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Crossover and self-averaging in the two-dimensional site-diluted Ising model: Application
of probability-changing cluster algorithm

Yusuke Tomita* and Yutaka Okabe†

Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
~Received 28 December 2000; published 27 August 2001!

Using the newly proposed probability-changing cluster~PCC! Monte Carlo algorithm, we simulate the
two-dimensional~2D! site-diluted Ising model. Since we can tune the critical point of each random sample
automatically with the PCC algorithm, we succeed in studying the sample-dependentTc(L) and the sample
average of physical quantities at eachTc(L) systematically. Using the finite-size scaling~FSS! analysis for
Tc(L), we discuss the importance of corrections to FSS both in the strong-dilution and weak-dilution regions.
The critical phenomena of the 2D site-diluted Ising model are shown to be controlled by the pure fixed point.
The crossover from the percolation fixed point to the pure Ising fixed point with the system size is explicitly
demonstrated by the study of the Binder parameter. We also study the distribution of critical temperature
Tc(L). Its variance shows the power-lawL dependence,L2n, and the estimate of the exponentn is consistent
with the prediction of Aharony and Harris@Phys. Rev. Lett.77, 3700~1996!#. Calculating the relative variance
of critical magnetization at the sample-dependentTc(L), we show that the 2D site-diluted Ising model exhibits
weak self-averaging.
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I. INTRODUCTION

The critical behavior of random spin systems has b
studied for several decades@1#. The effect of randomness ha
been attracting much attention because real materials co
impurities. In a pioneering work, Harris@2# studied the prob-
lem whether the randomness changes the critical behavio
the pure system in the case of quenched random syst
The so-called Harris criterion@2# states that even a wea
randomness changes the critical behavior if the specific
exponentapure of the pure system is positive; the rando
system belongs to the different universality class from tha
the pure system. Then, the randomness becomes releva
the renormalization group~RG! terminology; the critical be-
havior is controlled by the random fixed point. Earlier wor
on random Ising models@3,4# deserve to be mentioned.

The two-dimensional~2D! Ising model is a marginal case
The specific heat diverges logarithmically at the critic
point, that is,apure50. We cannot tell whether the random
ness is relevant or not from the Harris criterion. Using t
quantum-field theory, Dotsenko and Dotsenko@5# calculated
the correlation length of the 2D diluted Ising system. Th
showed that the randomness is irrelevant but there ap
logarithmic corrections. The expression for the correlat
length in the weak-dilution region is given by

j}
@11l ln~1/utu!#1/2

utu
, t5~T2Tc!/Tc , ~1!

where l(!1) is the strength of randomness. Shalaev@6#,
Shankar@7#, and Ludwig@8# proceeded with the calculatio
of magnetization,
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utu1/8

@11l ln~1/utu!#1/16
, ~2!

which also shows the logarithmic corrections to the pu
Ising model without any change in critical exponents.

The crossover is an interesting subject especially for r
dom spin systems. The critical behavior is controlled by
relevant fixed point. However, it is influenced by irreleva
fixed points. Thus, as the system size becomes large,
observe the crossover behavior at the critical region betw
the relevant fixed point and irrelevant fixed points. In t
case of diluted spin models, the magnetic order disappea
the percolation threshold even atT50. Then, the crossove
between the pure fixed point, the random fixed point~if there
exists!, and the percolation fixed point is the subject of co
cern @9#.

The problem of self-averaging is also of current inter
for random spin systems@10,11# because each sample has
different random configuration. The system is said to exh
self-averaging if the relative variance of the thermal avera
of a quantity goes to zero as the system size becomes
nite. Using the RG, Aharony and Harris~AH! @10# discussed
theL dependence of the relative cumulants of singular qu
tities, whereL is the linear system size; they discussed
self-averaging property of the random system, which
pends on whether the randomness is relevant or not.

The Monte Carlo simulation is a powerful tool to stud
difficult problems such as random spin systems. Howev
the simulation method sometimes suffers from the proble
of slow dynamics. Several new algorithms for the Mon
Carlo simulation have been proposed to overcome such
ficulties. Cluster algorithms@12,13# are examples of such
efforts. The histogram method@14# enables us to calculat
physical quantities for different parameters with a sing
simulation by using the reweighting technique.

