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Motion of wave fronts in semiconductor superlattices
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An analysis of wave front motion in weakly coupled doped semiconductor superlattices is presented. If a
dimensionless doping is sufficiently large, the superlattice behaves as a discrete system presenting front propa-
gation failure and the wave fronts can be described near the threshold cukréintsl,2) at which they depin
and move. The wave front velocity scales with currentlasJ;|Y2. If the dimensionless doping is low enough,
the superlattice behaves as a continuum system and wave fronts are essentially shock waves whose velocity
obeys an equal area rule.
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I. INTRODUCTION here to describe motion of wave fronts near depinning
thresholds in discrete drift-diffusiodDDD) models of SL
Semiconductor superlatticdSL's) are unique nonlinear [16]. There are important differences between RD and SL
systems. Experimental evidence shows features of spatiallyystems. Let us consider a RD system depending on a pa-
discrete system@multistability of roughly as many station- rameterA, measuring how close we are to the continuum
ary states as SL periods due to formation of electric fieldimit (A=0), and an external parametéthe field” F) such
domaing 1]) in certain regimes of nonlinear charge transportthat wave fronts move for all values &0 in the con-
in SL. In other regimesself-sustained periodic and chaotic tinuum limit. In a generic RD system, there is always a pin-
oscillations of the curreri2]), SL behavior is more typical of ning interval(wave fronts are stationary fét in the pinning
continuous systems. These different properties may be déaterva) aboutF=0 no matter how close to the continuum
scribed by discretg3] or continuous balance equation mod- limit we are. As we approach the continuum limit, the pin-
els[4]. The continuum limit of discrete SL models has beenning interval shrinks to zero exponentially fast Asap-
used to understand important aspects of self-oscilla{ihs proaches zero: we then need exponential asymptoiss
On the other hand, discrete models of SL share commoyimptotics beyond all orderso describe what happens. In a
characteristics with spatially discrete systems in other fieldsSL, there are important difference$) the pinning interval
most importantly, front propagation failure and front depin-disappears before we reach the continuum limit, @ndhe
ning [6]. continuum limit is described by hyperbolic equations and
Discrete systems describe physical reality in many differshock wavegno exponential asymptotics is neegled
ent fields: propagation of nerve impulses along mielinated Let us consider an infinitely long, sufficiently doped SL
fibers[7,8], pulse propagation through cardiac c¢B$, cal- under constant current conditions. The current density plays
cium release waves in living cell8], sliding of charge den- the role of external field in the SL models and a dimension-
sity waves[10], superconductor Josephson array junctiondess dopingv plays the same role as the parameterthe
[11], arrays of coupled diode resonatdi®], motion of dis-  continuum limit is reached as— 0. For large values of,
locations in crystal$13], and atoms adsorbed on a periodicwe are in the strongly discrete limit and wave fronts are
substratg 14]. A distinctive feature of discrete systerrsot  stationary(pinned for currents on a certain pinning interval.
shared by continuous onds the phenomenon of wave front If the current is smaller than the lowest limit of the interval,
pinning: for values of a control parameter in a certain inter-J;(v), the wave front moves downstream, following the
val, wave fronts joining two different constant states fail to electron flow. For currents larger than the upper limit of the
propagate[8]. When the control parameter surpasses dnterval,J,(v), wave fronts move upstream, against the elec-
threshold, the wave front depins and starts movingtron flow [6]. As the doping decreases, fidt and thenJ;
[6,7,10,13. The existence of such thresholds is thought to befor even lower dopingdisappear. This means that fronts are
an intrinsically discrete fact, which is lost in continuum either stationary or move downstream below a first critical
aproximations. The characterization of propagation failuredoping and they always move downstream below a second
and front depinning in discrete systems is thus an importantritical doping. Since the continuum limit corresponds to
problem, which is still poorly understood despite the numervanishing dimensionless doping, stationary fronts and fronts
ous inroads made in the literaturg,9,10,13. moving upstream are features of discrete SL, which are lost
Recently, several of us have proposed a theory of fronin the continuum limit.
depinning and propagation failure in discrete reaction- In contrast with the precipitous jumps and falls of charge
diffusion (RD) systems[15]. This theory will be extended and electric field in individual wells during wave front mo-
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15 15 the self-oscillations and will be given here. Section IV con-
(@ () tains our conclusions. Finally, the Appendices are devoted to
=10 J=0.404398 10 J=0.41 different technical matters.
u® u®
5 5 Il. PROPAGATION FAILURE AND FRONT DEPINNING
0 o In weakly coupled SL(inter- and intrasubbandcattering
0 2 . 4 . 0 5?0 1000 times are much shorter than well escape times, which in turn
x10 are much shorter than macroscopic timeeriod of self-
15 15 oscillations. Then the dominant mechanism of vertical trans-
(© ) port i§ sequent_ial tunneling_, only the first subbgnd of each
=" J=0.179202 =" J=0.17 well is appreciably occupied, and the tunneling current
o o across barriers is stationafg]. Nonlinear phenomena seen
5 5 in experiments can be described by discrete balance equa-
tions.
% > 4 6 56 2000 3000 4000 5000 Wg count the barrier separating the injec_ting contact from
t < 10° t the first well of the SL as the zeroth barrier. Barriers and

