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Periodic chaotic billiards: Quantum-classical correspondence in energy space

G. A. Luna-Acosta, J. A. Me´ndez-Bermu´dez, and F. M. Izrailev
Instituto de Fı´sica, Universidad Auto´noma de Puebla, Apartado Postal J-48, Puebla 72570, Mexico

~Received 13 April 2001; published 20 August 2001!

We investigate the properties of eigenstates and local density of states~LDOS! for a periodic two-
dimensional rippled billiard, focusing on their quantum-classical correspondence in energy representation. To
construct the classical counterparts of LDOS and the structure of eigenstates~SES!, the effects of the boundary
are first incorporated~via a canonical transformation! into an effective potential, rendering the one-particle
motion in the 2D rippled billiard equivalent to that of two interacting particles in 1D geometry. We show that
classical counterparts of SES and LDOS in the case of strong chaotic motion reveal quite a good correspon-
dence with the quantum quantities. We also show that the main features of the SES and LDOS can be explained
in terms of the underlying classical dynamics, in particular, of certain periodic orbits. On the other hand,
statistical properties of eigenstates and LDOS turn out to be different from those prescribed by random matrix
theory. We discuss the quantum effects responsible for the nonergodic character of the eigenstates and indi-
vidual LDOS that seem to be generic for this type of billiards with a large number of transverse channels.
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I. INTRODUCTION

The goal of this study is to deepen our understanding
the quantum-classical correspondence for chaotic system
analyzing the properties of eigenstates and local densit
states~LDOS! in the energy representation. This approa
has already been successfully applied to models of two
teracting particles@1–3# and to a three orbital schematic she
model @4#. In this paper we extend this approach to chao
periodic billiards by incorporating the effects of the boun
aries into the Hamiltonian operator and treating the degr
of freedom as independent ‘‘particles.’’ Some results of t
work were advanced in@5#.

The outline of the paper is as follows. Section II prese
some basic features of the classical dynamics of the ripp
billiard, together with the necessary details of its quant
description. In Sec. III the classical representation of
model is given. In Sec. IV we discuss the meaning of
structure of eigenstates~SES! and LDOS, and in Secs. V an
VII we define their classical counterparts. In Sec. VII w
compare the quantum and classical SES and LDOS. Sec
VIII pertains to the individual properties of eigenstates a
LDOS. In Sec. IX we make some concluding remarks.

II. DESCRIPTION OF THE MODEL

The system that we shall use to explore the quantu
classical correspondence is a two-dimensional~2D! billiard
with periodic boundary conditions along the longitudinal c
ordinatex. The top profile is given by the functiony5d
1aj(x) with j(x12p)5j(x), wherea is the amplitude of
the ripple andd is the width of the billiard whena is zero.
The bottom boundary is flat~see Fig. 1!.

The first studies of the classical dynamics of this syst
were performed in Ref.@6# in connection with the beam
beam interaction problem~see also@7#!. More recently, the
finite length version of this system was analyzed in Ref.@8#
as a model of a mesoscopic electron waveguide, whe
transport signature of chaos in the behavior of resistivity w
1063-651X/2001/64~3!/036206~18!/$20.00 64 0362
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established. The same model has been also used@9# to study
certain quantumtransport properties through ballistic cav
ties. On the other hand, the analysis of the band-energy s
trum for aninfinitely long rippled channel@10# in the cases of
mixed and global classical chaos provides insight into
universal features of electronic band structures of real c
tals @11#. In Ref. @12# a similar periodic billiard was consid
ered in connection with the problem of chaotic diffusion
the systems with band spectra, see also Refs.@13,14#.

An attractive feature of this rippled channel is that
classical phase space undergoes the generic transition to
bal chaos as the ripple amplitudea increases. Hence result
obtained for this particular system are expected to be ap
cable to a large class of systems, namely, nondegene
nonintegrable Hamiltonians.

In the quantum description the model is given by t
Hamiltonian

Ĥ5
1

2me
~ P̂x

21 P̂y
2!52

\2

2me
~]x

21]y
2! ~1!

for the wave functionC(x,y) obeying the boundary condi
tionsC(x,y)50 at y50 andd1aj(x). There exist various
numerical methods that can be used to obtain the eigenva
and eigenfunctions of nonintegrable billiards, such as
transfer matrix approach@15#, the scaling method@16#, and
the scattering approach@12#. Here we shall employ a differ-
ent technique that is tailored to explore the quantum-class
correspondence of the structure of eigenstates.

FIG. 1. Geometry of a rippled billiard.
©2001 The American Physical Society06-1
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consists of representing the Hamiltonian~1! in new coordi-
nates (u,v) in such a way that the effects of the boundary a
transferred to an effective interaction potential between
two degrees of freedom (u,v). That is, the coordinates (u,v)
are chosen so that the new wave function satisfies ‘‘fl
boundary conditions:C(u,v)50 at v50,d. For our rippled
channel, this can be accomplished by the transformation

u5x,

v5
yd

d1aj~x!
5

y

11ej~x!
, ~2!

where e[a/d is a measure of the perturbation due to t
ripple @17#. The Schro¨dinger equation in the new coordinate
can be obtained from the covariant expression for a part
moving ~in the absence of potentials! in a Riemannian
curved space@18#,

2
\2

2me
DcovC~u,v !5

\2

2me
g21/2]agabg1/2]bC~u,v !.

~3!

Here Dcov is the Laplace-Beltrami operator,g is the metric
andgab is the metric tensor. Even though Eq.~3! is still the
kinetic energy, the resulting differential equation takes
much more complicated form than the ordinary Laplaci
This is the price we have to pay when we transfer the eff
of the boundaries onto the operator@the explicit form of the
Schrödinger equation in (u,v) coordinates for the rippled
billiard is given in@10##. Moreover, the coordinate represe
tation of the canonical momentum has now the form@19#

P̂a52 i\@]a1 1
4 ]a ln~g!#52 i\g21/4]ag1/4. ~4!

