shape of

the quantum SES displays a three-peak structure, much like 1954 is mostly unperturbed; it is extremétgalizedin the

the classical one. In addition, the energy spread of the quargnerdy shell. By neglecting all small amplitude components
tum SES agrees very well with the classically determinedfurrounding the main componefgee Fig. 1&)], we can
energy shell, even in its slight asymmeti.7<E°<1.45 determine the unperturbed state, defined by a(pajm that
with the center aE®=1). most closely resembles the perturbed state. We find that this

Similarly, in Fig. 12 we compare the quantum and classi-2lways corresponds to the lowest values of the transversal
cal LDOS. The quantum-classical correspondence appears modem. This fact can be understood by the following physi-
be even better than for the SES in the sense that the fluctuaal argument. Consider an eigenstate of the flat channel
tions are smaller. #9 n(X,Y)sinmaY/D)exp(KX)  with  energy E°
= (h2/2me) (KZ+K?), whereK,=mm/D=2m/A,. Turning
on the perturbatioriflat to rippled channglwill affect the

To understand the origin and importance of the strondligh energy unperturbed states differently depending mainly
fluctuations of the SES around the classical counterjgag  on the value ofA, . For example, fom=1, the ratioA /A is

VIIl. LOCALIZATION AND NONERGODICITY
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2D/A~33, which is so large that the state cannot “see” the~0.5), that the rippled boundary produces a strong mixing
ripple and thus will remain essentially unperturbed. In con-of unperturbed levels. The resulting perturbed state will con-
trast, for unperturbed states with the sarfoe about the sist of many components, extended over the energy shell. By
same¢ energy but with large values ofm (say, m=62 the same token, it is expected that unperturbed states with
=Mpaxand correspondingly smakl) their A is sufficiently  intermediate values ah will turn, after turning on the per-
small, compared to the amplitude of the ripplé (A turbation, into some intermediate states, the so-called sparse
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states[32], made up of fewer components over the energynumber of components in an eigenstate. For example, the
shell. eigenstates of Fig. 13 have, respectivély=745.9, 232.9,

The existence of the extremely localizéd energy states  and 2.7.
manifests itself in the structure of the Hamiltonian matrix ~ The second quantitl, , which gives another measure of
H, . in the channel representatigfig. 2) to be discussed the effective number of components in an eigenstate, is ex-
below. It is easy to find that such wave functions differ only pressed via th@nverse participation ratioP,
slightly from the plane Wavesﬁ%’n(x,y) with small m,
proper of the flat channel. In Fig. (@ one localized(in
energy state is shown in configuration representation. In
contrast, an extende@n energy state is presented in Fig.
14(b). with
Eigenfunctions like that of Fig. 1B) for «=1953 are
somewhat intermediate between the extended and localized N
states. P=> (w2 (26)
In order to characterize quantitatively the eigenfunctions, =1

we compute various localization measures. The first one is _ _ .
the so-callecentropy localization lengthyd, :/_vhgrePGOEms is chosen in order to géf,=N in the GOE-
imit case.

ly=exf — (H—Hgop) ]~2.08 exp— H). (23 The above two definitions of “localization lengths” are
the most frequently used when describing global structure of
HereH stands for the Shannon entropy of an eigenstate in gigenfunctions. One should note that these quantities give an
given basis, effective number of large components, independently on the
location of these components in the unperturbed basis.
N Additional information about the structure of eigenfunc-
HZE Wi Inwy', (24)  tions can be obtained from the “width” or mean square root
=1 |, of an eigenstate, computed as

P 3
CSI B (25)

=75 |75

ipr

andHgoe is the entropy of a completely chaotic state, which N U2
is characterized by Gaussian fluctuatidfar N— o) of all | = a 2

= wi[l=n 2
component|* with the same varianc@wy;") = 1/N. The lat- 7 21 i1~ nela)] @
ter property occurs for completely random matrices belong-
ing to a Gaussian orthogonal ensemb@®OE). Defined in  wheren.=%,lw{* determines the centroid of an eigenstate in
this way, the quantityy gives a measure of the effective the unperturbed basis.
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FIG. 14. Left: A localized and an extended eigenfunction in the basis representatim for 2082 (extremely localized state with
correspondingn=2), (b) «=2083. Right: The same eigenfunctions in configuration representations.