wells have widthd andw, respectively, so thdt=d+w is

FIG. 1. Sharpening of wave front profiles as the dimensionlesshe SL period. Thath SL period starts just before th¢h
currentJ approaches its critical values for=3: (&) J~J,, (0) J  parrier and ends just before the+(1)st barrier. With this
>Jz, (€) J=Jy, and(d) I<J;. convention, the dependent variables of our modelraireus

. . . the electric field averaged over théh period F; and the
tion we will show that for currents outsidel{,J,), wave . . . ;
two-dimensional electron density at theh well (concen-

fronts are described by continuous profiles moving at a Con%ated in a plane normal to the growth direction, located at
t

stant velocity. These profiles become_ sharper as the curren e end of théth well) n, . These variables obey the Poisson
approach the threshold valugs see Fig. 1. Exactly at these S ;
and charge continuity equations

values, wave front profiles cease to be continuous: a number
of jump discontinuities open up, which results in propagation e

failure. We describe propagation failure by analyzing the be- Fi—Fi_1=—(n,—Np). 1)
havior of severahctivewells that govern front motion. Our &
theory yields the front profile near threshold currents and a
universal scaling of the front velocity for sufficiently large
doping. Its performance worsens as the doping decreases and
we approach the continuum limit. We will complement our w ) ) .
approach by obtaining the velocity of wave fronts and theirr 1€T€Np, €, & andeJ._;, , are the two-dimensional doping
shape in this limit. Previously, these front profiles and veloci-density at theith well, the average permittivity of the SL,
ties in the continuum limit were known only for models hav- Minus the electron charge and the tunneling current density
ing no discrete diffusiofi17], which is correct only for high @Cross theth barrlerz respecnvgly._ We can dlfferen'uate Eq.
enough voltage bias. For bias on the first plateau of thél) with respect to time and eliminatg by using Eq.(2).
current-voltage characteristics, diffusivity cannot be ignored.I he result can be written as a form of Ampis law for the
Given that characterizing wave fronts at constant current i§alance of current

the key to analyzing self-oscillations at constant voltage, the dF

results in this paper could be useful to describe self- efn g 1=J(1). (3)
oscillations at low biases. This could be done in two limits: e dt "

near the continuum limiv<1, the results we have obtained
for shock waves and monopoles can be used to characteri
self-oscillations, either mediated by monopdlB$or by di- , )
poles[18], [19]. For largerv, our present theory paves the at theith SL period.

way to understanding self-oscillations in DDD or more gen- . | N€ tunneling current densityJ; .., is related to elec-
eral SL models. tric fields and electron densities bycanstitutive relation

The rest of the paper is as follows. We describe frontVhich should be derived from first principles; see Réf]
propagation failure and front depinning for DDD SL models &"d Wacker in Ref43]. At sufficiently low or high tempera-
in Sec. Il. The continuum limit of the model is analyzed in tUrés.Ji—i+1 has the following drift-diffusion fornj16]:
Sec. lll. The resulting equations are those of the Kroemer
model of the Gunn effect with zero diffusivity. Wave fronts 3 _Mmiv(F) _D(F_)”Hl_”i @
are shock wave solutions of this model with a rigid tail re- =il I : 1z’
gion either to the right or left of the shock. The shock veloc-
ity must be obtained from the discrete model, which resultsvhere thedrift velocity is an odd function of the field,
in an equal-area rule rather different from that of the Gunrv(—F)=—wv(F), and the diffusion coefficient satisfies
effect. Corrections to this rule are important for describingthe relation

dn
gt Jimi i (2

%&eree\l(t) is the total current density through the SL, equal
or all SL periods, and:dF;/dt is the displacement current
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4.5 - - Here we have used the same symbols for dimensional and
dimensionless quantities except for the electric figtddj-
mensional E dimensionless v=eNJ/(eF),) is the dimen-

3.5¢ sionless doping parameter, which is about 3 for the first pla-
teau of the 9/4 SL.

