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Motion of wave fronts in semiconductor superlattices
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An analysis of wave front motion in weakly coupled doped semiconductor superlattices is presented. If a
dimensionless doping is sufficiently large, the superlattice behaves as a discrete system presenting front propa-
gation failure and the wave fronts can be described near the threshold currentsJi ( i 51,2) at which they depin
and move. The wave front velocity scales with current asuJ2Ji u1/2. If the dimensionless doping is low enough,
the superlattice behaves as a continuum system and wave fronts are essentially shock waves whose velocity
obeys an equal area rule.
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I. INTRODUCTION

Semiconductor superlattices~SL’s! are unique nonlinea
systems. Experimental evidence shows features of spat
discrete systems~multistability of roughly as many station
ary states as SL periods due to formation of electric fi
domains@1#! in certain regimes of nonlinear charge transp
in SL. In other regimes~self-sustained periodic and chaot
oscillations of the current@2#!, SL behavior is more typical o
continuous systems. These different properties may be
scribed by discrete@3# or continuous balance equation mo
els @4#. The continuum limit of discrete SL models has be
used to understand important aspects of self-oscillations@5#.
On the other hand, discrete models of SL share comm
characteristics with spatially discrete systems in other fie
most importantly, front propagation failure and front dep
ning @6#.

Discrete systems describe physical reality in many diff
ent fields: propagation of nerve impulses along mielina
fibers@7,8#, pulse propagation through cardiac cells@8#, cal-
cium release waves in living cells@9#, sliding of charge den-
sity waves@10#, superconductor Josephson array junctio
@11#, arrays of coupled diode resonators@12#, motion of dis-
locations in crystals@13#, and atoms adsorbed on a period
substrate@14#. A distinctive feature of discrete systems~not
shared by continuous ones! is the phenomenon of wave fron
pinning: for values of a control parameter in a certain int
val, wave fronts joining two different constant states fail
propagate@8#. When the control parameter surpasses
threshold, the wave front depins and starts mov
@6,7,10,13#. The existence of such thresholds is thought to
an intrinsically discrete fact, which is lost in continuu
aproximations. The characterization of propagation fail
and front depinning in discrete systems is thus an impor
problem, which is still poorly understood despite the num
ous inroads made in the literature@7,9,10,13#.

Recently, several of us have proposed a theory of fr
depinning and propagation failure in discrete reactio
diffusion ~RD! systems@15#. This theory will be extended
1063-651X/2001/64~3!/036204~9!/$20.00 64 0362
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here to describe motion of wave fronts near depinn
thresholds in discrete drift-diffusion~DDD! models of SL
@16#. There are important differences between RD and
systems. Let us consider a RD system depending on a
rameterA, measuring how close we are to the continuu
limit ( A50), and an external parameter~‘‘the field’’ F) such
that wave fronts move for all values ofFÞ0 in the con-
tinuum limit. In a generic RD system, there is always a p
ning interval~wave fronts are stationary forF in the pinning
interval! aboutF50 no matter how close to the continuu
limit we are. As we approach the continuum limit, the pi
ning interval shrinks to zero exponentially fast asA ap-
proaches zero: we then need exponential asymptotics~as-
ymptotics beyond all orders! to describe what happens. In
SL, there are important differences:~i! the pinning interval
disappears before we reach the continuum limit, and~ii ! the
continuum limit is described by hyperbolic equations a
shock waves~no exponential asymptotics is needed!.

Let us consider an infinitely long, sufficiently doped S
under constant current conditions. The current density pl
the role of external field in the SL models and a dimensio
less dopingn plays the same role as the parameterA: the
continuum limit is reached asn→0. For large values ofn,
we are in the strongly discrete limit and wave fronts a
stationary~pinned! for currents on a certain pinning interva
If the current is smaller than the lowest limit of the interva
J1(n), the wave front moves downstream, following th
electron flow. For currents larger than the upper limit of t
interval,J2(n), wave fronts move upstream, against the el
tron flow @6#. As the doping decreases, firstJ2 and thenJ1
~for even lower doping! disappear. This means that fronts a
either stationary or move downstream below a first criti
doping and they always move downstream below a sec
critical doping. Since the continuum limit corresponds
vanishing dimensionless doping, stationary fronts and fro
moving upstream are features of discrete SL, which are
in the continuum limit.