Substitution of this expression into the Schro¨dinger equa-
tion ~3! determines the quantum Hamiltonian in covaria
form @19#,

Ĥ5
1

2me
g21/4P̂agabg1/2P̂bg21/4 a,b5u,v. ~5!

Substituting now the explicit expressions for the metric te
sor gab and metricg,

gab5S 1
2evju

11ej

2evju

11ej

11e2v2ju
2

~11ej!2

D , ~6!

g5Det~gab!5@11eju#2, ~7!

we get

Ĥ5
1

2me
g21/4H P̂u~11ej!P̂u1 P̂v

11e2v2ju
2

11ej
P̂v

2e@ P̂uvjuP̂v1 P̂vvjuP̂u#J g1/4, ~8!
03620
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whereju5dj/du. Note that the effects of the rippled bound
ary are fully incorporated into the Hamiltonian operato
Since the boundary conditions in the new coordinates co
spond to those of a ‘‘flat’’ channel,C(u,v)50 at v50,d.
For our purposes it is convenient now to separate the Ha
tonian ~8! as

Ĥ5Ĥ01V̂~u,v,P̂u ,P̂v!, ~9!

where

Ĥ05
1

2me
~ P̂u

21 P̂v
2! ~10!

with @cf. Eqs.~4! and ~7!#

P̂u52 i\F]u1
1

4
]u ln~g!G , P̂v5 i\]v , ~11!

and V̂ stands for the rest of the terms.
We remark that this representation allows us to treat

original model of one free particle in the rippled channel a
1D model of two interacting ‘‘particles’’ identified with the
two degrees of freedomu andv. HereH0 is the Hamiltonian
of two noninteracting particles. The eigenfunctions ofH0

define the unperturbed basis in which the eigenstates of
total HamiltonianĤ(u,v,P̂u ,P̂v) may be expanded. Such
representation turns out to be convenient for the study
chaotic properties of the model since one can use the t
and concepts developed in the theory of interacting partic
~see, for example,@20#!.

Since the Hamiltonian~8! is periodic inu, the eigenstates
are Bloch states. This allows us to write the solution of t
Schrödinger equation in the form CE(u,v)
5exp(iku)Fk(u,v) with Fk(u12p,v)5Fk(u,v). For an in-
finite periodic channel the Bloch wave vectork5k(E) takes
a continuous range of values, which we take to lie in the fi
Brillouin zone (2 1

2 <k< 1
2 ).

By expandingFk(u,v) in a double Fourier series theath
eigenstate of energyEa(k) can be written as

Ca~u,v;k!5 (
m51

`

(
n52`

`

Cmn
a ~k!fmn

k ~u,v !, ~12!

where

fmn
k ~u,v !5^u,vum,n&k

5p21/2g21/4sin~mpv/d!exp@ i ~k1n!u#

~13!

are the eigenstates of the unperturbed HamiltonianĤ0(u,v)
with corresponding eigenvalues

En,m
~0! ~k!5

\2

2me
F ~k1n!21S mp

d D 2G . ~14!

The factorp21/2g21/4 in Eq. ~13! appears from the orthonor
mality condition in the curvilinear coordinates (u,v). Thus,
the exact eigenstates are expanded in a complete ortho
6-2
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FIG. 2. Central part of the 403034030
Hamiltonian matrix Hl ,l 8(k): Nmax532 and
Mmax562. The 62362 blocks corresponding to
n, n850, 61, 62, 63 are shown.
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mal basis satisfying the boundary conditions of the proble
i.e., a Galerkin series expansion@21#.

So far, there has been no need to specify the ripple fu
tion j(x), except that it is periodic:j(x12p)5j(x). For
concreteness, we consider from now on the depende
j(x)5cos(x). The ripple profile is given byy5d1a cos(x)
wherex, y, d, anda are dimensionless quantities. The latt
are defined from the expressionY5D1A cos(2pX/B) scaled
to the period B. Therefore, x52pX/B, y52pY/B, d
52pD/B, and a52pA/B, where X, Y, D, A, and B are
dimensional quantities.

This approach to solving the Schro¨dinger equation was
used to calculate the energy-band structure and Husimi
tributions of the rippled channel@10#, and to obtain the en
ergy level statistics under the conditions of full and mix
chaos@22#. Specifically, in Ref.@22# the energy level spacing
distribution was shown to be Poisson, Wigner-Dyson, or
termediate between these two, for regular, globally chao
or mixed classical motion, respectively, in agreement w
the well-known RMT conjecture@23#. Most relevant to our
work here is the fact that these distributions were found to
the same for all values ofk within the Brillouin zone, except
k'0 for which the parity symmetry should be taken in
account. Thus, without loss of generality we fix the valuek
50.1. We shall also use in all our calculations the followi
values for the amplitudea and widthd of the rippled chan-
nel: a/2p50.06 andd/2p51.0. These values produce re
resentative global chaotic motion in the classical limit~see
below!.

In order to study the structure of eigenstates of the to
Hamiltonian Ĥ(u,v) one needs, first, to choose a way
ordering the unperturbed basis in which to represent
Hamiltonian matrix Hl ,l 8(k)5^ l uĤu l 8&k . Specifically, we
03620
,
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have to assign an indexl, labeling the basis stateu l &k
[um,n&k , to each pair of indicies~m, n! ~note that, although
the energy spectra is independent of the assignment (m,n)
→ l , the structure of the eigenstates is not!. The size of the
Hamiltonian matrix is determined by the maximum values
n andm:2Nmax<n<Nmax and 1<m<Mmax.