To get a complete panorama, in Figs(d515c) we plot  let us take a closer look & in the range 145€1<2100 and
these three measures as a functiom@orresponding to the examine the structure shown in Fig. 17 in detail. Specifically,
eigenstate|a). The strong fluctuations of all localization we choose some eigenstates from three branches of points
measures are evident in these figures. We can see that neigbee marked states in Fig.)1From each of these three sets,
boring high levels may have drastically different localizationwe take the 1st, 7th, 13th, and 19th states counted from the
measures, in agreement with the discussion above about tihettom of the figure and plot them in Fig. 18. Inspection of
existence of the three types of states: localized, extendedigs. 18a)—18(c) clearly demonstrates that there is a kind of
and sparse. These figures give us information about the relaegularity in the structure of the LDOS: the same type of
tive number of each type to be found in a given energystates appear repeatedly, almost periodically as a function of
range. the basis number These figures show the repetition of ex-

Comparison of the width , with 1, andl;, gives the tremely localized statgd-ig. 18a)] and of states with differ-
possibility to detect the so-callesparsityof eigenstates. In- ent degrees of sparsiffigs. 18b)—18d)]. The repetition of
deed, small values of the ratig /I, (or I, /1) indicate that extended states, corresponding to larger vauds afre not
there are many “holes” in the structure of eigenstates, thereshown for economy of space but their existence is clear, as
fore, such eigenstates asparse[32]. A detailed analysis can be inferred by extrapolating the branches of Fig. 17 to
shows a dominance of sparsed eigenstates. As for the cehigher values of .. The physical origin of all these types of

troid n.= «, small fluctuationgobserved in Fig. 1&)] indi- stateqlocalized, sparse, and extendl@cas explained above,
cate that the interaction strengthis relatively weak, com- and their appearance can be decoded by examining the struc-
pared to the unperturbed padt . ture of the “channel representation” of the Hamiltonian ma-

The data of Fig. 15 show the existence of some pattern fotrix (Fig. 2). A detailed inspection of this matrfsee also Eq.
all localization measures, visible as clusters of points in thé€26) of Ref. [10]] shows that the coupling between unper-
lower part of the plots. These patterns are much more proturbed states depends strongly on the values of the ingex
nounced for the same quantities computed for the LDOS, selabeling the transversal modes of the flat billiard. An unper-
Fig. 16. In order to understand this unexpected phenomenotyrbed state specified by a large valuenoflan m close to
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FIG. 15. Localization measures for eigenfunctions dependent fam exactath eigenstatega) Entropy localization lengthy,, (b) Iy
defined through the inverse participation rafi), the mean square robf, and(d) the centroidn,..

Mma=62) couples strongly to several other unperturbeddetailed inspection shows that for the unperturbed stalies
states. In contrast, a state wit=1 has practically no cou- agonal matrix elemenisthe coupling with other unperturbed
pling to other states. In particular, the extremely localizedstates depends on the value of the indexvhich labels the
states, corresponding to the first position on the left line ofnumber of transversal modes in the billigsee Eqs(11)
each branch of Fig. 17, occur because of the negligible couand(12)]. An unperturbed state specified by a largganm
pling of the diagonal elements of the, |, matrix with m  close toM,,,,=62, for anyn) shows a strong coupling to
=1, the states on the second position of each branch occgeveral other unperturbed states. In contrast, a staterwith
for m=3, and so on wittm odd. Similarly, states on the right =1 (for anyn) shows practically no coupling to other states.
side of the branches result from elements oflthg: matrix We can see then that the extremely localized states, cor-
with even values ofn. responding to the first position on the left-hand side of each

~ This structure is expected to prevail at all energy rangeget of points in Fig. 16, occur because of the negligible cou-
since in any sufficiently large range of energies there ar®ling of the diagonal elements of tHeé, |, matrix with m

unperturbed states with all values of in [1Mpa]- Even  _q “gimijarly, the states on the second position the left-

deep in the semiclassical regime, extremely localized an and side occur whenm=3, and so on with oddn. States
sparse stgtes will appear but less and less frequently smcet fi the right-hand side of e:ach set of points result from ele-
energy differences between states of the same type increase