In contrast with the precipitous jumps and falls of char
and electric field in individual wells during wave front mo
©2001 The American Physical Society04-1
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tion we will show that for currents outside (J1 ,J2), wave
fronts are described by continuous profiles moving at a c
stant velocity. These profiles become sharper as the curr
approach the threshold valuesJi ; see Fig. 1. Exactly at thes
values, wave front profiles cease to be continuous: a num
of jump discontinuities open up, which results in propagat
failure. We describe propagation failure by analyzing the
havior of severalactivewells that govern front motion. Ou
theory yields the front profile near threshold currents an
universal scaling of the front velocity for sufficiently larg
doping. Its performance worsens as the doping decrease
we approach the continuum limit. We will complement o
approach by obtaining the velocity of wave fronts and th
shape in this limit. Previously, these front profiles and velo
ties in the continuum limit were known only for models ha
ing no discrete diffusion@17#, which is correct only for high
enough voltage bias. For bias on the first plateau of
current-voltage characteristics, diffusivity cannot be ignor
Given that characterizing wave fronts at constant curren
the key to analyzing self-oscillations at constant voltage,
results in this paper could be useful to describe s
oscillations at low biases. This could be done in two limi
near the continuum limitn!1, the results we have obtaine
for shock waves and monopoles can be used to charact
self-oscillations, either mediated by monopoles@5# or by di-
poles @18#, @19#. For largern, our present theory paves th
way to understanding self-oscillations in DDD or more ge
eral SL models.

The rest of the paper is as follows. We describe fro
propagation failure and front depinning for DDD SL mode
in Sec. II. The continuum limit of the model is analyzed
Sec. III. The resulting equations are those of the Kroem
model of the Gunn effect with zero diffusivity. Wave fron
are shock wave solutions of this model with a rigid tail r
gion either to the right or left of the shock. The shock velo
ity must be obtained from the discrete model, which resu
in an equal-area rule rather different from that of the Gu
effect. Corrections to this rule are important for describi

FIG. 1. Sharpening of wave front profiles as the dimensionl
currentJ approaches its critical values forn53: ~a! J'J2, ~b! J
.J2, ~c! J'J1, and~d! J,J1.
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the self-oscillations and will be given here. Section IV co
tains our conclusions. Finally, the Appendices are devote
different technical matters.

II. PROPAGATION FAILURE AND FRONT DEPINNING

In weakly coupled SL,~inter- and intrasubband! scattering
times are much shorter than well escape times, which in t
are much shorter than macroscopic times~period of self-
oscillations!. Then the dominant mechanism of vertical tran
port is sequential tunneling, only the first subband of ea
well is appreciably occupied, and the tunneling curre
across barriers is stationary@3#. Nonlinear phenomena see
in experiments can be described by discrete balance e
tions.

We count the barrier separating the injecting contact fr
the first well of the SL as the zeroth barrier. Barriers a
wells have widthsd andw, respectively, so thatl 5d1w is
the SL period. Thei th SL period starts just before thei th
barrier and ends just before the (i 11)st barrier. With this
convention, the dependent variables of our model areminus
the electric field averaged over thei th period Fi and the
two-dimensional electron density at thei th well ~concen-
trated in a plane normal to the growth direction, located
the end of thei th well! ni . These variables obey the Poisso
and charge continuity equations

Fi2Fi 215
e

«
~ni2ND

w!. ~1!

dni

dt
5Ji 21→ i2Ji→ i 11 . ~2!

HereND
w , «, e, andeJi→ i 11 are the two-dimensional dopin

density at thei th well, the average permittivity of the SL
minus the electron charge and the tunneling current den
across thei th barrier, respectively. We can differentiate E
~1! with respect to time and eliminateni by using Eq.~2!.
The result can be written as a form of Ampe`re’s law for the
balance of current

«

e

dFi

dt
1Ji→ i 115J~ t !. ~3!

HereeJ(t) is the total current density through the SL, equ
for all SL periods, and«dFi /dt is the displacement curren
at thei th SL period.

The tunneling current densityeJi→ i 11 is related to elec-
tric fields and electron densities by aconstitutive relation,
which should be derived from first principles; see Ref.@16#
and Wacker in Refs.@3#. At sufficiently low or high tempera-
tures,Ji→ i 11 has the following drift-diffusion form@16#:

Ji→ i 115
niv~Fi !

l
2D~Fi !

ni 112ni

l 2
, ~4!

where thedrift velocity is an odd function of the field
v(2F)52v(F), and the diffusion coefficient satisfies
the relation

s

4-2
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MOTION OF WAVE FRONTS IN SEMICONDUCTOR . . . PHYSICAL REVIEW E 64 036204
D~2F !5v~F !l 1D~F !. ~5!