A natural assignment is the following one. Let us fix th
lowest value ofn (2Nmax) and sweep all values ofm (1
<m<Mmax). This gives l 51,2, . . . ,Mmax. Then do the
same for n52Nmax11, which gives Mmax11<l<2Mmax
and so on, till finally we have 1< l<Lmax, where Lmax
5(2Nmax11)Mmax defines the matrix size,Lmax3Lmax. This
rule results in a block structure of the Hamiltonian matr
with block size equal toMmax. Figure 2 shows the centra
part of a 403034030 matrix with (Nmax,Mmax)5(32,62).
Here we can see a number of blocks of size 62362 corre-
sponding ton,n850,61,62,63. In this representation the
matrix is clearly a band matrix. The finite size of the band
due to the short range coupling between different bloc
namely, the strength of the matrix elements decrease
e un2n8u, e un2n861u, or e un2n862u ~see details in@10#!.

The above way of ordering the unperturbed basis is ty
cal; it corresponds to the ‘‘channel representation’’ since
indexm labels a specific transverse channel~or mode! for the
propagation of the wave through the billiard, see Eq.~13!.
However, for our purposes it is essential to use the ‘‘ene
representation,’’ according to which the unperturbed basi
ordered in increasing energy,El 11

0 (k)>El
0(k). This defines

a new rulel→ l new5 l new(n,m). Figure 3 shows the differ-
ence between these two ways of ordering of the basis, giv
the normalized unperturbed energyĒl

0(k)[El
0(k)/E*

5(d/p)2(n1k)21m2 with E* [(\2/2me)(p
2/d2), as a

function of l.
6-3
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FIG. 3. ~a! Unperturbed en-
ergy spectra as a function ofl. ~b!
Unperturbed energy spectra o
dered in energy as a function o
l new.
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A nonmonotonic dependence of the energy occurs in F
3~a! because the first rulel (m,n) described above produce
minimum values in the energy form51. In contrast, in Fig.
3~b! a linear dependence of the unperturbed energy on
index l new is shown, apart from large values ofl new where the
finiteness of the matrix results in the distortion of the spec
The numerical obtained linear dependence,Ē[E/E*
03620
g.

e

.

5(4/p) l new, can be derived analytically from Weyl’s for
mula N̄(E)5SEma/2p\2, valid for 2D billiards with areaS
~also valid for periodic 2D billiards! @24#.

A crucial point is that the eigenstates of the total Ham
tonian in the ‘‘energy representation’’ have a very conveni
form for the analysis. The advantage of the ‘‘energy rep
sentation’’ is clearly seen in Fig. 4 where an arbitrarily ch
f

FIG. 4. Example of eigenfunc-
tions for different ways of order-
ing the unperturbed basis.~a! The
statea52122 as a function ofl,
~b! the same state as a function o
l new.
6-4
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PERIODIC CHAOTIC BILLIARDS: QUANTUM- . . . PHYSICAL REVIEW E 64 036206
sen eigenstate is given in the two representations. One
see that in one case the eigenstate has a kind of regula
extended structure, while in the other, the eigenstate is c
pressed around the unperturbed state whose energy is
to the energy of the perturbed state. In the latter case
may use a statistical approach to describe the global pro
ties of such eigenstates, see Refs.@20,25,26#. Specifically, we
may characterize such eigenstates by introducing an e
lope around which the components are expected to fluct
in a pseudorandom way. We stress that by using this en
ordering one can relate the global form of eigenstates in
energy representation with its classical counterpart, see
low.

III. CLASSICAL REPRESENTATION OF THE MODEL

Clearly, the type of motion of a particle in the ripple bi
liard depends on the values of the geometrical parame
namely, on the ripple amplitudea and the average widthd. If
the channel is narrow,d!2p, the Poincare´ section reveals a
large resonance island surrounded by the typical Poinc´-
Birkhoff structure@6,8,10#. This island is formed by the li-
brational motion along thex direction in the neighborhood o
x50. On the contrary, for wide channels (d>2p) global
chaos occurs even for small amplitudes due to a strong o
lap of resonances. In this work we shall limit ourselves to
study of global chaos, i.e., wide channels.

The condition of global chaos can be derived analytica
for the case of small amplitudea!d where the following
approximate map is valid@27#,

an115an12a sin~xn!,
~15!

xn115xn12d cot~an11! ~mod 2p!.

Here xn is the position of a particle andan is the angle
between thex axis and the velocity of the particle, right afte
thenth collision with the upper wall. The standard lineariz
tion around fixed points of period one yields

dan115dan1k sin~Dxn!,
~16!

Dxn115Dxn1dan11 ~mod 2p!, k[2da/p,

where the angleda and the positionDx, measured from the
fixed point, play the role of the action and angle variabl
respectively. Equation~16! has the form of thestandard map
with k as the nonlinear parameter. Hence, Chirikov’s ov
lapping criteria predicts the onset of global chaos fork.1.
This was confirmed by computing numerically the actu
path of the particle as it travels along the channel. Spe
cally, for k>1 the Poincare´ section (an ,xn) shows global
chaos for wide channels. In this paper we shall conside
wide channel with small ripple amplitude, specified by t
parameters (a/2p,d/2p)5(0.06,1.0), therefore,k'1.5.

Let us now write, as in the quantum description, the cl
sical Hamiltonian in the (u,v) coordinates so that the effec
of the rippled boundary can be incorporated as a kind
coupling between two degrees of freedom. The class
Hamiltonian is
03620
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H5
1

2me
gabPaPb , ~17!

which can be obtained from the quantum Hamiltonian~8! by
commuting all momenta and coordinates@28#.

For completeness, the canonical transformation betw
(x,y,Px ,Py) and (u,v,Pu ,Pv) are given by Eq.~2! together
with Pu5Px1yPy /(11ej) andPv5(11ej)Py . Inserting
the metric tensor equation~6! into Eq. ~17! and regrouping
terms, the Hamiltonian can be written asH5H01V, where

H05
1

2me
~Pu

21Pv
2! ~18!

and

V52
1

2me
eF2j1e~j21v2ju

2!