with energy. Consequently, the strong fluctuations appearingents of thet » matrix with even values of. This struc-
in the SES and LDOS distributior&igs. 11 and 1P will re prevails for all energies due to the existence of unper-
tend to disappear dy—0 ' turbed m=1 states. However, the intervals between the
In the definitions of SES and LDOS, the averages weréccurrence om=1 unperturb'ed states i'nc're.ase as the energy
performed over the appropriate range of energy in order t§1Créases. Eyen as the se'mlclassmal limit is approachgd, ex-
take into account once all the various types of stékégs. tremely localized states will appear, except that they will be
10 and 11 were calculated this way less and less frequent. Consequently the strong fluctuations
We can understand the origin of this type of regular strucappearing in the SES and LDOS distributidifégs. 10 and
ture by analyzing the Hamiltonian matri; ., see Fig. 2. A 11) will tend to disappear.
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FIG. 18. Structure of individual LDOS marked in Fig. 17. One can see the similarity in the structure of the LDOS taken from different
sets, but with the same values|gf.

IX. CONCLUDING REMARKS markably well with the global shapes of the quantum quan-
gties. This correspondence enabled us to explain the main
motion of an electron in a periodic billiard was analyzed in eat“TeS of the SES and LDOS in te_rr_ns of the underlying
terms of the classical analog of the SES and LDOS. classical motion of the system. Specifically, we found that

To construct the classical counterparts of the LDOS an&lassical unstable and stable_periodic orbits of period 1_give
SES, we first changeévia a canonical transformatiprio ~ "S€ to the two pronounced side-band peaks observed in the

some new curvilinear coordinates, where the new HamilSES and LDOS.
tonian incorporated the effects of the boundary into an effec- On the other hand, we found that the statistical properties
tive interaction potential. Then the original system of a freeof eigenstates and individual LDOS differ qualitatively from
particle colliding within a 2D rippled channel becomes those prescribed by the standard random matrix theory.
equivalent to a 1D model of two interacting “particles,” Namely, in the case of strong chaos and deep in the semi-
identified with the new coordinates. This procedure allowedlassical regionhigh energy, one expects the components
us to study the chaotic properties of this system using toolsf individual eigenstates to fluctuate in a statistically inde-
developed recently to analyze the role that interactions beggendent way around the mean, the envelope of the SES in
tween particles play in the onset of quantum chaos. Thishe unperturbed energy basis. This expectation was con-
example is quite instructive since it shows the connectiorfirmed when studying the structure of eigenstates of complex
between “one-body chaos,” which is due to an external po-atoms and nuclei in the mean-field bal34,35. In contrast,
tential (or boundary conditions and “two-body chaos,” we have found that in our present model the deviations turn
which results entirely from the interaction between particlesout to be extremely strong and not fully statistically indepen-
So far, these two mechanisms for producing chaos have beatent.
treated completely independently. In connection with this, a detailed analysis revealed quite
Using this approach, we found that in the case of stronginexpected regularities in localization measuggh as the
chaos, the classical analogs of SES and LDOS agreed réverse participation ratjocharacterizing the eigenstates and

The quantum-classical correspondence for the chaoti
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individual LDOS. We remark that these regularities do notinteraction, the ergodicity of an eigenstate means that this

disappear as energy increases. In particular, even for highigenstate fills the whole energy shell with rand@@auss-

energies, one can find eigenstates that are strongly localizedn) fluctuations of its components around the smooth energy

in the unperturbed energy representatiae., slightly per- dependence defined by the classical SES.

turbed plane wav@sThis occurs because energy is not the Naturally, with an increase of the energy, thelative

only semiclassical parameter in a 2D electron waveguidenumber of localizedin the energy shelleigenstates tends to

Clearly, two unperturbed states of simil@r equa) energy  zero. In this sense, there is no contradiction with the onset of

values but different transverse mode numbers will react difquantum ergodicity in the classical limit. However, this limit

ferently to a small perturbation. That is, in contrast to high-turns out to be achieved very slowly. Therefore, we remark

mode unperturbed states, the transverse wavelefgtfor  that from a physical point of view, it is important to further

low-mode states can be many times larger than the amplitudibe study of the statistical properties of eigenstates in the

of the perturbation and hence will remain essentially unperdeep semiclassical regime, which may be different from

turbed. those in the strictly classical limi¢z =0, a mathematical
Thus, for any value of energequivalently, for any small concep}t.

value of #), there arenon-ergodic stateslt should be

stressed that here we are d.iscussing the ergodicity.in the ACKNOWLEDGMENT
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