Quite recently, the present authors have proposed an
©2001 The American Physical Society14-1
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fective cluster algorithm, which is called the probabilit
changing cluster~PCC! algorithm@15#, of tuning the critical
point automatically. The invaded cluster algorithm@16# was
also proposed to determine the critical point automatica
but its ensemble is not necessarily clear. In contrast, with
PCC algorithm, we approach the canonical ensemble asy
totically; we can use the finite-size scaling~FSS! analysis for
physical quantities near the critical point. The PCC algorit
is quite useful for studying the random spin systems, wh
the distribution of the critical temperatureTc due to the ran-
domness is important, because we can tune the critical p
of each random sample automatically. Wiseman and Dom
@11# pointed out the importance of determining the samp
dependentTc(L) in the simulational study of random spi
systems. They applied a reweighting technique to sea
critical points of random samples, but the iteration proc
was needed and there was a difficulty in tuningTc(L) for
some exceptional samples. The importance of the rand
averageafter finding the critical point of each sample wa
also pointed out by Bernardetet al. @17#.

In this paper, we study the 2D site-diluted Ising mod
using the PCC algorithm. We focus on the crossover p
nomena and the sample dependence of physical quant
The rest of the paper is organized as follows. In Sec. II,
describe the model and the simulation method, the PCC
gorithm. In Sec. III, we address the FSS analysis of the d
and the crossover between fixed points, paying attentio
the corrections to FSS. In Sec. IV, we study the variance
the quantities, and discuss the self-averaging property of
2D site-diluted Ising model. The summary and discussion
given in Sec. V.

II. MODEL AND SIMULATION METHOD

We are concerned with the site-diluted Ising model who
Hamiltonian is given by

H52J(
^ i , j &

e ie jSiSj . ~3!

Here, Si is the Ising spin on the lattice sitei, and e i is a
random variable that takes 1~spin! or 0 ~vacancy!. The sum-
mation is taken over the nearest-neighbor pairs^ i , j &. The
concentration of the spin will be denoted byp. The 2D site-
diluted Ising model was already studied by the Monte Ca
methods@18#, and the 2D random-bond Ising model w
investigated by the Monte Carlo simulations@17,19–23#, the
transfer-matrix calculation@24#, and the high-temperatur
expansion@25#. In the present paper we give special attent
to the distribution of physical quantities using the PCC alg
rithm.

Here, we briefly describe the idea of the PCC algorith
@15#. The PCC algorithm is an extended version of t
Swendsen-Wang cluster algorithm@12#, where the
Kasteleyn-Fortuin ~KF! representation@26# of the Ising
~Potts! model is used. To form a cluster, parallel spins a
connected with the probabilitypKF512e22J/kBT. For the
diluted model, of course, only pairs of spin sites are c
nected. In the PCC algorithm, we change the probabilitypKF
03611
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depending on the observation whether clusters are perc
ing or not percolating. A simple negative feedback mec
nism together with the FSS property of the percolation le
to the determination of the critical point. AsDpKF, the
amount of the change ofpKF becomes small, the distributio
of pKF becomes a sharp Gaussian distribution around
mean valuepc

KF(L), which results in the determination of th
critical temperatureTc(L). We approach the canonical en
semble in this limit. For the more detailed description of t
PCC algorithm, see Ref.@15#.

We have made simulations for the 2D site-diluted Isi
model on the square lattice with the system sizesL516, 32,
64, 128, and 256. For the spin concentrationp, we have
picked up p50.7 and p50.9. We deal with the grand
canonical ensemble of samples in which the occupation
each site is determined independently with probabilityp. The
percolation threshold for the site percolation of the squ
lattice is known to be 0.592 746@27#. The final value
of DpKF has been chosen asDpKF5a/L, where a5
6.2531025 for the system sizeL. There are several choice
for the criterion to determine percolating. We have employ
the topological rule in the present study. The topological r
is that some cluster winds around the system in at least
of the D directions inD-dimensional systems. The rando
average is taken over 2000 samples forL516 to 128,
and 1000 samples forL5256. For each random sample w
have made 10 000 Monte Carlo sweeps to take the ther
average.