~11ej!2 Pv
21

2ju

11ej
PuPvG .

~19!

V represents the interaction between the two ‘‘particles’u
andv ~hereju5dj/du ande5a/d!.

IV. STRUCTURE OF EIGENSTATES AND LDOS:
DEFINITIONS

Once the matrixHl ,l 8(k) has been diagonalized, its eige
states Ca(k)5SCl

a(k)f l
k are also reordered in energy

Ea11>Ea. We adopt the convention that the greek super
dex ~latin subindex! denotes the exact~unperturbed! state.
The amplitudesCl

a(k) from the ‘‘state vector matrix.’’ The
elements along the rowa of this matrix are the component
of theath eigenstate in the representation of the unpertur
energy-ordered basis. Correspondingly, the elements a
the columnl give the unperturbed statel expanded in the
energy-ordered perturbed basis. For our purposes, we ex
ine the matrixwl

a[uCl
a(k)u2 ~see Fig. 5!, which plays the

central role in our approach.
The rows of the matrixwl

a show how a specific eigen
function~eigenstateua&! is expanded in the unperturbed bas
ul&. Since the average ‘‘bandwidth’’ ofwl

a smoothly depends
on the indexa ~equivalently on the energyEa!, it is conve-
nient to averagewl

a over a small range of eigenstates. In th
way, one can obtain the so-called SES in the unpertur
basis. In what follows, we are interested in the SES in
energy representation, which is defined as@29#

W~El
0uEa!5(

a8
w̄l

a8d~El
02Ea8!, ~20!

wherew̄l
a85wl

a8/N with N as the number of eigenstatesua8&
in the vicinity of a givena. The structure of eigenstate
W(El

0uEa) gives the dependence on the unperturbed ene
El

0 for eigenstates with total energy close toEa. This sum
can be approximated by an integral that involves the den
of statesr(Ea) providing the transition from the basis to th
energy representation. This function SES plays the key
in the determination of important physical quantities, such
6-5
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FIG. 5. Left upper part of the matrixwl
a cor-

responding toNmax532 andMmax562.
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the distribution of occupation numbers in chaotic closed s
tems~see, for example,@2,20,30#!.

Analogously, one can analyze the columns of the ma
wl

a , which give information about a givenunperturbedstate
ul& spanned overexact eigenstatesua&. Therefore, one can
define the following quantity

v~EauEl
0!5(

l 8
w̄l 8

a d~Ea2El 8
0

!, ~21!

which is well known in nuclear physics as thestrength func-
tion, and in solid state physics as the LDOS. In Eq.~21! the
summation~average! is done overN basisstatesu l 8& around
a fixed stateul&, w̄l 8

a
5wl 8

a /N. Therefore, this quantity is con
sidered as a function of the energyEa. It shows how a given
unperturbed stateuf l& is coupled to the exact states due
the interactionV. The width of this function~spreading
width! determines the energy range associated with the ‘
cay’’ of a given unperturbed state into other states when
interaction is switched on.

V. CLASSICAL ANALOG OF THE STRUCTURE
OF EIGENFUNCTIONS

An essential point is that both the structure of eigensta
and the local density of states have well-defined class
analogs @29#. Let us first start with the SES. SinceCl

a

5^Cauf l& as a function ofl is the projection of the per-
turbed state onto the states of the unperturbed system
classical counterpart ofwl

a5uCl
au2 as a function of energyEl

can be defined as theprojection of the total HamiltonianH
onto the unperturbed oneH0, whereH5H01V, whereV is
the perturbation@29#. This projection can be numericall
03620
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-
e
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the

done by substituting the trajectories F(t)
[„x(t),y(t),px(t),py(t)… generated by the HamiltonianH
with energyE onto the unperturbed HamiltonianH0. Since
the unperturbed energyE0(t) along these trajectories varie
in time, it fills the so-calledenergy shellcharacterized by its
width DE. Therefore, for chaotic total HamiltoniansH, the
classical analogWcl(E

0uE) of the quantum SES can be easi
obtained fromE0(t).

In Fig. 6~a! we show the energy of the unperturbe
HamiltonianH0 as a function of time after the substitution o
a single chaotic trajectoryf(t) generated by the perturbe
HamiltonianH into H0. The classical distributionWcl(E

0uE)
@see Fig. 6~b!# is constructed fromE0(t), averaged over a
sufficiently long time. Alternatively, since the dynamics ofH
is chaotic, the same distribution can be obtained by ave
ing over many different orbits at a shorter time. For concre
ness, in what follows we choseE51.

It is important to understand the origin of the shape of
classical distribution@see Fig. 6~b!# in view of its correspon-
dence to the quantum SES. For this, let us examine in de
characteristic time intervals of the plot ofE0(t) together with
plots ofPu

2, Pv
2, andv, see Figs. 7~a!–7~d!. From Fig. 6~a! it

is clear that the main contribution to the central peak of
distribution Wcl(E

0uE) comes from the continuous time in
tervals whereE0'1. These intervals in turn correspond
Pu

2'2 ~the maximum value! and to Pu
2'0 @see Figs. 7~b!

and 7~c!#. During these time intervals the particle trave
almost parallel to thex axis ~u axis!. In fact, from the plot of
v(t) @Fig. 7~d!# one can see that the particle hits only on
the bottom boundary during a relatively long time. The co
tribution to the central peak can also be seen directly fr
the expressions~18! and~19!. Indeed, sincePv

2'0, we have
E0(t)' 1

2 Pu
2'E51.
6-6
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FIG. 6. ~a! Energy of the unperturbed HamiltonianE0(t) as a function of time~in arbitrary units! for E51. Note the intermittent structure
~from noiselike to stablelike! in E0(t). ~b! Classical distributionWcl(E

0uE) constructed fromE0(t).

