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Normal scaling in globally conserved interface-controlled coarsening of fractal clusters
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We find that globally conserved interface-controlled coarsening of diffusion-limited aggregates exhibits
dynamic scale invariancéDSI) and normal scaling. This is demonstrated by a numerical solution of the
Ginzburg—Landau equation with a global conservation law. The general sharp-interface limit of this equation
is introduced and reduced to volume preserving motion by mean curvature. A simple example of globally
conserved interface-controlled coarsening system: the sublimation/deposition dynamics of a solid and its vapor
in a small closed vessel, is presented in detail. The results of the numerical simulations show that the scaled
form of the correlation function has a power-law tail accommodating the fractal initial condition. The coars-
ening length exhibits normal dynamic scaling. A decrease of the cluster radius with time, predicted by DSI, is
observed. The difference between global and local conservation is discussed.
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Growth of order from disorder in systems with long-rangeconserved order parameter. Particle simulations of noncon-
correlations is an intriguing problem which appears in phaseserved phase ordering following a quench frdm T, to T
ordering[1] and in many other applications. In phase order-=0 showed that in this case DSI holds, and that new univer-
ing systems, long-range correlations appear most naturallyality classes for the equal-time two point correlation func-
when the system is quenched from the critical temperaturéon appeaf15]. However, a large discrepancy between the
T=T, to T=0. Systems with long-range correlations are of-approximate theoretical correlation function and the numeri-
ten characterizable by fractal geomef], and a question cal one still remains unexplained. Implications @has$
arises about the role of the fractal geometry in the coarseningonservation in fractal coarsening were considered more re-
dynamics. Therefore, a lot of attention in different fields of cently [4,8]. Most remarkable of them is the predicted de-
physics has been devoted to a Variety of processes of “fractélrease of the cluster radius with time. However, there has
coarsening’[3—14). A typical setting for fractal coarsening Peen no convincing evidendeeither in experiment, nor in
is the following. At an earlier stage of the dynamics a fractalSimulations in favor of DSI in conserved fractal coarsening.
cluster (FC) develops due to an instability of growth of the Moreover, anomalous scaling and breakdown of DSI were
“minority phase_” Canonical exampies are deposition of Soi_Observed in recent simulations of |0ca”y conserved edge-
ute from a supersaturated solution, solidification from an undiffusion- [7] and bulk-diffusion-controlled[9,10] fractal
dercooled liquid and viscous fingering in the radial Hele—coarsening(By definition, normal scaling follows from the
Shaw cell[2]. When the massor hea} source is depleted, governing equations when one assumes DSI. Anomalous
fractal coarsening, that is coarsening of fractal clusters bypcaling may occur when DSl is brokeiwe report here our
surface tension, becomes dominant. Additional examples apinding that DSI and normal scaling hold in the process of
pear in the context of sinterinf,7], smoothing of fractal interface-controlledfractal coarsening with globally con-
polymer structure in the process of polymer collapsg], served order parameter. This system is apparently the first
thermal relaxation of rough grain boundardgl], etc. How  realistic conserved fractal coarsening system where this sim-
does the morphology of the FC change in the process dlifying and beautiful concept is found to work.
coarsening? Is there any dynamic scaling behavior, and what As we show below, a simple example of globally con-
are the universality classes? served interface-controlled coarsening is provided by the

A major simplifying assumption in an attempt to answer Sublimation/deposition dynamics of a solid and its vapor in a
these questions is dynamic scale invariat@8l). DSI im- ~ small closed vessel kept at(aonstant temperature below
plies that there exists, at late times, a single coarsening® melting point [16]. Globally conserved interface-
length scald (t) so that the pair correlation functigd(r,t)  controlled coarsening also appears in the growth of solid
has a self-similar forng[r/I(t)] [1]. Because of the com- particles un_dergoing a chemical reaction in which a gaseous
plexity of coarsening systems, DSI has not been proven, excompound is formed17]. Another example appears in the
cept in some simple modeld]. For systems with short- con'Fext of attaphment/detachment—c_ontrolled nanoscale fluc-
range correlations, there is a lot of evidence supporting DS{uations at solid surfacgd.8], where it has been found pos-
from experiments as well as from numerical simulations. TheSible to single out the interface-controlled kinetif:9).
situation is very different for systems with long-range corre-There is also a strong empiric evidence in favo_r of.mterface—
lations. Toyoki and HondEB] were the first to apply the DSI controlled transport during the cluster coarsening in electro-

hypothesis to such systems, considering systems with norgfatically driven granular flowg20]. o
Globally conserved interface-controlled dynamics is also

related to a wide range of multiphase coarsening systems.
*Email address: meerson@cc.huji.ac.il Sire and Majumdaf21] showed that in the large limit the