Typical forms of these coefficients~in nondimensional form;
see below! are shown in Fig. 2. To compare our theoretic
results with numerical solutions of the model, it is better
use analytical approximations of these functions. Ours
given in Appendix A. The Ampe`re’s law corresponding to the
current in Eq.~4! is

«

e

dFi

dt
1

niv~Fi !

l
2D~Fi !

ni 112ni

l 2
5J~ t !. ~6!

Equations~1! and ~6! form the DDD model@6,16#, studied
here. Notice that for high fields~in practice for all plateaus
except the first one! D50, and we have a simpler discre
drift model with Ji→ i 115niv(Fi)/ l @3#.

To analyze the discrete drift-diffusion model, it is conv
nient to render all equations dimensionless. Letv(F) reach
its first positive maximum at (FM ,vM). We adoptFM , ND

w ,
vM , vMl , eND

wvM / l , and«FMl /(eND
wvM) as the units ofFi ,

ni , v(F), D(F), eJ, andt, respectively. For the first platea
of the 9/4 SL of Ref.@2#, we find FM56.92 kV/cm, ND

w

51.531011 cm22, vM5156 cm/s, vM(d1w)52.03
31024 cm2/s, and eND

wvM /(d1w)52.88 A/cm2. The
units of current and time are 0.326 mA and 2.76 ns, resp
tively. Then Eqs.~1! and ~6! become

dEi

dt
1v~Ei !ni2D~Ei !~ni 112ni !5J, ~7!

Ei2Ei 215n~ni21!, ~8!

or, equivalently,

dEi

dt
1v~Ei !

Ei2Ei 21

n
2D~Ei !

Ei 111Ei 2122Ei

n

5J2v~Ei !. ~9!

FIG. 2. Electron drift velocityv(E) and diffusion coefficient
D(E) as functions of the electric field in nondimensional units.
03620
l

re

c-

Here we have used the same symbols for dimensional
dimensionless quantities except for the electric field (F di-
mensional,E dimensionless!. n5eND

w/(«FM) is the dimen-
sionless doping parameter, which is about 3 for the first p
teau of the 9/4 SL.

A. Phase diagram for wave fronts on an infinite superlattice

Here we shall consider an infinite SL under constant c
rent biasJ. Clearly, there are two stable spatially homog
neous stationary solutions, namelyE(1)(J) and E(3)(J),
wherev(E(k))5J, E(1)(J),E(2)(J),E(3)(J). We are inter-
ested in nonuniform front states of the DDD model whi
satisfy Ei→E(1)(J) as i→2` and Ei→E(3)(J) as i→`.
These states are either stationary or time dependent. In
second case, they are wave fronts moving with constant
locity c5c(J,n), such that Ei(t)5E( i 2ct), i 50,
61, . . . E(t) is a smooth profile which solves the follow
ing nonlinear eigenvalue problem forc ~measured in wells
traversed per unit time! andE(t)

c
dE

dt
5v~E!2J1v~E!

E2E~t21!

n

2D~E!
E~t11!1E~t21!22E

n
, ~10!

E~2`!5E(1)~J!, E~`!5E(3)~J!. ~11!

By using a comparison principle@20#, we can prove the ex-
istence of stationary fronts rigorously@6#. Outside the inter-
val of current values in which there are stationary fronts,
can only prove that there are fronts moving to the right or
left @6#. By using the comparison principle, it is possible
show that moving and stationary fronts cannot exist simu
neously at the same value of the current@21#. This result
does not hold if the spatially discrete differential equation
second order in time: moving and stationary fronts have b
reported to coexist in one such a case@22#.

Proof that moving fronts are traveling wave fronts h
been given for different spatially discrete models witho
convection@23,21#. In the case of the DDD SL model, w
rely on numerical evidence: Notice that all noticeable ste
in Fig. 1, particularly~a! and ~c!, are of the same length
Figure 3 shows the wave front at three different times, an
clearly demonstrates that the front is a traveling wave m
ing with constant velocity as a whole. Our asymptotic co
struction of the wave fronts near the critical currentsJ1 and
J2, which we explain below, exploits their traveling wav
nature.