4_

3_

25;
A. Phase diagram for wave fronts on an infinite superlattice
2
Here we shall consider an infinite SL under constant cur-

rent biasJ. Clearly, there are two stable spatially homoge-
neous stationary solutions, nameB(*)(J) and E®)(J),
wherev (E®) =3, EM(J)<E@(J)<E®)(J). We are inter-

1.5

1_

051 ested in nonuniform front states of the DDD model which
0 — satisfy E;—~EM(J) asi— — and E,—E®)(J) asi—o.
0 5 E 10 15 These states are either stationary or time dependent. In the
second case, they are wave fronts moving with constant ve-
FIG. 2. Electron drift velocityv(E) and diffusion coefficient locity c=c(J,v), such that Ej(t)=E(i—ct), =0,
D(E) as functions of the electric field in nondimensional units.  *1,... E(7) is a smooth profile which solves the follow-
ing nonlinear eigenvalue problem far(measured in wells
D(—F)=v(F)I+D(F). (5)  traversed per unit timeand E(7)
Typical forms of these coefficientin nondimensional form; Cd_E =v(E)=J+v(E) E-B(r=1)
see below are shown in Fig. 2. To compare our theoretical dr
results With numerical_ solgtions of the model,_ it is better to E(r+1)+E(r—1)—2E
use analytical approximations of these functions. Ours are —D(E) , (10)
given in Appendix A. The Ampe’s law corresponding to the v
current in Eq.(4) is
—0)=EM =Eg®@)
eOF, nw(F) nian ) E(-2)=ED(), E@=)=E®Q). @11
T (F)=—57—=30.  ©®

By using a comparison principl0], we can prove the ex-
Equations(1) and (6) form the DDD model[6,16], studied istence of stationary fronts rigorous|g]. Outside the inter-
here. Notice that for high fieldén practice for all plateaus val of current values in which there are stationary fronts, we
except the first oneD =0, and we have a simpler discrete can only prove that there are fronts moving to the right or the
drift model with J; ;. ,=n;u (F;)/I [3]. left [6]. By using the comparison principle, it is possible to
To analyze the discrete drift-diffusion model, it is conve- show that moving and stationary fronts cannot exist simulta-
nient to render all equations dimensionless. LEF) reach  neously at the same value of the curr¢dt]. This result

its first positive maximum atRy, ,vy,). We adoptFy,, Nj, does not hold if the spatially discrete differential equation is
um, oml, eNYoy /1, andeFyl/(eNYy ) as the units of second order in t_|m¢: moving and stationary fronts have been
ni, v(F), D(F), eJ, andt, respectively. For the first plateau "€POrted to coexist in one such a c4ae.

of the 9/4 SL of Ref[2], we find F;,=6.92 kV/cm, NY Proof that moving fronts are traveling wave fronts has

—15x10 cm 2 _ W) =2, been given for different spatially discrete models without
L5107 om®, vy=156 cmis, vy(d+w)=2.03 convection[23,21]. In the case of the DDD SL model, we

x10™* cné/s, and eNjvy /(d+w)=2.88 Alcnf. The . . A .
units of current and time are 0.326 mA and 2.76 ns, reSpeCr_ely on numerl_cal evidence: Notice that all noticeable steps
tively. Then Egs(1) and (6) become in Fig. 1, particularly(a) and (c), are of the same length.

Figure 3 shows the wave front at three different times, and it
dE clearly demonstrates that the front is a traveling wave mov-
—— +u(E)m—D(E)(nioy— M) =1, (7)  ing with constant velocity as a whole. Our asymptotic con-
dt struction of the wave fronts near the critical curredtsand
J,, which we explain below, exploits their traveling wave
Ei—E,_i=v(ni—1), (8) nature.
Numerically solving Eq(9) it can be shown that, after a
or, equivalently, short transient, a variety of initial conditions such tligt
—EM() asi——» and E;—E®)(J) asi—x evolve to-
dE E—E_; Ei 1+Ei_1—2E; ward either a stationary or moving monopole. Figure 3 of
ot Tv(B)— —~D(E) Ref.[6] is a phase diagram showing the regions in the plane
(J,v) where different fronts are stable. There are two impor-
=J—-v(E)). 9 tant values ofv, v;<v,, such that:

14
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FIG. 3. Electric field profile of a wave front at three consecutive
wells. We have depicted the field at each well as a function of time
which illustrates the motion of the front at constant velocity.