1063-651X/2001/648)/0361276)/$20.00 64 036127-1 ©2001 The American Physical Society



AVNER PELEG, MASSIMO CONTI, AND BARUCH MEERSON PHYSICAL REVIEW B4 036127

dynamics of theg-state Potts modékee Ref[1]) is equiva- wheres is the coordinate along the interface ards the
lent to globally conserved interface-controlled dynamicslocal curvature of the interface. A positiwg corresponds to
with an area fraction #y. This limit is of special importance. the interface moving toward phase 2, white-0 when the
Indeed it is known that in the largglimit the g-state Potts interface is convex towards phase 2.
model describes correctly some of the main characteristics of An equation forH(t) follows from GCL[27]:
the coarsening of polycrystalline materig®2], and of the
dynamics of dry soap froth®3]. 4A(t)

Here is an outline of the rest of the paper. We shall work L2 —H(t)=const, %)
with the Ginzburg-Landau equation with a global conserva-

tion law (GCL). The corresponding sharp-interface theory 'SwhereA(t):fu(ryt)>0d2r is the cluster area. Equatiorié)

mtroduced,_ and an expenmgntal realization of the model 'Jnd (5) make a closed set and provide the sharp-interface
presented in detail. At late times the general Sharp"merfacﬁ)rmulation to our problem

theory is reducib[e to volume preserving mo'tion by. mean Remarkably, this simple sharp-interface model is a good
curvature. Assuming .DSl’ one can then predict scaling beé\pproximation to the following physical process. Consider
havior of the correlation function, a decrease of the cluste{he sublimation/deposition dynamics of a solid, e.g., an

radius with time and normal scaling of the coarsening leng”hmorphous ice, and its vapor in a small closed vessel kept at

I(1). Our _extens_ive numerical_sim_ulati_on_s of the coarseninga constant temperature. As the acoustic time in the gas phase
of two-dimensional (2D) diffusion-limited ~aggregates is short compared to the coarsening time, the gas pressure

(DLAs) support all these predictions. We shall conclude byand density remain uniform in space, changing only in time.

pointing out the main difference between global and IocalLI'his character of mass transport in the vapor phase makes
conservation. . the coarsening dynamics conserved globally rather than lo-
We adopt a Ginzburg-Landau free energy functional 1 “\which leads to different kinetics. We shall derive the
governing equations for the dynamics of this system in three
F[u]=J [(1/2)(Vu)2+V(u)+Hu]dr, (1) dimens_iond3D), and also give the result_s for 2D.. The deri-
vation is based only on a few assumptions which are well
accepted at intermediate and late times of a coarsening pro-
where V(u)=(1/4)(1-u?? is a double-well potential, cess.
u(r,t) is the order parameter and fluctuations are neglected. The net flux of molecules into the solid phase is given by
The effective “magnetic field'H=H(t) changes in time so the difference between the outward flux of solid molecules
as to impose the GCL(u)=const, where(- - -) denotes a into the vapor phasér and the inward flux of vapor mol-
spatial average eculesJ,

(~->=L‘df(~~)ddr. @) Jner=Nsvn=Jdr—J,, (6)

whereng is the constant number density of the solid phase.
é\lotice thatJr is equal to the(inward flux of vapor mol-
ega_cules in equilibrium with a solid surface with mean curva-
ture x. The flux of molecules of an ideal ga#riking a sur-
face is given by

L is the system size and the integration is over the whol
system. The dynamics is described by a simple gradient d
scent

2mm

au oF 12
= V2 —ud- kgT

pn 50 Veu+u—u’—H(t). 3 Jzn( B ) , )
Using Eq.(3) and the GCL, one getd(t)=(u—u®) (peri-  wheren is the densitykg is the Boltzmann constarit,is the

odic boundary conditions are assumetherefore, Eq(3) is  temperature, anth is the mass of one molecule. Combining
a nonlocal reaction-diffusion equatig@4—27. In the con-  Eqs.(6) and(7) we obtain

text of phase ordering it can be called the Ginzburg—Landau

equation with a GCL. To make theoretical progress, one

should work in the sharp-interface limit valid at late times, Jnet= nsvn:a(
when the system already consists of large domains of “phase