Numerically solving Eq.~9! it can be shown that, after a
short transient, a variety of initial conditions such thatEi
→E(1)(J) as i→2` and Ei→E(3)(J) as i→` evolve to-
ward either a stationary or moving monopole. Figure 3
Ref. @6# is a phase diagram showing the regions in the pla
(J,n) where different fronts are stable. There are two imp
tant values ofn, n1,n2, such that:
4-3
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~i! For 0,n,n1 and each fixedJP(vm,1), only traveling
monopole fronts moving downstream~to the right! were ob-
served. Forn.n1, stationary monopoles were found.

~ii ! For n1,n,n2, traveling fronts moving downstream
exist only if JP(vm ,J1(n)), whereJ1(n)P(vm,1) is a criti-
cal value of the current.J1(n) is a monotone decreasin
function such thatJ1→vm as n→`; see Fig. 4. If J
P(J1(n),1), the stable solutions are steady fronts~stationary
monopoles!.

~iii ! New solutions are observed forn.n2. As before,
there are traveling fronts moving downstream ifJ
P(vm ,J1(n)), and stationary monopoles if J
P(J1(n),J2(n)), J2(n),1 is a new critical current; see Fig
4. The functionJ2(n) starts atJ2(n2)51, decreases to a
single minimum value, and then increases toward 1 an
→`. For J2(n),J,1, the stable wave front solutions o
Eq. ~9! are monopoles traveling upstream~to the left!. As n
increases,J1(n) andJ2(n) approachvm and 1, respectively
Thus stationary solutions are found for most values ofJ if n
is large enough.

FIG. 3. Electric field profile of a wave front at three consecut
wells. We have depicted the field at each well as a function of ti
which illustrates the motion of the front at constant velocity.

FIG. 4. Upper and lower critical currents as functions of t
dimensionlessn.
03620
Wave front velocity as a function of current has be
depicted in Fig. 5 forn53, which corresponds to the firs
plateau of the 9/4 SL. For largern, the interval ofJ for which
stationary solutions exist becomes wider again, trying
span the whole interval (vm,1) asn→`. For very largen,
the velocities of downstream and upstream moving mo
poles become extremely small in absolute value.

B. Pinning of wave fronts with a single active well

At the critical currents,J1(n) and J2(n), wave fronts
moving downstream~to the right, following the electron
flow, c.0) for smallerJ or upstream~to the left, against the
electron flow,c,0) for largerJ fail to propagate. What hap
pens is that the wave front field profileE(t) becomes
sharper asJ approaches the critical currents. Exactly atJk ,
k51,2, gaps open up in the wave front profile which the
fore loses continuity. The resulting field profile is a stationa
front Ei5Ei(J,n): the wave front is pinned forJ1,J,J2.
The depinning transition~from stationary fronts to moving
wave fronts! is technically speaking a global saddle-no
bifurcation. We shall study it first in the simplest case
large dimensionless dopingn, and then indicate what hap
pens in the general case.

For sufficiently large doping andJ close to critical, the
moving front is led by the behavior of a single well, whic
we will call the active well. If we examine the shape of
stationary front near the critical current, we observe that
wells are close either toE(1)(J) or E(3)(J) except for one
well which drifts slowly and eventually jumps: the activ
well. Let us callE0 the electric field at the active well. Sinc
all wells in the front perform the same motion, we can r
construct the profileE( i 2ct) from the time evolution of
E0(t)5E(2ct). Before the active well jumps,Ei'E(1)(J)
for i ,0 andEi'E(3)(J) for i .0. Thus Eq.~9! becomes

dE0

dt
'J2v~E0!2v~E0!

E02E(1)

n

1D~E0!
E(1)1E(3)22E0

n
. ~12!

,
FIG. 5. Wave front velocity as a function of current density f

n53. We have compared the numerically measured velocity to
results of our theory with one or four active wells.
4-4
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MOTION OF WAVE FRONTS IN SEMICONDUCTOR . . . PHYSICAL REVIEW E 64 036204
This equation has three stationary solutions forJ1,J,J2,
two stable and one unstable, and only one stable statio
solution otherwise. At the critical currents, two of these s
lutions coalesce forming a saddle node. At low values of
current, the two coalescing solutions form a double zero c
responding to a maximum of the right side of Eq.~12!. For
high currents, the two coalescing solutions form a dou
zero corresponding to a minimum of the right side of E
~12!. The critical currents are such that the expansion of
right hand side of Eq.~12! about the two coalescing station
ary solutions

J2v~E0!2v~E0!
E02E(1)

n
1D~E0!