III. FINITE-SIZE SCALING ANALYSIS AND CROSSOVER

Let us start with the size dependence of the critical te
perature. We plot@Tc(L)# as a function of 1/L for both p
50.7 andp50.9 in Fig. 1, where the brackets@•••# repre-
sent the random sample average. From now on, we repre
the temperature in units of J/kB . The error bars are within
the size of marks.

We employ the FSS analysis for@Tc(L)#. According to
the theory of FSS@28#, if a quantityQ has a singularity of
the form Q(t);tx near the criticalityt50, the correspond-
ing quantityQ(L,t) for the finite system with the linear siz
L has a scaling form

FIG. 1. Size dependence of critical temperatures@Tc(L)# ~in
units of J/kB) for p50.7 and 0.9. The system sizesL are 16, 32, 64,
128, and 256. The solid curves are the best-fitted curves using
~6! and ~7! for p50.7 and 0.9, respectively.
4-2
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Q~L,t !;L2x/n f ~ tL1/n!, ~4!

wheren is the correlation-length exponent. Then, if the co
rections are negligible, the critical temperatureTc for the
infinite system can be estimated through the relation

@Tc~L !#5Tc1AL21/n. ~5!

But the corrections to FSS due to irrelevant fixed points
important especially in the strong-dilution region. Then,
use the relation

@Tc~L !#5Tc1A1L21/n~11B1L2V! ~6!

to determineTc andn for p50.7. Using the nonlinear fitting
we estimateTc as 1.0712(5) and 1/n as 0.96~1! for p50.7.
Here, the number in the parentheses denotes the uncert
in the last digits. The correction-to-scaling exponentV is
estimated as 0.63~20!. In the weak-dilution region (p50.9),
the corrections to FSS given in Eq.~6! are rather small.
However, there appear small logarithmic corrections, as
pointed out by Dotsenko and Dotsenko@5#, around the pure
Ising fixed point; for finite systems, the corrections to F
due to the logarithmic term in Eq.~1! may be ascribed to the
corrections to the critical exponent. Thus, we use the eq
tion

@Tc~L !#5Tc1a1L21/n1b1(ln L)2v
~7!

for the analysis of the data forp50.9. A similar analysis was
employed by Talapov and Shchur@21# with v51. Here, we
regardv as a free parameter to include higher-order con
butions. Our estimate ofTc with the nonlinear fitting is
1.9022~6! and that of 1/n is 1.00~1! for p50.9. The solid
curves in Fig. 1 are the best-fitted curves using Eq.~6! and
Eq. ~7! for p50.7 andp50.9, respectively. Since the critica
exponent 1/n for the 2D Ising model is 1, our estimates
1/n for the 2D site-diluted Ising model show that the critic
phenomena are controlled by the pure Ising fixed point.

Next, turn to the average value of magnetization at
critical temperature,@^umc(L)u&#. Here, the angular bracket
^•••& represent the thermal average. We have measured
magnetization at the sample-dependent critical tempera
Tc(L) for each sample; then we have taken the sample a
age. The efficiency of this procedure for high-precisi
analysis was pointed out by Wiseman and Domany@11#. The
log-log plot of @^umc(L)u&# versusL for p50.7 and 0.9 is
given in Fig. 2. The error bars are again within the size
marks.

The FSS relation including the corrections to scaling
the magnetization may be described as

@^umc~L !u&#5A2L2b/n~11B2L2V! ~8!

for the strong-dilution region. We can estimate the expon
b/n by using Eq.~8!. We should note that we donot need the
information of Tc for the estimate ofb/n. We estimate the
critical exponentb/n as 0.123~2! for p50.7 using the non-
linear fitting. The estimated value ofb/n is consistent with
that of the pure Ising model, 1/850.125. The estimate of th
corrections-to-scaling exponentV is 0.66~4!, which is the
03611
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same as that for the case of@Tc(L)#. In the weak-dilution
region, we take account of the logarithmic corrections@6–8#.
For finite systems, we use the fitting function

@^umc~L !u&#5a2L2b/n1b2(ln L)2v
, ~9!

which is similar to Eq.~7!. The nonlinear fitting based on Eq
~9! have led to the estimate ofb/n as 0.125~1! for p50.9.