FIG. 5. Wave front velocity as a function of current density for
v=23. We have compared the numerically measured velocity to the
results of our theory with one or four active wells.

(i) For 0<v<wv, and each fixed e (v,,,1), only traveling
monopole fronts moving downstreafto the righ} were ob-
served. Forw> v, stationary monopoles were found.

(i) For v<wv<w,, traveling fronts moving downstream
exist only ifJe (v y,J1(v)), whered,(v) e (v,,1) is a criti-
cal value of the currentJ;(v) is a monotone decreasing
function such thatd;—v, as v—x; see Fig. 4. IfJ
e(J1(»),1), the stable solutions are steady fro(dtationary
monopoles.

(i) New solutions are observed far>v,. As before,
there are traveling fronts moving downstream ¥
e(vm,Jd1(v)), and stationary monopoles if J
e (J1(v),J2(v)), J»(v)<1 is a new critical current; see Fig.
4. The functionJ,(v) starts atJ,(v,)=1, decreases to a
single minimum value, and then increases toward lvas
—oo. For J,(v)<J<1, the stable wave front solutions of
Eq. (9) are monopoles traveling upstredto the lef). As v
increases),(v) andJ,(v) approachv,, and 1, respectively.
Thus stationary solutions are found for most values ofv

Wave front velocity as a function of current has been
depicted in Fig. 5 forr=3, which corresponds to the first
plateau of the 9/4 SL. For larget, the interval of] for which
stationary solutions exist becomes wider again, trying to
span the whole intervalu(,,1) asv—~. For very largev,
the velocities of downstream and upstream moving mono-
poles become extremely small in absolute value.

B. Pinning of wave fronts with a single active well

At the critical currents,J;(v) and J,(v), wave fronts
moving downstream(to the right, following the electron
flow, c>0) for smallerd or upstreanito the left, against the
electron flow,c<0) for largerJ fail to propagate. What hap-
pens is that the wave front field profilE(7) becomes
sharper as approaches the critical currents. ExactlyJat
k=1,2, gaps open up in the wave front profile which there-
fore loses continuity. The resulting field profile is a stationary
front E;=E;(J,v): the wave front is pinned fod;<J<J,.
The depinning transitiorifrom stationary fronts to moving

is large enough.

wave front$ is technically speaking a global saddle-node
bifurcation. We shall study it first in the simplest case of

0.8 0.2 . . . .
- t large 'dlmensmnless doping, and then indicate what hap-
0.6 20151 pens in the_ general case. N
S04 (a) = oq ’\: (b) For sufficiently large doping and close to critical, the
- = x moving front is led by the behavior of a single well, which
0.2 W05 'y we will call the active well If we examine the shape of a
Sw-o_ o) stationary front near the critical current, we observe that all
% 20 40 60 % 20 40 eo  Wells are close either t&¥(J) or E®)(J) except for one
v v well which drifts slowly and eventually jumps: the active
0.2 well. Let us callg, the electric field at the active well. Since
0.8 4\6 15k all wells in the fropt pgrform the same motion, we can re-
S07 £ (d) construct the profileE(i —ct) fr_om the _tlme evolution of
ey S o1y Eo(t)=E(—ct). Before the active well jumps;~E™M)(J)
0.6 (c) (0 for i<0 andE;~E®)(J) for i>0. Thus Eq.9) becomes
05 oo e dE E.—E®
0% 20 40 &0 % 20 40 60 d—tOWJ—v(Eo)—v(Eo)O—

FIG. 4. Upper and lower critical currents as functions of the

v

dimensionless.