E(1)1E(3)22E0

n
50

~13!

has a zero linear term

D08~E(1)1E(3)22E0!22D02v08~E02E(1)!2v02nv0850.
~14!

Here D08 meansD8(E0), etc. Equations~13! and ~14! yield
approximations toE0 and the critical currentJc ~which is
eitherJ1 or J2). The results are depicted in Figs. 5 and 6, a
show excellent agreement with those of numerical soluti
of the model forn.2. Our approximation performs less we
for smaller n, which indicates that more active wells a
needed to improve it.

Let us now construct the profile of the traveling wa
fronts after depinning, forJ slightly below J1 or slightly
aboveJ2. Up to terms of orderuJ2Jcu, Eq. ~12! becomes

dw

dt
'a~J2Jc!1bw2, ~15!

for E0(t)5E0(Jc)1w(t), asJ→Jc . E0(Jc) is the stationary
solution of Eq.~12! at J5Jc . The coefficientsa andb are
given by

FIG. 6. Wave front velocity as a function of current density f
n520. We have compared the numerically measured velocity to
results of our theory with one active well.
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a511
v01D0

nv18
1

D0

nv38
, ~16!

2nb5D09~E(1)1E(3)22E0!24D0822v08

1v09~E(1)2E022n!. ~17!

b is negative ifJc5J1 and positive ifJc5J2. Equation~15!
has the~outer! solution

w~ t !;~21!kAa~J2Jk!

b
tan„Aab~J2Jk!~ t2t0!…

~18!

(k51,2), forJ such that sign(J2Jk)5signb. Equation~18!
is very small most of the time, but it blows up when th
argument of the tangent function approaches6p/2. Thus the
outer approximation holds over a time interval (t2t0)
;p/Aab(J2Jk). The reciprocal of this time interval yield
an approximation for the wave front velocity

uc~J,n!u;
Aab~J2Jk!

p
. ~19!

In Figs. 5 and 6, we compare this approximation with t
numerically computed velocity forn53 andn520, respec-
tively.

When the solution begins to blow up, the outer soluti
Eq. ~18! is no longer a good approximation, forE0(t) de-
parts from the stationary valueE0(Jc). We must go back to
Eq. ~15! and obtain an inner approximation to this equatio
As J is close toJc and E0(t)2E0(Jc) is of order 1, we
numerically solve Eq.~15! at J5Jc with the matching con-
dition that E0(t)2E0(Jc);(21)k2/@pAb/@a(J2Jc)#
22ubu(t2t0)#, as (t2t0)→2`. This inner solution de-
scribes the jump ofE0 to values close toE(1) if Jc5J1, or to
values close toE(3) if Jc5J2. During this jump, the motion
of E0 forces the other points to move. Thus, forJc5J1 ,
E1(t) can be calculated by using the inner solution in Eq.~9!
for E0, with J5Jc and E2'E(3). Similarly, for Jc5J2 ,
E21(t) can be calculated by using the inner solution in E
~9! for E0, with J5Jc and E22'E(1). A composite expan-
sion @24# constructed with these inner and outer solutions
compared to the numerical solution of the model in Fig.
Notice that we have reconstructed the traveling wave profi
E( i 2ct) from the identityE0(t)5E(2ct).

C. Pinning of wave fronts with several active wells

The previous asymptotic description of the depinni
transition deteriorates asn decreases. What happens is th
we need more than one active well to approximate wa
front motion. Depinning is then described by a reduced s
tem of more than one degree of freedom corresponding
active wells. There is a saddle-node bifurcation in this
duced system whose normal form is again Eq.~15! with
different coefficients. The jump of the active wells aft
blowup is found by solving the reduced system with
matching condition. How do we determine the optimal nu

e

4-5
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A. CARPIO, L. L. BONILLA, AND G. Dell’ACQUA PHYSICAL REVIEW E 64 036204
ber of active wells? For a givenn, the eigenvector corre
sponding to the zero eigenvalue has a certain numbe
components that are of order one, whereas all others are
small. The number of components of normal size determi
the optimal number of active wells: only one well ifn is
larger than 10, four ifn53, etc. The eigenvector of the re
duced system of equations for the active wells is a go
approximation to the large components of the eigenve
corresponding to the complete system. As we approach
continuum limit, more and more points enter the reduc
system of equations and the approach of Sec. III becom
viable alternative to these methods.