FIG. 7. EnergyE0 and Pu
2, Pv

2, v as a function of time~in arbitrary units! on a short time scale after the substitution of a traject
f(t)PH onto H0 for E51.
036206-7



LUNA-ACOSTA, MÉNDEZ-BERMÚDEZ, AND IZRAILEV PHYSICAL REVIEW E 64 036206
FIG. 8. The same as in Fig. 7 for a different time interval.
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In the same way one can understand the origin of t
side-band peaks in the form ofWcl(E

0uE), clearly seen in
Fig. 6~b!. The data reported in Figs. 8~a!–8~d! show that for
small time intervals, e.g., 0.212,t,0.216 and 0.231,t
,0.234 the value ofE0 is practically constant~E0'1.12 and
E0'0.88, respectively!. These values ofE0 correspond to
the right and left peaks in Fig. 6~b!. Contrary to the data in
Fig. 6 explaining the origin of the central peak, in the tw
time regions of Fig. 8 the value ofPu

2 is nearly zero andPv
2

is nearly maximum@see Figs. 8~b! and 8~c!#. In these regions
the motion of the particle is almost perpendicular to thex
axis ~u axis!.

The form of the profilej(u)5cos(u) in our ripple channel
results in two periodic orbits of period 1: the stable one
Pu50, u50 and the unstable one forPu50, u5p. Putting
these values forPu andu into expressions~18! and~19!, we
find the values forPv

2. This allows us to obtain the value o
H0 for these two periodic orbits,E05E(11e)2'1.12 and
E05E(12e)2'0.88, respectively foru50 and u5p.
Thus, the left~right! peak of the distributionWcl(E

0uE) is
formed by trajectories dwelling near the unstable~stable! pe-
riodic orbits of period 1.

VI. CLASSICAL ANALOG OF THE LDOS

In analogy with the quantum LDOS, the classical LDO
distribution vcl(EuE0) is constructed by projecting the dy
03620
o

r

namics generated byH05E0 onto the HamiltonianH5H0

1V. Here, becauseH0 is integrable, several~regular! trajec-
tories ofH0 have to be substituted intoH and then averaged
in time, in contrast with the classical SES where only o
~chaotic! trajectory over a sufficiently long time is needed
form the distribution. The result of this procedure is exe
plified in Fig. 9~a! whereE(t) is shown for 36 regular tra-
jectories, whose initial conditions were chosen to lie on
mesh of points distributed uniformily in the plane (Pu ,u) ~v
is fixed andPv is determined by the constant energyE051!.
The classical LDOS distributionvcl(EuE0), see Fig. 9~b!,
was obtained fromE(t) @Fig. 9~a!#.

In the construction of Fig. 9~a!, six initial conditions foru
~taken from the interval@2p, p#! were used for each of the
six initial values ofPu @from the interval (2A2E0,A2E0)#.
Hence the appearance of six similar sets formed by six sm
time intervals. The very first time interval~@0, 0.25#! yields
E51 and is produced by a trajectory with initial condition
Pu*2& and u52p, i.e., a grazing trajectory. The nex
interval @0.25, 0.5#, a bar-code-like structure extending ov
the whole energy shell, is produced by the initial conditi
Pu520.6&, u52p, and the third interval@0.5, 0.75#, the
noiselike one, is produced by the initial conditionPu5
20.2&, u52p. The next three intervals are produced
mirror initial conditions~Pu50.2& 0.6&, and&& with u
6-8
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FIG. 9. ~a! EnergyE(t) of the full HamiltonianH as a function of time~in arbitrary units! after the substitution of 36 trajectorie
f0(t)PH0 ontoH for E051. ~b! Corresponding classical LDOSvcl(EuE0) constructed fromE(t). Note that each trajectory contributes
a different way to the classical distribution as can be seen in Fig. 9~a!, for details see the text.
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52p!. The initial conditions for the next sets are the sa
as for the first set, exceptu is shifted subsequently by 2p/5.
Any trajectory reveals one of these three types of behavio
E(t); E51, bar-code-like, and noiselike structure. The av
aging over these time intervals yields the distribution sho
in Fig. 9~b! quite different from the classical SES~Fig. 6!
although it also has the central peak and two other peak
each side.

VII. QUANTUM-CLASSICAL CORRESPONDENCE:
GLOBAL PROPERTIES

Having understood the dynamical origin of the main fe
tures of the classical distributionsWcl(E

0uE) ~SES! and
vcl(EuE0) ~LDOS!, we now compare them with the corre
sponding quantum quantities. Although the SES for a giv
a, see Eq.~20!, is actually the average over a set of perturb
states in the neighborhood ofa, it is convenient, first, to
examine typicalindividual states in different energy region
@31#. In order to compare the quantum and classical behav
we use the quantum energy of interestEq ~whereEq is Ea in
the case of SES andEl

0 in the case of LDOS! to construct the
classical distributions (Ecl5Eq). The ratio of the de Broglie
wavelengthL52pA\2/2meE to some characteristic lengt
of the billiard may be used as a semiclassical parameter~re-
call that there are two length parameters defining the
channel,D and B; in this work we have usedD5B!. For
example,L/D52p\eff!1, where\eff[\/DA2meE, tells us
how large the energy of the eigenstate should be for its wa
length to be many times smaller than the width of the ch
nel. Substitution of Weyl’s formula N̄(E)
5(BDme/2p\2)E into the above expression forL gives a
more useful formula,
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L/D5A~B/D !~p/N!52p\eff . ~22!

Here we only need to know the number of the eigenstate~as
opposed to the energy! to determine the ratioL/D.