For both cases of@Tc(L)# and @^umc(L)u&#, the FSS
analysis taking account of the corrections to scaling
yielded the critical exponents of the pure Ising model, wh
shows that the critical phenomena of the 2D site-dilu
Ising model are controlled by the pure fixed point. In t
strong-dilution region, the corrections due to the irreleva
fixed point are important, whereas in the weak-dilution
gion, the logarithmic corrections around the pure Ising fix
point are dominant.

The effects of irrelevant fixed points also appear as
crossover phenomena. In the present case, the percol
fixed point is such a fixed point. In order to see the crosso
explicitly, we study the size dependence of the Binder
rameter@29# defined as

g5
1

2 S 32
^m4&

^m2&2D , ~10!

which is often used in the analysis of the FSS. Since
prefactors of theL dependence in Eq.~4! are canceled out
one may determine the critical point from the crossing po
of the data of temperature dependence for different size
far as the correction to FSS are negligible.

Here, we investigate the sample average of the Bin
parameter at eachTc(L), @gc#. We plot@gc# for p50.7, 0.9,
and 1 in Fig. 3, wherep51 is nothing but the pure Ising
model. The error bars are within the size of marks. As for
size dependence, the logL contributions may appear, al
though the explicit form ofL dependence is not clear; w
plot @gc# as a function of 1/log10L in Fig. 3, and the solid
curves are guiding the eye. We also show@gc# for the per-
colation problem at the sample-dependent percolation thr
old, pc(L), in Fig. 3. We define the magnetization for th
geometric percolation problem by assigning the Ising sp
on each cluster randomly with the probability of 1/2. Th

FIG. 2. Logarithmic plot of@^umc(L)u&# versusL for p50.7 and
0.9. The system sizesL are 16, 32, 64, 128, and 256. The sol
curves are computed by the non-linear fitting using Eqs.~8! and~9!
for p50.7 and 0.9, respectively.
4-3
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YUSUKE TOMITA AND YUTAKA OKABE PHYSICAL REVIEW E 64 036114
values of@gc# extrapolated toL5` for p51 and percola-
tion are shown by the arrows. We see from Fig. 3 that
Binder parameter of the dilute Ising model approaches
value of the pure Ising model as the system size beco
large. It is the manifestation of the crossover from the p
colation fixed point to the pure Ising fixed point with th
system size.

The fraction of lattice sites in the largest clusterc plays a
role of order parameter in the percolation problem. The m
ment ratio ofc, ^c&2/^c2&, has the same FSS property as t
Binder parameter because the prefactors of theL dependence
are canceled out@30#.

We plot the sample average@^c&2/^c2&# at the critical
temperature of each sample forp50.7, 0.9, and 1 in Fig. 4
For each sample, we have measuredc at eachTc(L), and
have taken average over random samples. We also give
data for the percolation problem. The error bars are wit
the size of marks. We show the values extrapolated toL
5` for p51 and percolation by the arrows. We find that t
value of@^c&2/^c2&# of the dilute Ising model approaches th
value of the pure Ising model as the system size beco
large, which is the same as the case of the Binder param
@gc#.

IV. SELF AVERAGING

In this section, we study the distribution of physical qua
tities. We first deal with the variance of the critic
temperature

FIG. 3. Sample average of the Binder parameter@gc# for p
50.7, 0.9, and 1. The Binder parameter for the percolation prob
is also shown. Solid curves are guiding the eye.

FIG. 4. Sample average of the moment ratio for the fraction
lattice sites in the largest cluster@^c&2/^c2&# for p50.7, 0.9, and 1.
The data for the percolation problem are also shown. Solid cu
are guiding the eye.
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„DTc~L !…25@Tc~L !2#2@Tc~L !#2. ~11!

Using the RG argument, AH@10# discussed the power-law
size dependence, that is,„DTc(L)…2}L2n for large L. Ac-
cording to AH, the exponentn depends on whether the ran
dom system is controlled by the pure fixed point or the ra
dom fixed point, that is,

n5H D ~for pure fixed point!