1" and “phase 2" divided by a thin interfacg27]. At this  \yheren =n (t) is the actual spatially uniform and time-
stageH(t) is both small,H(t)<1, and slowly varying in  gependent number density of the vapor phase,rgnis the
time. The phase field in the phases 1 and 2 is uniform anglensity of the vapor in equilibrium with a surface with mean
rapidly adjusts to the current value 61(t), so u=—1 — cyryaturex. The coefficienta obeying 0<a<1 accounts
—H(1)/2 and 1-H(t)/2, respectively. For brevity, we will - for the fact that only a fraction of the impinging vapor mol-
consider the 2D case. The normal velocity of the interface igcyles indeed goes into the solid phase. The demsitjs

[27] given by the Gibbs—Thomson relation

vn(s,0)=(3N2)H(t) - k(s,1), (4) nr=ne(1—\«x), (9)

keT

1/2
m) (nF_nv)v (8)
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where ng is the density of the vapor phase in equilibrium where the overbar stands for averaging over the interface
with a flat interface of the solid\ is the capillary length, and
the mean curvature is the sum of the two local principal
curvatures. In writing Eq(9) one assumes thatk<1. The
minus sign in the last equation is due to our sign convention
for k: k>0 when the interface is convex towards the solidand A(t) is the cluster perimeter. If the cluster area is con-
phase. Substituting Eq9) into Eg. (8) and denotingAn  served, therH (t) = (\/2/3)x(s,t) which yields

=n,— Ny, we arrive at the following expression for, :

a)\no kBT v " An
ng \2mm “ )\_no

1

k(s,t)= m é k(s,t)ds (15

vn(s,t)=k(s,t)—«(s,1). (16)

Un=—

: (100  This is area-preserving motion by curvatufi@ 2D), or
volume-preserving motion by mean curvatufen 3D)

Since the total number of molecules in the systdpis ~ [29,27,28. Dynamics(16) shortens the interface lengtm
constant, theglobal conservation law is given by 2D), or ared(in 3D) [25,28. This nonlocal coarsening model
is simpler than the better known “Laplacian coarsening
NV(t) +n, (t)[L3—V4(t)]=Ng=const, (1) model” (derivable from the Cahn-Hilliard equatigt,29])
which describes the late-time asymptotics of the locally con-
whereV,(t) is the total volume occupied by the solid phaseserved, bulk-diffusion-controlled coarsening.
and L is the linear size of the vessel. Ag (t)<ng, and A single circular(in 2D) or spherical(iin 3D) domain of
assuming that throughout the dynamiégt)<L3, the third  one of the phases in the “sea” of the other phase represents
term on the left hand side of E¢l1) can be neglected. This the only stable two-phase steady state of maé) not di-

leads to rectly imposed by the system boundarig5,27. In this
work we investigate the relaxation dynamics which start
V() An(t) from complex initial conditions. As always in the phase or-

?Jr ne =const. (12 dering theory, we are interested in(\&ery long time range

when, on one hand, irrelevant details of the initial conditions
are forgotten but, on the other hand, the system is still very
far from the simple final state. It is this intermediate time
range where one can expect dynamic scaling behdipr
AL ANt Assuming DSI, we can estimate the inte;rface veloc.ity;@s
T —const, (13y ~ ~—dl/dt. Each of the terms on the right side of Eg6) is of
L2 Ns order 1I (except for critical quench, when the first term av-
erages to zeno Equating and integrating yields the normal
with Ag(t) the total area occupied by the solid phase. We seecaling:|(t)~t'2. Therefore, GCL does not change the dy-
that Egs.(10) and (13) for the sublimation/deposition dy- namic scaling. The same resgdgain, when assuming DSI
namics are similar in form to the general globally conservedollows from dynamic renormalization group arguments ap-
sharp-interface Eq$4) and(5), and these two models can be plied to Eq.(3) (with a Gaussian white noise teji80]. For
mapped into each other exactly. Specifically, the role of thehort-range correlations this result was supported by kinetic
magnetic field in the general theory is played by the vapomMonte Carlo simulations of criticdl31] and off-critical[21]
supersaturatiodn in the sublimation/deposition dynamics. quench, and by a numerical solution of E8) for both criti-
Possible additional examples of globally conservedcal, and off-critical quenci32]. For critical quench, the
interface-controlled dynamics obeying E¢50) and(13) are  coarsening morphology is that of interpenetrating domains,
provided by some chemical systems. Consider a solid thawhile for off-critical quench it is that of Ostwald ripening.
can undergo a chemical reaction with a gas in which a gas- Let us return to fractal coarsening. The initial conditions
eous compound is formed. For example:+@,=Pt0,, are FCs characterizable by fractal dimendban an interval
where at sufficiently high temperatures Pi®a gas, and the f scales between the lower and upper cutbifandL,. The
reaction takes place at the surface of the solid Pt. Using thgg|-pased coarsening scenai&4,8 assumes that the frac-
same considerations as in the submimation/deposition exa| dimension of the cluster remains constant on a shrinking
ample, we obtain exactly the same EGE)) and(13), with  interval of distances between the lower cutdf) (the coars-
PtO, playing the role of the vapor phase. In fact, Wynblattening length, and an upper cutoft (t). Now, the perimeter