Figure 10 showswl
a for four representative states~a

5111, 712, 1362, and 2002! of different energy regions as
function of the unperturbed energyEl

0 scaled toEa. The
classical SES is also shown. As it may be expected, th
figures show that as\eff becomes smaller, the number o
unperturbed states needed to form the perturbed state
creases. Specifically, level states arounda5111 are still far
from the semiclassical regime (L/D'0.17); the details of
the rippled boundary cannot be resolved and, thus, ther
only a weak mixing of the unperturbed states. In contrast,
the statea52002 its de Broglie wavelength is a small
fraction of the width of the channel (L/D'0.04) and the
number of participating components is larger.

It is important to note that although the number of unp
turbed states needed to construct the perturbed state incr
as the energy increases, they all fall within the range of
ergies determined by the classical distribution. This ran
defines theenergy shellof the eigenstate under consideratio
On the other hand, it is clear that even the levela52002
does not seem to have much of a resemblance with the c
sical distribution. For this and similar states, we have cal
lated the distribution of fluctuations around the classi
curve and found that they deviate strongly from a Gauss
distribution as predicted by RMT considerations@31#. This
may be related to the fact that the de Broglie wavelength
level 2002 is still not much smaller than the amplitudeA of
the ripple ~L/A'0.66, recall A/D50.06!. That is, even
though L/D may be small, a more relevant parameter
characterize the semiclassical regime for particular eig
6-9
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FIG. 10. Individual eigenfunctionswl
a in the energy representation and the classical distributionWcl(E

0uE) ~thick curve! as a function of
the energyEl

0/Ea for a5(a) 111,~b! 712, ~c! 1362, and~d! 2002. The effective Planck constant\eff is ~a! 0.027,~b! 0.011,~c! 0.008, and
~d! 0.006, respectively. The entropy localization length~defined in Sec. VIII! l H is ~a! 23.6, ~b! 158.9,~c! 483.6, and~d! 709.
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states isL/A. Nevertheless the strong fluctuations exemp
fied by the levela52002 @Fig. 10~d!# can be smoothed ou
by averaging over a range of perturbed states. This actu
corresponds to the definition~20! of the structure of eigen
statesW(El

0uEa).
Remarkably, as Fig. 11 shows, such an average doe

veal a good quantum-classical correspondence even th
the fluctuations are strong. Specifically, the global shape
the quantum SES displays a three-peak structure, much
the classical one. In addition, the energy spread of the qu
tum SES agrees very well with the classically determin
energy shell, even in its slight asymmetry~0.7,E0,1.45
with the center atE051!.

Similarly, in Fig. 12 we compare the quantum and clas
cal LDOS. The quantum-classical correspondence appea
be even better than for the SES in the sense that the fluc
tions are smaller.

VIII. LOCALIZATION AND NONERGODICITY

To understand the origin and importance of the stro
fluctuations of the SES around the classical counterpart~see
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Fig. 11!, we analyze the structure ofindividual eigenfunc-
tions. In Fig. 13 three consecutive typical eigenfunctions~a
51952, 1953, and 1954! are shown. The difference betwee
the statea51954 and the other two is clearly qualitativ
More specifically, while the statesa51952 and 1953 are
extended~in energy! states, constituted by practically all un
perturbed eigenstates within the energy shell, the stata
51954 is mostly unperturbed; it is extremelylocalizedin the
energy shell. By neglecting all small amplitude compone
surrounding the main component@see Fig. 13~c!#, we can
determine the unperturbed state, defined by a pair~m, n! that
most closely resembles the perturbed state. We find that
always corresponds to the lowest values of the transve
modem. This fact can be understood by the following phys
cal argument. Consider an eigenstate of the flat chan
fm,n

0 (X,Y)}sin(mpY/D)exp(iKX) with energy E0

5(\2/2me)(Kx
21Ky

2), whereKy5mp/D52p/Ly . Turning
on the perturbation~flat to rippled channel! will affect the
high energy unperturbed states differently depending ma
on the value ofLy . For example, form51, the ratioLy /A is
6-10
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FIG. 11. Structure of eigen-
states~SES! in the energy repre-
sentationW(El

0uEa) and its classi-
cal counterpartWcl(E

0uE) ~thick
curve!. The average for the SES i
taken over the interval 1880,a
,2025.
he
n

ing
on-
. By
with

arse
2D/A'33, which is so large that the state cannot ‘‘see’’ t
ripple and thus will remain essentially unperturbed. In co
trast, for unperturbed states with the same~or about the
same! energy but with large values ofm ~say, m562
5Mmax and correspondingly smallkx! theirLy is sufficiently
small, compared to the amplitude of the ripple (Ly /A
03620
-
'0.5), that the rippled boundary produces a strong mix
of unperturbed levels. The resulting perturbed state will c
sist of many components, extended over the energy shell
the same token, it is expected that unperturbed states
intermediate values ofm will turn, after turning on the per-
turbation, into some intermediate states, the so-called sp
l

FIG. 12. LDOSv(EauEl
0) and

its classical counterpartvcl(EuE0)
~thick curve!. For the LDOS the
average is taken over the interva
1900, l ,2000.
6-11
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FIG. 13. Typical high energy
eigenfunctions for~a! a51952,
~b! a51953, and ~c! a51954.
The localization measures~de-
fined below! are ~a! l H5745.9,
l ipr5529.7; ~b! l H5232.9, l ipr

545.4; and~c! l H52.7, l ipr53.2.
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states@32#, made up of fewer components over the ene
shell.

The existence of the extremely localized~in energy! states
manifests itself in the structure of the Hamiltonian mat
Hl ,l 8 in the channel representation~Fig. 2! to be discussed
below. It is easy to find that such wave functions differ on
slightly from the plane wavesfm,n

0 (x,y) with small m,
proper of the flat channel. In Fig. 14~a! one localized~in
energy! state is shown in configuration representation.
contrast, an extended~in energy! state is presented in Fig
14~b!.

Eigenfunctions like that of Fig. 13~b! for a51953 are
somewhat intermediate between the extended and loca
states.