EM+EC-2E,
+D(Eg)——.
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3

2_5)(10 0)(10 U +D D
a=1+—>"24 2 (16)
) vy vug
2f -1r
o5l 2vB=DJEM+E®-2E,)—4D,—2v},
15 2 +uo(EM—E;—2v). (17)
3 3—2.5
© ° Ll B is negative ifJ.=J; and positive ifJ.=J,. Equation(15)
T has the(outen solution
-35
4t e [a3=3)
osr (@) v=20 1 (b) v=20 e(t)~(—1) Ttar(\/aB(J—Jk)(t—to))
45}
a9
° 0.0I778 0.0.779 0.078 0.63425 0.62343 0.63:435 0.6344

(k=1,2), forJ such that sign{— J,) =signB. Equation(18)
is very small most of the time, but it blows up when the
v=20. We have compared the numerically measured velocity to they ;1ar approximation holds over a time interval—(to)

results of our theory with one active well. ~alJaB(I—Jy). The reciprocal of this time interval yields

i i , , an approximation for the wave front velocity
This equation has three stationary solutions JoJ<<J,,

two stable and one unstable, and only one stable stationary [aB(I—3))

solution otherwise. At the critical currents, two of these so- lc,v)|~——. (19
lutions coalesce forming a saddle node. At low values of the 7

current, the two coalescing solutions form a double zero cory, Figs. 5 and 6, we compare this approximation with the

responding to a maximum of the right side of E#i2). For  merically computed velocity for=3 andv= 20, respec-
high currents, the two coalescing solutions form a dou Ie(ively.

zero corresponding to a minimum of the right side of EqQ.  \yhen the solution begins to blow up, the outer solution
(_12). The crl_tlcal currents are such that the expansion pf th%q_ (18) is no longer a good approximation, fé(t) de-
right hand side of Eq(12) about the two coalescing station- parts from the stationary valug,(J.). We must go back to

ary solutions Eq. (15) and obtain an inner approximation to this equation.
As J is close toJ; and Eq(t) —Eq(J;) is of order 1, we
J—v(EO)—v(EO)EO_E(l) +D(E0)E(1)+ E®)-2E, -0 numerically solve Eq(15) at J=J. with the matching con-
v dition that Eq(t)—Eo(Jo)~(—1)2[mVBI[a(I—I.)]
(13 —2|B|(t—ty)], as t—tg)— —. This inner solution de-
scribes the jump o, to values close t&™") if J,=J;, or to
has a zero linear term values close t&® if J.=J,. During this jump, the motion
of E, forces the other points to move. Thus, fdy=J,,
DHEM+E®—2Eg)—2Dg—v{(Eg— EM)—vg—ww(=0.  E,(t) can be calculated by using the inner solution in €.
(14)  for Ey, with J=J, and E,~E®). Similarly, for J.=J,,
E_4(t) can be calculated by using the inner solution in Eq.
Here Dy meansD’(E,), etc. Equationg13) and (14) yield  (9) for Eg, with J=J. and E_,~EW. A composite expan-
approximations tcE, and the critical currenl, (which is  sion[24] constructed with these inner and outer solutions is
eitherJ; or J,). The results are depicted in Figs. 5 and 6, andcompared to the numerical solution of the model in Fig. 7.
show excellent agreement with those of numerical solutiondNotice that we have reconstructed the traveling wave profiles
of the model forv>2. Our approximation performs less well E(i —ct) from the identityEq(t) = E(—ct).
for smaller v, which indicates that more active wells are
needed to improve it. C. Pinning of wave fronts with several active wells
Let us now construct the profile of the traveling wave
fronts after depinning, fod slightly below J; or slightly
abovel,. Up to terms of ordefJ—J.|, Eq. (12) becomes

The previous asymptotic description of the depinning
transition deteriorates as decreases. What happens is that
we need more than one active well to approximate wave
d front motion. Depinning is then described by a reduced sys-

_¢~a(J_JC)+5¢2, (150  tem of more than one degree of freedom corresponding to
dt active wells. There is a saddle-node bifurcation in this re-
duced system whose normal form is again E45) with
for Eq(t)=Eq(Je) + @(t), asd—J.. Eq(J,) is the stationary different coefficients. The jump of the active wells after
solution of Eq.(12) at J=J.. The coefficientsx and 8 are  blowup is found by solving the reduced system with a
given by matching condition. How do we determine the optimal num-
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15

- simulation Y - simulation f 7
- approximation 12} - approximation i 1
v=20, J=0.6343 v=3, J=0.4044

101

E, ()