As before, the wave front profile will obeyE( i 2ct)
5Ei(t), where i 52L, . . . ,M are the indices of theA5L
1M11 active wells. Then their reduced dynamics obe
Eq. ~9! for i 52L, . . . ,M together with the approximation
E2L21;E(1) andEM11;E(3). We have to find approximate
stationary solutions of this system, and then linearize it w
respect to the appropriate one. At the approximate crit
currentJc , one of the eigenvalues of the linearized syst
becomes zero. Let us callUi

† andUi the A-dimensional (A
5L1M11) left and right eigenvectors corresponding to t
zero eigenvalue of the coefficient matrix for the lineariz
system, chosen so that( i 52L

M Ui
†Ui51. Very close toJc , the

electric field profile will beEi(t);Ei(Jc ,n)1Uiw(t) plus
terms which decrease exponentially fast as time elapsew
obeys Eq.~15! with the following coefficients:

a5 (
i 52L

M

Ui
†1

v01D0

nv2L218
U0

†1
DMUM

†

nvM118
, ~20!

b5
1

2n (
i 52L

M

@Di9Ui
2~Ei 111Ei 2122Ei !

12Di8Ui~Ui 111Ui 2122Ui !22v i8Ui~Ui2Ui 21!

1v09~Ei 212Ei22n!Ui
2#Ui

† . ~21!

Here we have setU2L215UM1150, E2L215E(1), EM11

FIG. 7. Wave front profiles nearJ5J2 for n520. We compare
the results of matched asymptotic expansions with one active
and the numerical solution of the model.
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5E(3), v i5v(Ei), v i85v8(Ei) Di5D(Ei), etc. All quanti-
ties are evaluated atJ5Jc . Clearly these formulas becom
Eqs.~16! and ~17! if L5M50, U05U0

†51.
Obviously, the solution and interpretation of Eq.~15! is

the same as before, and we only have to change the matc
condition and the description of the jump of the active we
Increasing the number of active wells appreciably improv
the approximation of the wave front velocity; see Fig. 5. T
jump of the active wells is described by the solution of E
~9! for i 52L, . . . ,M , with J5Jc , Ei(t)5Ei(Jc ,n)
1Uiw(t), and the same matching condition as before. Fig
8 depicts a comparison of the composite approximation
the numerically calculated field profile forn53. Notice the
improvement with respect to the single active well appro
mation.

Our analysis shows that the transition from moving
stationary fronts involves loss of continuity of the wave fro
profile. For the reduced system of active wells, the transit
is a global saddle-node bifurcation: two stationary solutio
coalesce at the critical current and@for J,J1(n) or J
.J2(n)], a traveling wave front appears. Near the critic
currents, the field profile of this front is very sharp: it r
sembles the typical discrete steps of the stationary profile
long intervals of time~scaling asuJ2Ji u21/2), followed by
abrupt transitions between steps. Although we do not h
proof, it is natural to conjecture that the depinning transiti
for the complete SL model is of the same type as that for
reduced system of active wells.
Remark. Notice that our theory of front depinning applie
with minor modifications to discrete models with more com
plicated @than Eq. ~4!# constitutive relations, Ji→ i 11
5J(Fi ,ni ,ni 11) ~cf. Wacker’s paper in Ref.@3#! or
Ji→ i 115J(Fi 21 ,Fi ,Fi 11 ,ni ,ni 11) ~cf the complete dis-
crete model in Ref.@16# where potential drops at the barrie
Vi are used instead of electric fields averaged over one
period Fi). The key point is that only a finite number o
wells are active in wave front depinning for sufficient
largen.

ll

FIG. 8. Wave front profiles nearJ5J2 for n53. We compare
the numerical solution of the model with the result of match
asymptotic expansions with five active wells. Notice that the larg
error source is the theoretical estimate of the time period~an error
of 200 in a 3000 period!.
4-6



-
an

e
s
ve
Le
t

th

n

he

is

re

g

to

or-

of

MOTION OF WAVE FRONTS IN SEMICONDUCTOR . . . PHYSICAL REVIEW E 64 036204
III. CONTINUUM LIMIT

The continuum limit of the DDD model is useful for un
derstanding self-sustained oscillations of the current
wave front motion. It consists ofn→0, i→`, with n i 5x
P@0,Nn#, Nn@1. In this limit, Eq.~9! becomes

]E

]t
1v~E!