In order to characterize quantitatively the eigenfunctio
we compute various localization measures. The first on
the so-calledentropy localization length lH ,

l H5exp@2~H2HGOE!#'2.08 exp~2H!. ~23!

HereH stands for the Shannon entropy of an eigenstate
given basis,

H5(
i 51

N

wl
a ln wl

a , ~24!

andHGOE is the entropy of a completely chaotic state, whi
is characterized by Gaussian fluctuations~for N→`! of all
componentsCl

a with the same variancêwl
a&51/N. The lat-

ter property occurs for completely random matrices belo
ing to a Gaussian orthogonal ensemble~GOE!. Defined in
this way, the quantityl H gives a measure of the effectiv
03620
y

ed

,
is

a

-

number of components in an eigenstate. For example,
eigenstates of Fig. 13 have, respectively,l H5745.9, 232.9,
and 2.7.

The second quantityl ipr , which gives another measure o
the effective number of components in an eigenstate, is
pressed via theinverse participation ratioP,

l ipr5FPGOE

P G' 3

P ~25!

with

P5(
l 51

N

~wl
a!2 ~26!

wherePGOE'3 is chosen in order to getl ipr5N in the GOE-
limit case.

The above two definitions of ‘‘localization lengths’’ ar
the most frequently used when describing global structure
eigenfunctions. One should note that these quantities giv
effective number of large components, independently on
location of these components in the unperturbed basis.

Additional information about the structure of eigenfun
tions can be obtained from the ‘‘width’’ or mean square ro
l s of an eigenstate, computed as

l s5H (
l 51

N

wl
a@ l 2nc~a!#2J 1/2

~27!

wherenc5( l lwl
a determines the centroid of an eigenstate

the unperturbed basis.
6-12
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FIG. 14. Left: A localized and an extended eigenfunction in the basis representation for~a! a52082 ~extremely localized state with
correspondingm52!, ~b! a52083. Right: The same eigenfunctions in configuration representations.
n
ei
on
t
de
re
rg

re

ce

f
th
r
s
no

lly,
oints
s,
the
of
of
of
n of
x-

, as
to

f
,
truc-
a-

r-
x
er-
To get a complete panorama, in Figs. 15~a!–15~c! we plot
these three measures as a function ofa corresponding to the
eigenstateua&. The strong fluctuations of all localizatio
measures are evident in these figures. We can see that n
boring high levels may have drastically different localizati
measures, in agreement with the discussion above abou
existence of the three types of states: localized, exten
and sparse. These figures give us information about the
tive number of each type to be found in a given ene
range.

Comparison of the widthl s with l H and l ipr gives the
possibility to detect the so-calledsparsityof eigenstates. In-
deed, small values of the ratiol H / l s ~or l ipr / l s! indicate that
there are many ‘‘holes’’ in the structure of eigenstates, the
fore, such eigenstates aresparse@32#. A detailed analysis
shows a dominance of sparsed eigenstates. As for the
troid nc5a, small fluctuations@observed in Fig. 15~c!# indi-
cate that the interaction strengthV is relatively weak, com-
pared to the unperturbed partH0 .

The data of Fig. 15 show the existence of some pattern
all localization measures, visible as clusters of points in
lower part of the plots. These patterns are much more p
nounced for the same quantities computed for the LDOS,
Fig. 16. In order to understand this unexpected phenome
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let us take a closer look atl s in the range 1450, l ,2100 and
examine the structure shown in Fig. 17 in detail. Specifica
we choose some eigenstates from three branches of p
~see marked states in Fig. 17!. From each of these three set
we take the 1st, 7th, 13th, and 19th states counted from
bottom of the figure and plot them in Fig. 18. Inspection
Figs. 18~a!–18~c! clearly demonstrates that there is a kind
regularity in the structure of the LDOS: the same type
states appear repeatedly, almost periodically as a functio
the basis numberl. These figures show the repetition of e
tremely localized states@Fig. 18~a!# and of states with differ-
ent degrees of sparsity@Figs. 18~b!–18~d!#. The repetition of
extended states, corresponding to larger vaues ofl s are not
shown for economy of space but their existence is clear
can be inferred by extrapolating the branches of Fig. 17
higher values ofl s . The physical origin of all these types o
states~localized, sparse, and extended! was explained above
and their appearance can be decoded by examining the s
ture of the ‘‘channel representation’’ of the Hamiltonian m
trix ~Fig. 2!. A detailed inspection of this matrix@see also Eq.
~26! of Ref. @10## shows that the coupling between unpe
turbed states depends strongly on the values of the indem,
labeling the transversal modes of the flat billiard. An unp
turbed state specified by a large value ofm ~an m close to
6-13
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FIG. 15. Localization measures for eigenfunctions dependent ona for exactath eigenstates.~a! Entropy localization lengthl H , ~b! l ipr

defined through the inverse participation ratio,~c! the mean square rootl s , and~d! the centroidnc .
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Mmax562! couples strongly to several other unperturb
states. In contrast, a state withm51 has practically no cou
pling to other states. In particular, the extremely localiz
states, corresponding to the first position on the left line
each branch of Fig. 17, occur because of the negligible c
pling of the diagonal elements of theHl ,l 8 matrix with m
51, the states on the second position of each branch o
for m53, and so on withm odd. Similarly, states on the righ
side of the branches result from elements of theHl ,l 8 matrix
with even values ofm.

This structure is expected to prevail at all energy ran
since in any sufficiently large range of energies there
unperturbed states with all values ofm in @1,Mmax#. Even
deep in the semiclassical regime, extremely localized
sparse states will appear but less and less frequently sinc
energy differences between states of the same type incr
with energy. Consequently, the strong fluctuations appea
in the SES and LDOS distributions~Figs. 11 and 12! will
tend to disappear as\eff→0.

In the definitions of SES and LDOS, the averages w
performed over the appropriate range of energy in orde
take into account once all the various types of states~Figs.
10 and 11 were calculated this way!.