200 3000 3500 2000 4500 %0 2000 4000 6000 8000 10000 12000 14000 16000 18000
t
FIG. 7. Wave front profiles neal=J, for »=20. We compare FIG. 8. Wave front profiles neal=J; for »=3. We compare
the results of matched asymptotic expansions with one active weffie numerical solution of the model with the result of matched
and the numerical solution of the model. asymptotic expansions with five active wells. Notice that the largest

error source is the theoretical estimate of the time pefaderror

ber of active wells? For a givem, the eigenvector corre- ©f 200 in a 3000 period
sponding to the zero eigenvalue has a certain number of ) vi=v(E;), v/ =v'(E;) D;=D(E,), etc. All quanti-

components that are of order one, whereas all others are Ve{'_Pés a,re evaluated a@t=J, . Clearly these formulas become
small. The number of components of normal size determine L oTves
P Bgs.(16) and(17) if L=M =0, Up=U]=1.

the optimal number of active wells: only one well if is Obviouslv. th luti d int tati f E45) i

larger than 10, four ifv=3, etc. The eigenvector of the re- h Vious y'b fe solu |(§>n an llnherpr(?[ a 'ﬁn 0 E(r?f ) Ist hi

duced system of equations for the active wells is a goo& € Same as belore, and we only have to change the matching
ondition and the description of the jump of the active wells.

approximation to the large components of the eigenvecto : . . .
corresponding to the complete system. As we approach th%creasmg_the _number of active wells apprgmably_mproves
e approximation of the wave front velocity; see Fig. 5. The

continuum limit, more and more points enter the reduced . . . .
system of equations and the approach of Sec. Ill becomesl(%mp of the active wells is described by the solution of Eq.

viable alternative to these methods. ) for i=-L,... M, with J=J;, E()=E(J.,»)
As before, the wave front profile will obef(i —ct) +U;¢(t), and the same matching condition as before. Figure
—E(t) Wher’ei —— M are the indices of tha=L 9 depicts a comparison of the composite approximation and
1 ’ [N

+M+1 active wells. Then their reduced dynamics Obeysthe numerically calculated field profile for=3. Notice the

Eq.(9) fori=—L M together with the approximations Improvement with respect to the single active well approxi-
E__1~E® andE,.,~E. We have to find approximate mag)?JrrLanal sis shows that the transition from moving to
stationary solutions of this system, and then linearize it with y 9

respect to the appropriate one. At the approximate critica?tritf'i?; apé:&%g?;gﬁ?;gg SslZ?:mOf(;‘ogélt?ngt{vce)rl;h?hvﬁ;/:nfsric:ir(l)tn
currentJ;, one of the eigenvalues of the linearized syste ) y ’

becomes zero. Let us cauiT and U, the A-dimensional A Is a global saddle-node bifurcation: two stationary solutions

a . . . coalesce at the critical current ardor J<J;(v) or J
=L+ M +1) left and right eigenvectors c_orrespond!ng to the>J2(v)], a traveling wave front appears. Near the critical
zero eigenvalue of the coefficient matrix for the linearized

o currents, the field profile of this front is very sharp: it re-
system, ghosen SO thﬁ,tw:*LUi Uj=1. Very close td,, the sembles the typical discrete steps of the stationary profile on
electric field profile will beE;(t)~E;(J;,») +U,;¢(t) plus

_ _ i long intervals of time(scaling as|J—J;|~*/?), followed by
terms which decrease exponentially fast as time elapses. 5t transitions between steps. Although we do not have
obeys Eq.(15) with the following coefficients:

proof, it is natural to conjecture that the depinning transition
for the complete SL model is of the same type as that for the

M +D DyUT
_ t, Yoo+, EMYMm reduced system of active wells.
a= 2, U+ ——ul+ ——, (20) ! o _
i=—L vo! | 4 VU1 Remark Notice that our theory of front depinning applies
with minor modifications to discrete models with more com-
1 M plicated [than Eq. (4)] constitutive relations, J;_; 1
B= 2 2 [D/UX(Ej 1+ Ei_1—2E) =J(F,,n;,nij;4) (cf. Wacker's paper in Ref[3]) or
vistt Jini+1=J(Fi—1,Fi,Fi+1,ni.niyq) (cf the complete dis-
+2D/Ui(U;41+U;_1—2U) — 20/ U;(U;—U; ) crete model in Ref.16] where pot_entlal drops at the barriers
V; are used instead of electric fields averaged over one SL
+ug(Ei,l—Ei—2y)uﬁ]uJ. (21 period F;). The key point is that only a finite number of