and Gjostein considered such (_jynan[L’bi], but without set- A and area of the FC can be estimated f
ting the conservation lavithat is, in an open vessgeland

referring only to spherical particles.
Equationg4) and(5) of the general sharp-interface theory

;:;[r; often be further simplified. Compute the cluster area Iosrsespectively. Area  conservation yieldsT ~|(®~2/P

~1~(2=D)2D (the characteristic radius of the FC decreases
3 with time) [4,8]. This follows A (t)~1~*(t)~t~ Y2 One can
—H(t)— K(S’t)l' (14) also predict the asymptotic shape of the equal-time pair cor-
NA relation function at large timesC(r,t)—g[r/I(t)]. At dis-

For a 2D systemy, is given by an equation similar to Eqg.
(10), and the global conservation law takes the form

A~I(L/HP and A~I%L/)P, 17

A(t)= §£ vn(s,tyds=A(t)
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FIG. 1. Evolution of a DLA cluster undergoing an interface-

S FIG. 2. Scaling form of the correlation functid@(r,t) for time
controlled coarsening in a globally conserved system. The UPPe imentst=400.0 587.0. 1264.8 and 1856.6. The inset shows the
row corresponds to=0 (left) and 12.6(right), the lower row tot o U ' g

— . same data on a log-log plot. The solid line, serving as a reference,
=126.4(left) and 1856.6(ighy). represents a power-law with an exponént 2= —0.25.

tances <I(t) from a typical reference point inside the clus-
ter the correlation function should obey the Porod law:
g(&)=1—-ké with a constantk of order unity. Atl(t)<r

<L(t) we haveg(¢&)~¢£P 2 (see Ref[8]), a power-law tail

sampled and averaged over the ten initial conditions:
(1) The cluster area.
(2) The(circularly averagegdcorrelation function, normal-

. X ized atr =0.
with the same exponent as @(r,t=0). Finally, the dura-
tion of the fractal coarsening stage should scale like the clus- (p(r'+1,0)p(r' 1))
ter areaA. This estimate follows from the fact that, by the C(r,t)= ’ —, (18
end of this stage, the lower and upper cutoffs of the fractal (p%(r',1))
cluster become comparable.
In order to check these predictions, we solved R). (3) The coarsening length scalét), computed from