]E

]x
5J2v~E!, ~22!

up to terms of ordern. Equation ~22! corresponds to the
hyperbolic limit of the well-known Kroemer model of th
Gunn effect@18#. With constantJ, shock waves are solution
of these equations@25#. These waves are related to wa
fronts, and their speed can be calculated explicitly.
V(E1 ,E2) denote the speed of a shock wave such thaE
becomesE2 ~respectively,E1) to the left ~respectively,
right! of the shock. Inside the shock wave, we should use
discrete model withni@1, dEi /dt;2V(Ei2Ei 21)/n@1,
and J5O(1). Notice that we have rescaled the wave fro
velocity so thatV5cn is the correct velocity for the~res-
caled! continuum profileE(x2Vt)5E„n( i 2ct)…. Then

E12E25( ~Ei2Ei 21!

;n( ni

;V(
Ei2Ei 21

v~Ei !1D~Ei !
1(

D~Ei !

v~Ei !1D~Ei !
nni 11

;V(
Ei2Ei 21

v~Ei !1D~Ei !
1(

D~Ei !~Ei 112Ei !

v~Ei !1D~Ei !
.

This expression yields

V;
(

v~Ei !~Ei 112Ei !

v~Ei !1D~Ei !

(
Ei2Ei 21

v~Ei !1D~Ei !

,

which becomes

V~E1 ,E2!5

E
E2

E1 v~E!

v~E!1D~E!
dE

E
E2

E1 dE

v~E!1D~E!

, ~23!

in the continuum limit. This expression is equivalent to t
following weighted equal-area rule:

E
E2

E1v~E!2V~E1 ,E2!

v~E!1D~E!
dE50. ~24!

For D50, this formula reduces to that derived for the d
crete drift model in Ref.@17#. An expression including the
next correction to this formula is given in Appendix B. The
is only one value ofJ, J* , such that V5J with E2
03620
d

t

e

t

-

5E(1)(J) and E15E(3)(J). For JP(vm ,J* ), a wave front
joining E(1)(J) to E(3)(J) consists of a shock wave havin
E15E(3)(J), and E2 such thatV(E(3)(J),E2)5v(E2).
Furthermore, to the left of the shock wave, there is atail
region moving rigidly with the shock and such that

@v~E!2V#
]E

]j
5J2v~E!, ~25!

for negativej5x2Vt, and E(2`)5E(1)(J), E(0)5E2 .
This whole structure~shock and tail region! is called amono-
pole with left tail@5#. Similarly, for JP(J* ,1), a wave front
joining E(1)(J) to E(3)(J) becomes amonopole with right
tail. This monopole consists of a shock wave havingE2

5E(1)(J), andE1 such thatV(E1 ,E(1)(J))5v(E1), and a
tail region satisfying Eq.~25! for positivej, with the bound-
ary conditionsE(0)5E1 andE(`)5E(3)(J) @5#. In conclu-
sion, the wave front velocity as a function ofJ is determined
by the following equations:

C~J!5V~E(3)~J!,E2!,

with

v~E2!5V~E(3)~J!,E2!, if vm,J,J* , ~26!

C~J!5V~E1 ,E(1)~J!!,

with

v~E1!5V~E1 ,E(1)~J!!, if J* ,J,1. ~27!

Notice that thisC(J) is the limiting value of the rescaled
wave front velocity,c(J,n)n asn→01. We have compared
the continuum approximation of the wave front velocity@in
wells traversed per unit time, i.e.,c(J,n)5C(J)/n, not res-
caled# with the numerical solution of the model forn
50.01 in Fig. 9. The equal-area rule result corresponds
Eqs. ~23!, ~26!, and ~27! and its maximum difference with
the numerical solution is about 17.6%. Notice that the c

FIG. 9. Comparison of the equal-area rule~leading order! and
corrected equal-area rule~including first-order corrections! approxi-
mations to the wave front velocity with the numerical solution
the model forn50.01.
4-7
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rections in Appendix B significantly improve the result: th
corrected equal-area result Eq.~B2! differs at most by 3%
from the numerical solution.
Remark. A different strategy to derive a formula for th
shock velocityV(E1 ,E2) could be to retain the first-orde
corrections to Eq.~22! and then use well-known procedure
for partial differential equations. The first-order correction
Eq. ~22! is

]E

]t
1v~E!

]E

]x
5J2v~E!1nS D~E!1

v~E!