wells are active in wave front depinning for sufficiently
Here we have se) | ;=Uy,,=0,E_ ;=EW, Ey,, largew.
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I1l. CONTINUUM LIMIT 0.1 ;
- egual area rule
The continuum limit of the DDD model is useful for un- | o St |
derstanding self-sustained oscillations of the current and '
wave front motion. It consists of—0, i—o0, with vi=Xx
e[ONv], Nv>1. In this limit, Eq.(9) becomes 0.091 .
—0
JE JE %o.oss»
E'f’U(E)&—J—U(E), (22
0.08}
up to terms of ordew. Equation(22) corresponds to the L
hyperbolic limit of the well-known Kroemer model of the 0.075| \
Gunn effec{18]. With constant], shock waves are solutions
of these equation§25]. These waves are related to wave 0.07 . . . .
fronts, and their speed can be calculated explicitly. Let 0 0.2 04 J 0.6 08 1
V(E, ,E_) denote the speed of a shock wave such that
becomesE_ (respectively,E,) to the left (respectively, FIG. 9. Comparison of the equal-area r(leading order and

right) of the shock. Inside the shock wave, we should use theorrected equal-area rulmcluding first-order correctionspproxi-

discrete model witm;>1, dE;/dt~—-V(E;—E;_,)/v>1, mations to the wave front velocity with the numerical solution of

andJ=0(1). Notice that we have rescaled the wave frontthe model forr=0.01.

velocity so thatV=cwv is the correct velocity for théres-

caled continuum profileE(x—Vt)=E(»(i —ct)). Then =EN(J) and E, =E®)(J). For Je (vy,J*), a wave front
joining EM(J) to E®)(J) consists of a shock wave having
E,=E®(J), and E_ such thatV(E®(J),E_)=v(E_).

Ei—E-=2 (E~Eiy) Furthermore, to the left of the shock wave, there i

region moving rigidly with the shock and such that

"’VE n; JE

[v(E)—V](95 =J-v(E), (25
Ei—Ei-1 D(Ej)

V2 v(E))+D(E) +2 o(EN+D(E) " M"Y for negativeé=x—Vt, and E(—=)=EM(J), E(0)=E_ .

E_E D(E)(E, . 1—E)) This whole structuréshock and tail regionis called anono-
~V> i =il > gl =i pole with left tail[5]. Similarly, for Je (J*,1), a wave front
v(E;j)+D(E)) v(E;j)+D(E;) joining E®(J) to E®)(J) becomes anonopole with right

) ) ] tail. This monopole consists of a shock wave havig
This expression yields —EM(J), andE. such that/(E, ,E®(J))=v(E,), and a

tail region satisfying Eq(25) for positive ¢, with the bound-

v(E)(Eir1—E) ary conditionsE(0)=E_ andE(«)=E®)(J) [5]. In conclu-

>

B v(Ei)+D(E)) sion, the wave front velocity as a function dfs determined
> Ei—E_; '’ by the following equations:
v(E))+D(E)

C(H=V(E®)J),E.),
which becomes

with
fE+—U(E) dE 0(EL)=V(E®I)E.), if vy<I<JI*,  (26)
e v(E)+D(E)
V(E; E_)= fa dE , (23 C())=V(E, ,E™®)),
e v(E)+D(E) with
in the continuum limit. This expression is equivalent to the v(E.)=V(E, ,E®)), if JI*<JI<1. (27)

following weighted equal-area rule:
Notice that thisC(J) is the limiting value of the rescaled
fE+U(E)—V(E+ E-) dE=0 (0 Wave front velocity,c(J, ») v asv—0+. We have compared
e. v(E)+D(E) e the continuum approximation of the wave front velodity
wells traversed per unit time, i.ec(J,v)=C(J)/v, not res-
For D=0, this formula reduces to that derived for the dis-caled with the numerical solution of the model for
crete drift model in Ref[17]. An expression including the =0.01 in Fig. 9. The equal-area rule result corresponds to
next correction to this formula is given in Appendix B. There Egs. (23), (26), and (27) and its maximum difference with
is only one value ofJ, J*, such thatV=J with E_ the numerical solution is about 17.6%. Notice that the cor-
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rections in Appendix B significantly improve the result: the ACKNOWLEDGMENTS
corrected equal-area result E®2) differs at most by 3%
from the numerical solution.

