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Freezing in random graph ferromagnets
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Using T=0 Monte Carlo and simulated annealing simulation, we study the energy relaxation of ferromag-
netic Ising and Potts models on random graphs. In addition to the expected exponential decay to a zero energy
ground state, a range of connectivities for which there is power law relaxation and freezing to a metastable
state is found. For some connectivities this freezing persists even using simulated annealing to find the ground
state. The freezing is caused by dynamic frustration in the graphs, and is a feature of the local search nature of
the Monte Carlo dynamics used. The implications of the freezing on agent-based complex system models are
briefly considered.

DOI: 10.1103/PhysReVvE.64.036122 PACS nunier05.10—~a, 75.40.Mg, 75.10.Hk, 75.10.Nr

The way a physical system approaches equilibrium is a The model can also be viewed as a constraint satisfaction
subject of interest to both physicists and mathematicians. Iproblem. Each of thé/ edges in the graph corresponds to a
order to measure thermodynamical properties of systems it isonstraint that the two linked spins should be equal. A natu-
important to be certain that the system really is in equilib-ral interpretation of this is a model of a social system where
rium. To ensure this, in computer simulations using thethere areN agents choosing from two different opinions or
Monte Carlo dynamics it is necessary to first run the simuactivities. A link between two agents would mean that the
lation for a long time before measuring. The way that variouswo prefer to agree.
properties(e.g., the energyof the system change during By relaxation of a model, we mean the behavior of the
equilibration is also interesting in itself, e.g., in studies ofenergy after a quench from a high temperature disordered
how an epidemic disease or an opinion spreads in a model @hin configuration. The Monte Carlo methp4] tries to de-
social agents. crease the energy of the system by changing the configura-

Here we study the relaxation of the energy of ferromag-ion of spins locally. In the Glauber dynamigs] used in this
netic Ising and Potts models on random graphs using Montgaper, the change is accomplished by attempting to flip a
Carlo simulations with the Metropolis dynamics. We find anrandomly selected spin. If the new spin configuration has
interesting transition as the connectivity of the graph is variower energy than the old, it is accepted. If the energy is
ied. For very small connectivities, the energy relaxes exporaisedA units by the change, the new configuration is ac-
nentially fast, for intermediate connectivities the systemcepted with probability eXp-BA], where 3= 1/T is inverse
freezes in a local minimurtwith power law relaxationtojt  temperature(this is the Metropolig4] algorithm. In tem-
and for graphs with large connectivities there is again expoperatureT=0 simulation, no changes that raise the energy
nentially fast decay. are accepted. In most of the simulations reported here, the

The model under consideration is the standard Isingviitchell-Moore additive generatofsee, e.g., Ref(6]) was
model with ferromagnetic interactions but with spins placedysed to generate random numbers. Some runs were also per-
on a random graph. In graph theory terminolddy, the  formed using the standaw library’s drand48 ) generator;
ensemble used i§(N,M), which consists of all graphs with these gave the same results.

N vertices andVl =3 yN randomly selected edges. On aver-  For the standard two-dimension@D) Ising model, with

age, each node is connectedytothers;y is the connectivity  J;.=1 if and only if spins andj are nearest neighbors on the

or average degree of the graph. Each edge in the graph issguare lattice, two behaviors of the relaxation are possible. If
ferromagnetic interaction between the two linked spins, andhe order parameter is conserved by the dynamics, so that the
the energy of the model can be taken to be magnetization of the system does not charget %3, while
e~t~ Y2 if single spin flip dynamics are used. These behav-
iors can be understood by considering domains of up and
down sping7].

Since a random graph is locally treelike, it is natural to
where exactlyM of the J;;’s are nonzero and equal to 1. approximate the behavior of the random graph model with
Thus, e counts the number of edges linking spins with dif- that of the same model on a tree. Johnston and Pie@]a
ferent values. Note that this differs from the standard ferrohave shown that the thermodynamical behavior of the ferro-
magnetic Hamiltonian by a-dependent term. Similar mod- Magnetic Ising model is independent of the presence of loops
els on random graphs have been used to study many differefft & graph: it is the same on a random regular graph and on

systems in b|0|ogy and social science as well as in phys|c§ Bethe-tree with the S.ame Con-nectiVity. Da Silva and Silva
(e.g., Refs[2,3]). [9] studied relaxation in the Ising ferromagnet on Cayley

trees, and showed that mean-field theory predicts exponential
relaxation. Exponential relaxation can also be argued for eas-
*Email address: tfkps@fy.chalmers.se ily by writing a mean-field equation for the time dependence
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FIG. 1. The relaxation in a ferromagnetic
Ising model on a random graph with“Gertices,
averaged over 50 graphs and 10 restarts per
graph. For smal{not shown and largey, there is
a fast exponential relaxation, while the behavior
for y=2 and 3 is a power lave= ey +t~ ", with
v~1.3. The lower arrow indicates the curve for
vy=1.5 and the upper one thg=8 data. In be-
tween them are data foy=2, 3, 4, 5, 6, and 7.
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of a spin in terms of its nearest neighbors. Glassiness in thied here too, but because of the relatively small connectivi-
Cayley tree ferromagnet has been studied byliMet al.  ties at which the freezing appears it is more likely that it is
[10], who find a crossover temperature that scales inverselgaused by subgraphs such as those shown in Big. 2.
with the logarithm of the number of surface sites. For the If there are sufficiently many edges between the up and
random graph model considered here, this is 0, since themown domains, the relaxation will be fast. No dynamical
are no surface sites. frustration will occur and one dominant value will spread