2 D ]2E

]x2
,

~28!

in which terms of ordern2 are ignored. Asn→0, this equa-
tion has shock waves whose velocity obeys the equal-
rule

E
E2

E1v~E!2V~E1 ,E2!

D~E!1
v~E!

2

dE50, ~29!

instead of Eq.~24!. Notice that this rule gives the same res
as Eq.~24! for D50. What is wrong in this argument? No
tice that we have to use the rescaled moving variablej5(x
2Vt)/n to derive Eq.~29!. After rescaling, both convective
and diffusive terms in Eq.~28! are the largest ones, of orde
n21@1. But so are all the terms in the Taylor series (Ei
2Ei 21)/n5]E/]x2(n/2)]2E/]x21(n2/6)]3E/]x31 . . . ,
which was used to derive Eq.~28! in the first place. Thus this
derivation ignores infinitely many relevant terms in the Ta
lor expansions ofni and ni 11 and it yields the incorrec
formula Eq.~29! as a result.

IV. CONCLUSIONS

We have analyzed the motion of wave fronts in discr
drift-diffusion models of nonlinear charge transport in sup
lattices. Moving wave fronts are profiles of the electric fie
traveling rigidly with constant velocity. Propagation failu
of the fronts occurs because the field profile loses contin
at the critical currents and becomes pinned at discrete s
We have characterized propagation failure of wave fro
and, conversely, front depinning by singular perturbat
methods. These methods are based upon the fact that o
few active wells characterize wave front motion for dime
sionless dopingn sufficiently large. In the continuum limit
asn tends to zero, more and more wells become active an
different approximation makes sense. In this limit, discr
equations turn into differential equations, and wave fro
turn into monopoles which are shock waves with a rigid t
region to their left or right. We have derived the equal a
rule for such shock waves, and also its leading correct
Our different asymptotic theories perform well in their r
spective domains of validity and approximate the motion o
wave front at constant current on an infinite superlattice. U
derstanding this motion is the key to understanding m
sophisticated phenomena occuring in semiconductor su
lattices under voltage bias conditions@2,5#.
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APPENDIX A: DRIFT VELOCITY AND DIFFUSIVITY
COEFFICIENTS

To compare our theoretical results with those of numeri
solutions of the model, it is better to use analytical appro
mations of drift velocity and diffusivity instead of using nu
merical data for them. We use the following dimensionle
coefficients which approximately fit those used in Ref.@6#:

v~E!5
0.2684E

0.251~0.9862E20.85!2
1

0.9072

0.161~0.9862E215!2

20.004, ~A1!

D~E!52e2E2
. ~A2!

The velocity has a local maximum atE51, v51.

APPENDIX B: FIRST-ORDER CORRECTION
TO EQUAL-AREA RULE

A more careful derivation of the equal-area rule uses
trapezoid rule for Riemann integrals

E
E2

E1

f ~E!dE'( f ~Ei !~Ei2Ei 21!

2
1

2 ( @ f ~Ei !2 f ~Ei 21!#~Ei2Ei 21!

'( f ~Ei 21!~Ei2Ei 21!

1
1

2 ( @ f ~Ei !2 f ~Ei 21!#~Ei2Ei 21!.

~B1!

We can repeat our derivation in Section III step by step,
keeping now the correction terms Eq.~B1! when substituting
integrals instead of Riemann sums. The result is

V~E1 ,E2!5

E
E2

E1 v~E!

v~E!1D~E!
dE1SN

E
E2

E1 dE

v~E!1D~E!
1SD

, ~B2!

SN5
1

2 ( S Di

v i1Di
2

Di 21

v i 211Di 21
D ~Ei2Ei 21!

52
1

2 ( S v i

v i1Di
2

v i 21

v i 211Di 21
D ~Ei2Ei 21!,

~B3!
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SD5
1

2 ( S 1

v i1Di
2

1

v i 211Di 21
D ~Ei2Ei 21!. ~B4!

In the numerator of Eq.~B2!, we have ignored the term
.
.

E

J.
B
.
r,

G.
v,

ev

es

lt

s,

s.

. H

03620
n((v i2J)/(v i1Di), which vanishes in the continuum limit
Notice thatv i 21;v i2v i8(Ei2Ei 21), a similar relation for
Di 21 and thatv i8<0 ~typically! andDi8<0 suggest thatSN
<0 and SD>0. Thus we expect that the corrected sho
velocity belower than the leading order Eq.~23!.
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