Remark A different strategy to derive a formula for the
shock velocityV(E, ,E_) could be to retain the first-order
corrections to Eq(22) and then use well-known procedures ~ APPENDIX A: DRIFT VELOCITY AND DIFFUSIVITY
for partial differential equations. The first-order correction to COEFFICIENTS

Eq. (22) is

This work has been supported by the Spanish DGES
through Grant No. PB98-0142-C04-01.

To compare our theoretical results with those of numerical
5 solutions of the model, it is better to use analytical approxi-
D(E)+ E)E mations of drift velocity and diffusivity instead of using nu-
2 | ox?’ merical data for them. We use the following dimensionless
(2g)  coefficients which approximately fit those used in Réi:

JE
—oHU(E) - =3-v(E)+v

i_n which terms of orden? are ignore(_j. Aw—0, this equa- _ 0.2684E 0.9072
';luolr; has shock waves whose velocity obeys the equal-ared’(E)— 0.25+ (0.986E — 0.8572 + 0.16+ (0.986E — 15)2
c o(E) V(E, E.) —0.004, (A1)
J’E_ o(5) 9ETO @9 D(E)=2e F°. (A2)

D(E)+—

The velocity has a local maximum &t=1, v=1.
instead of Eq(24). Notice that this rule gives the same result
as Eq.(24) for D=0. What is wrong in this argument? No- APPENDIX B: EIRST-ORDER CORRECTION
tice that we have to use the rescaled moving varigbtéx TO EQUAL-AREA RULE
—Vt)/v to derive Eq.(29). After rescaling, both convective o
and diffusive terms in Eq28) are the largest ones, of order A more careful derivation of the equal-area rule uses the
»~1>1. But so are all the terms in the Taylor serigg ( trapezoid rule for Riemann integrals
—Ei_1)/v=0El9x— (v[2)9°El x>+ (v?I6)°Elox3+ . . ., .
: : . ) . .

‘é"h'Fh \{vas.used to _de_nye ECR8) in the first place. Thus this f f(E)dE~ 2 F(E)(E,—E;_4)

erivation ignores infinitely many relevant terms in the Tay- E_
lor expansions ofn; and n;,; and it yields the incorrect

1
formula Eq.(29) as a result. -5 > [f(E)—f(E;_1)](Ei—E;_,)

IV. CONCLUSIONS

| o ~2 f(Ei-)(Ei—Ei-y)
We have analyzed the motion of wave fronts in discrete

drift-diffusion models of nonlinear charge transport in super- 1

lattices. Moving wave fronts are profiles of the electric field +5 > [f(E)—f(Ei_1)](E;—E_y).
traveling rigidly with constant velocity. Propagation failure

of the fronts occurs because the field profile loses continuity (B1)

at the critical currents and becomes pinned at discrete sites.

We have characterized propagation failure of wave frontsie can repeat our derivation in Section Ill step by step, but
and, conversely, front depinning by singular perturbationkeeping now the correction terms E&1) when substituting
methods. These methods are based upon the fact that onlyitegrals instead of Riemann sums. The result is

few active wells characterize wave front motion for dimen-

sionless doping sufficiently large. In the continuum limit, E,  v(E)

asv tends to zero, more and more wells become active and a fE md E+Sy

different approximation makes sense. In this limit, discrete V(E, ,E_)=— , (B2)
equations turn into differential equations, and wave fronts fE+ dE +Sy

turn into monopoles which are shock waves with a rigid tail e v(E)+D(E)

region to their left or right. We have derived the equal area

rule for such shock waves, and also its leading correction. 1 D, D,

Our different asymptotic theories perform well in their re- SN=§ 2 D D )(Ei—Eil)
spective domains of validity and approximate the motion of a vithi viatDig

wave front at constant current on an infinite superlattice. Un- 1 v; viq

derstanding this motion is the key to understanding more =3 > S Y—— )(Ei—Ei_l),
sophisticated phenomena occuring in semiconductor super- vitli Vi-im i

lattices under voltage bias conditiof5]. (B3)
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1 1 1 v2(v;—J)/(v;+D;), which vanishes in the continuum limit.
So=5 > oD oD . |Ei"Ei-1. (BY  Notice thatv; 1~v;—v/(E;—~E;_y), a similar relation for
o T D;_; and thatv/ <O (typically) andD/ <0 suggest thaS
=<0 andSp=0. Thus we expect that the corrected shock
In the numerator of EqB2), we have ignored the term velocity belower than the leading order E@23).
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