Figure 1 shows the relaxation behavioreofor y=1.5to  quickly through the graph. If there are few edges, this will
8 and graphs of size $0All data were averaged over 50 take longer, and different values will dominate different parts
different graphs, and the Monte Car(biC) algorithm was of the graph. This makes it plausible that introducing a met-
restarted in 10 different initial spin configurations for eachric and adding a restriction to the range of the edges could
graph. In order to check self-averaging, we also made runeause changes in the relaxation. This conjecture is confirmed
with averages over 5 graphs and 100 initial configurationsby simulations of a model where the spins are arranged on a
and 500 graphs and 1 initial configuration, and found nochain and edges only allowed between spins whose distance
differences. Error bars were determined to be on the order a6 less thaneN, where« is independent oN. The largey
102 or smaller. The figure shows that largés cause very behavior is now power law relaxation and freezing. This is
fast relaxation to the ground state, while the system freezesimilar to the behavior of the antiferromagnetic Ising and
for intermediate values of. For very smally’s, the relax-  Potts models on a random graj#?]. This is a model for the
ation is of course still fastnot shown in the figune The  graph coloring problem, a combinatorial optimization prob-
behavior for intermediate values ofis thus different from lem that isSNP complete[13], meaning that its worst case
the treelike models. We have also obtained similar resultinstances in all likelihood require exponential time to solve
using ferromagnetik state Potts models on random graphs.on a deterministic Turing machine.

This behavior can be explained qualitatively by noting Returning to the model with no restrictions on the edges,
that even though the ferromagnetic models always have Big. 3 shows the value of after 1G MC steps per spin as a
ground state with zero energy, it is possible for fie0  function of y and for system sizes ranging from 50 to*10

Monte Carlo algorithmand all other local search methgds

that have different values and each of the nodes have two
neighbors with the same value, see Fig. 2. Because there is
only one path between the up and down domains in this
figure, it is not possible to lower the energy by flipping a
spin. Thus, even though the model itself is solvable and con-
tains no frustration, the dynamics gives rise to dynamical
frustration for local search method@/ery recently, Spirin FIG. 2. An example of a configuration that can cause freezing
et al. [11] have found freezing to a blinker state in the 3D due to insufficient clustering) and D denote up and down spins,
Ising model. Blinkers will appear in the random graphs stud-respectively.

to get stuck in a local minimum. The simplest case where
this can happen is when there is a link between two nodes
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determined using about 100 different graphs and about 58re nonsymmetric around their maxima: when calculating
runs for each graph. The freezing region can be seen clearlyye givided by different factors right and left of the maxi-
The error bars of the results shown in this and the othepym, To determine the locations of the maximum and half-
figures were small, typically on the order of or smaller than.,5vimum points, a cubic spline fit of the data was used: the
the symbols used to plot the data. plot shows the original data points.

Fo_r IargIeN, It is pl(:)_SS|bIe;o fr']t all tk;re] data fromfF|g|. 3on Since the energy barrier surrounding the local minimum
a universal curve. Figure 4 shows the energy for lakge shown in Fig. 2 is small, it is likely that finite temperature
rescaled so that the maximum is 1, as a function of a rescal . . .
C simulations would not show the same behavior. To test

parameter this, we have also tried simulated annealitig] on the prob-
lem. Simulated annealing starts at a high temperature and
y= LA ?’o, 2 then gradually decreases it during the simulation. We used a

A" linear decrease in temperatuii(t) =T, —kt, wherek was

chosen so that the simulation ends at zero temperature.

where v, is the location of the maximum andl™ was cal- Figure 5 compares the values offter 1¢ MC steps per

culated so thaty=+1 marks the points where the energy spin for theT=0 MC algorithm with those obtained using
attains half its maximum value. Note that the original datasimulated annealing with start temperatiire=0.1, 0.2, and
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FIG. 4. Some of the data from Fig. 3, rescaled

(109 5| f . by the maximum energy for eadtand plotted as
£ a function of a rescaled parametedescribed in
04r 7 the text.
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0.4 and the same averaging as in the previous runs. Most afsed. This has implications for the study of models of
the freezing disappears in these runs, but there is a region choice-making agents on random graphs: for some connec-
v's for which it remains. Note that the percolation thresholdtivities it is not possible to reach a consensus or the globally
for random graphs is ay=1, well below the freezing. most effective solution by using only local information.
In conclusion, we presented results from Monte Carlo andrhere are intriguing similarities and differences between this
simulated annealing studies of the ferromagnetic Ising modehodel and the corresponding antiferromagnetic model stud-
on random graphs. We find different regions of behavior ofied elsewhere; these could be studied further by examining
€(t)—the expected exponential relaxation but also some rethe model where there are mostly ferromagnetic bonds but
gions where there is power law relaxation. More importantly,with some probabilityp of instead having an antiferromag-
freezing was found in the model. The freezing persisted evenetic bond.
for some simulated annealing runs, but almost disappears for .
large start temperatures. The freezing is a feature of the local | thank Stellan Gtlund for commenting on a previous
search and hill-climbing characteristics of the MC methodversion of this manuscript.
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