We can understand the origin of this type of regular str
ture by analyzing the Hamiltonian matrixHl ,l 8 , see Fig. 2. A
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detailed inspection shows that for the unperturbed states~di-
agonal matrix elements!, the coupling with other unperturbe
states depends on the value of the indexm, which labels the
number of transversal modes in the billiard@see Eqs.~11!
and~12!#. An unperturbed state specified by a largem ~anm
close toMmax562, for anyn! shows a strong coupling to
several other unperturbed states. In contrast, a state witm
51 ~for anyn! shows practically no coupling to other state

We can see then that the extremely localized states,
responding to the first position on the left-hand side of ea
set of points in Fig. 16, occur because of the negligible c
pling of the diagonal elements of theHl ,l 8 matrix with m
51. Similarly, the states on the second position~on the left-
hand side! occur whenm53, and so on with oddm. States
on the right-hand side of each set of points result from e
ments of theHl ,l 8 matrix with even values ofm. This struc-
ture prevails for all energies due to the existence of unp
turbed m51 states. However, the intervals between t
occurrence ofm51 unperturbed states increase as the ene
increases. Even as the semiclassical limit is approached
tremely localized states will appear, except that they will
less and less frequent. Consequently the strong fluctuat
appearing in the SES and LDOS distributions~Figs. 10 and
11! will tend to disappear.
6-14



re

s

f-
y

PERIODIC CHAOTIC BILLIARDS: QUANTUM- . . . PHYSICAL REVIEW E 64 036206
FIG. 16. Localization measures for the LDOS withl standing for the unperturbed stateul&. Same localization measures as in Fig. 15 a
presented:~a! l H , ~b! l ipr , ~c! l s , and~d! nc .

FIG. 17. Detail of Fig. 16~c!
for the range 1450, l ,2100. The
numbers indicate specific state
that are shown in Fig. 18. The
states are chosen from three di
ferent sets of states, specified b
almost the same values ofl s .
036206-15
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LUNA-ACOSTA, MÉNDEZ-BERMÚDEZ, AND IZRAILEV PHYSICAL REVIEW E 64 036206
FIG. 18. Structure of individual LDOS marked in Fig. 17. One can see the similarity in the structure of the LDOS taken from d
sets, but with the same values ofl s .
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IX. CONCLUDING REMARKS

The quantum-classical correspondence for the cha
motion of an electron in a periodic billiard was analyzed
terms of the classical analog of the SES and LDOS.

To construct the classical counterparts of the LDOS a
SES, we first changed~via a canonical transformation! to
some new curvilinear coordinates, where the new Ham
tonian incorporated the effects of the boundary into an eff
tive interaction potential. Then the original system of a fr
particle colliding within a 2D rippled channel becom
equivalent to a 1D model of two interacting ‘‘particles
identified with the new coordinates. This procedure allow
us to study the chaotic properties of this system using to
developed recently to analyze the role that interactions
tween particles play in the onset of quantum chaos. T
example is quite instructive since it shows the connect
between ‘‘one-body chaos,’’ which is due to an external p
tential ~or boundary conditions!, and ‘‘two-body chaos,’’
which results entirely from the interaction between particl
So far, these two mechanisms for producing chaos have b
treated completely independently.

Using this approach, we found that in the case of stro
chaos, the classical analogs of SES and LDOS agreed
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markably well with the global shapes of the quantum qu
tities. This correspondence enabled us to explain the m
features of the SES and LDOS in terms of the underly
classical motion of the system. Specifically, we found th
classical unstable and stable periodic orbits of period 1 g
rise to the two pronounced side-band peaks observed in
SES and LDOS.

On the other hand, we found that the statistical proper
of eigenstates and individual LDOS differ qualitatively fro
those prescribed by the standard random matrix the
Namely, in the case of strong chaos and deep in the se
classical region~high energy!, one expects the componen
of individual eigenstates to fluctuate in a statistically ind
pendent way around the mean, the envelope of the SE
the unperturbed energy basis. This expectation was c
firmed when studying the structure of eigenstates of comp
atoms and nuclei in the mean-field basis@34,35#. In contrast,
we have found that in our present model the deviations t
out to be extremely strong and not fully statistically indepe
dent.

In connection with this, a detailed analysis revealed qu
unexpected regularities in localization measures~such as the
inverse participation ratio! characterizing the eigenstates a
6-16
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individual LDOS. We remark that these regularities do n
disappear as energy increases. In particular, even for
energies, one can find eigenstates that are strongly loca
in the unperturbed energy representation~i.e., slightly per-
turbed plane waves!. This occurs because energy is not t
only semiclassical parameter in a 2D electron wavegu
Clearly, two unperturbed states of similar~or equal! energy
values but different transverse mode numbers will react
ferently to a small perturbation. That is, in contrast to hig
mode unperturbed states, the transverse wavelengthLy for
low-mode states can be many times larger than the ampli
of the perturbation and hence will remain essentially unp
turbed.

Thus, for any value of energy~equivalently, for any small
value of \!, there arenon-ergodic states. It should be
stressed that here we are discussing the ergodicity in
energy shell, which is determined by the classical motion
a particle in terms of the classical SES. Since the width
the energy shell is always finite due to the finite range of
tus
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interaction, the ergodicity of an eigenstate means that
eigenstate fills the whole energy shell with random~Gauss-
ian! fluctuations of its components around the smooth ene
dependence defined by the classical SES.

Naturally, with an increase of the energy, therelative
number of localized~in the energy shell! eigenstates tends t
zero. In this sense, there is no contradiction with the onse
quantum ergodicity in the classical limit. However, this lim
turns out to be achieved very slowly. Therefore, we rem
that from a physical point of view, it is important to furthe
the study of the statistical properties of eigenstates in
deep semiclassical regime, which may be different fro
those in the strictly classical limit~\50, a mathematical
concept!.
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