numerically on a domain 20482048 with no flux(that is,  equationC(l,t)=1/2.
zero normal component dfu) at the boundary. The accu- (4) The cluster perimeteA(t) computed by a standard
racy of the numerical scheme was monitored by checking thelgorithm{[34].
(approximate conservation law5) which was found to hold The cluster area was found to be constant with an accu-
with an accuracy better than 0.2% foe 3. racy better than 0.5% far>10, and better than 0.15% for
We used ten different DLA clustef83] as the initial con- t>100. Hence, area preserving motion by curvature, Eq.
ditions. This choice makes it possible to compare the(16), provides an accurate description to this regime. Figure
interface-controlled fractal coarsening with bulk-diffusion- 2 shows that, at late time4>100), C(r,t) approaches a
controlled coarsening, where anomalous scaling and brealscaled form. The scaled function has a long-range power-law
down of DSI were observed for DLA clustef,10]. To tail with an exponenD — 2 (the same as in the initial condi-
prevent fragmentation at an early stage of coarsening, théon), see the inset of Fig. 2. Noticeable is the absence of any
clusters were reinforced by an addition of peripheral sitesadditional dynamic length scales, in a striking contrast to the
similar to Ref.[5]. The average fractal dimension of theselocally conserved fractal coarsenifij0]. The dynamics of
clusters, determined from the correlation functid®), was I (t) is shown in Fig. 3 together with the pur¥? power-law
1.75. line (serving as a reference for the expected late-time behav-
Introducing the densityp(r,t)=(1/2)[u(r,t)+1], we ior) and a corrected power-law fit(t)=1,+bt* with «
identify the cluster as the locus whepdr,t)=1/2. Snap- =0.49, b=1.2 andl;=5.0.
shots of the coarsening process are shown in Fig. 1. One can Figure 3 shows that convergencel ¢iff) to scaling is rela-
see that larger features grow at the expense of smaller one$vely slow in comparison with the cases of critical and off-
At late times the cluster radius decreases, as predicted hyitical quencH32]. Therefore we show, in Fig. 4, a different
DSIl. The predicted “shrinking exponent”(—2)/(2D) method[35] of determining the dynamic exponent, suitable
=—0.07 is too small to be measured accurately. A similarfor a slow convergence. In this method one definétnae-
decrease of the cluster size is evident in the pictures obtainetkependenteffective exponentu(t)=d Ini(t)/dInt. Under
in kinetic Monte Carlo simulations of area-preservingthe normal scaling assumption, one can determine the “true”
interface-controlled coarsening of DLA clust¢6g, although ~ dynamic exponent by plotting(t) vs | ~(t) and extrapo-
the authors of Refl6] did not comment on it. lating it to t—oo, that is tol “1(t)—0, where corrections to
To characterize the dynamics, several quantities werscaling due to subleading terms are negligible. The values of
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1000 FIG. 4. The time-dependent effective dynamic exponest)
versus 1((t). The solid line is a linear fit.

tween the two systems is instructive. We notice that global
transport, characteristic for interface-controlled systems, is
uninhibited by Laplacian screening effects typical for locally
conserved systems. In other words, large-scale dynamics is
not suppressed in globally conserved systems, in contrast to
ap(t) are computed fromag(t) =log, | (10t)/1(t)]. This locally conserved ones. This difference is observed already
procedure yieldsy=0.50, that isl(t) exhibits normal scal- in a simpler setting of an area-preserving relaxation of a long
ing. slender bar. In the locally conserved case the bar acquires a
The same procedures were used for an ana'ysis of th@umbbe” Shape, while its initial width remai(ﬂlmos_) con- )
dynamic behavior of the cluster perimet&(t). We found Stant and represents a relevant length scale until late times
the same normal scaling: ~1(t)~tY2 Irisawaet al.[6] re-  [10)- On the contrary, in the globally conserved case a bar
ported an exponent 0.38 fot~ (t) in their kinetic Monte develops a fingerlike shape, and its dimensions are changing

Carlo simulations. Their graph shows, however, an increasgn\;[\r/‘e sr?mledtlme ﬁca[QG].h f
of the effective exponent at late times. We believe that a '/ Should emphasize that at present we are not aware o

careful analysis of their data would also lead to an exponer@ny experiment where interface-controlied coarsening of
of 1/2. ractal clusterswas observed. By contrast, there are many

Thus, all predictions following from the DSI hypothesis: experimental situations where coarsening of fractal clusters
the normal scaling of(t), a decrease of the characteristic occurs in locally _conserved_)gl_k dlffu5|_qn-controlle()l Sys-
radius of the FC with time and scaling behavior of the cor-tems[g]' Our choice of the |n|'g|al (_:ondmons has enabled us
relation function(including its power-law tajl are confirmed to Investigate ffaCt.a' coarsening in a conserved system but
by numerical simulations. We therefore conclude that gIo-WIthOUt the Laplacian screening effects. This helped us to

bally conserved interface-controlled coarsening of DLA cIus—SIngle out the reason for scaling violations observed in the
ters exhibits DSI and normal scaling. This behavior stands irﬁractal coarsening of locally conserved systems.

contrast to the breakdown of scale invariance observed in We are very grateful to Arkady Vilenkin for useful discus-
diffusion-controlled coarsening of DLA clusterf9,10], sions of the sublimation/deposition dynamics. We also thank
where the order parameter was conserdedally. The  Azi Lipshtat for help. This work was supported in part by a
mechanism of scaling violations in locally conserved sys-grant from the Israel Science Foundation, administered by
tems is not known at present, therefore a comparison behe Israel Academy of Sciences and Humanities.

FIG. 3. The coarsening lengtift) vs time (circles. The solid
line is a corrected power-law fit(t)=1,+bt* with «=0.49, |,
=5.0, andb=1.2. The dotted line represents a pt8 power law.
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