2/n rand. ~for random fixed point!,
~12!

whereD is the spatial dimension andn rand. is the correlation-
length exponent for the random fixed point.

We plot „DTc(L)…2 for p50.7 and 0.9 in Fig. 5. The
variance„DTc(L)…2 becomes smaller as the system size
comes larger. Since the logarithmic scales are used in Fig
we find the power-law size dependence from the linearity
the data; we can estimate the exponentn from the slopes of
lines. Our estimates ofn using least squares method aren
51.95(3) for p50.7 andn52.02(3) for p50.9, respec-
tively. These values are consistent with the prediction of A
@10#, that is,n5D52.

We treat the relative variance for the thermal average
physical quantitŷ X&,

RX~L !5
@^X&2#2@^X&#2

@^X&#2
, ~13!

when we discuss self-averaging. The system is said to exh
self-averaging ifRX(L)→0 asL→`. AH @10# predicted that
the size dependence ofRX(L) for the random system de
pends on whether the system is controlled by the rand
fixed point or the pure fixed point; that is,

RX~L !}H L (a/n)pure ~for pure fixed point!

const.~Þ0! ~for random fixed point!
~14!

for L→`. In the case of the random fixed point, the rando
system has no self-averaging. On the other hand, the sy
exhibits weak self-averaging in the case of the pure fix
point. Since the 2D Ising model is a marginal case, it
interesting to study theL dependence ofRX(L).

m

f

s

FIG. 5. Size dependence of variance of critical temperat
@DTc(L)#2, given by Eq.~11!. The slopes of solid lines give the
exponentn for L2n; n51.95(3) and 2.02~3! for p50.7 and 0.9,
respectively.
4-4



-
ut
ay

e
es

te
th
v

e

ak
D
th
s

ed
te
o

he
bl

d

e
sing
e
on,
rco-

the
are

e to
; but
be
els
ef-
ms

e

re

e
ent

ed

el,
-
e-

xed
ed
el
in

d
to

m-
the
ni-

id
i-

he

CROSSOVER AND SELF-AVERAGING IN THE TWO- . . . PHYSICAL REVIEW E 64 036114
We plot RX(L) for the magnetizationm at the sample-
dependentTc(L), Rm , as a function ofL in Fig. 6. The
absolute value ofRm is small forp50.9. It has larger value
for smallerL for p50.7, but it becomes smaller for largerL.
Since there may appear the logL contributions, we have cho
sen 1/log10L for the horizontal axis as in Figs. 3 and 4, b
the explicit form of size dependence is not clear. Anyw
from Fig. 6 we realizeRm→0 asL→`; the 2D diluted Ising
model exhibits weak self-averaging. In other words, the th
mal average of magnetization does not depend on sampl
the system size becomes infinite.

V. SUMMARY AND DISCUSSIONS

To summarize, we have investigated the 2D site-dilu
Ising model using the PCC algorithm. Since we can tune
critical point of each random sample automatically, we ha
succeeded in studying the sample-dependentTc(L) and the
sample average of physical quantities at eachTc(L) system-
atically.

We have used the FSS analysis forTc(L). We have shown
the importance of corrections to FSS due to irrelevant fix
points in the strong-dilution region (p50.7); on the other
hand, the logarithmic corrections are relevant in the we
dilution region (p50.9). The critical phenomena of the 2
site-diluted Ising model are shown to be controlled by
pure fixed point with the logarithmic corrections. The cros
over from the percolation fixed point to the pure Ising fix
point with the system size has been explicitly demonstra
by the study of the Binder parameter; it reflects the flow
renormalization.

For the weak-dilution region, we have shown that t
logarithmic corrections are important, which are compati
with the previous studies@17–21,24,25#. We have also
shown the crossover to the pure fixed point. It is oppose

FIG. 6. Relative variance of critical magnetization at t
sample-dependentTc(L), Rm . Solid curves are guiding the eye.
-
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the weak-universality scenario, that is, the exponentn is con-
centration dependent@22,31#. No crossover was found in a
recent work by Kim@23#, Here, we make a comment on th
model. In the present paper, we have studied the diluted I
model. Ballesteroset al. @18# studied the same model. Th
ground states are partial ferromagnetic states for diluti
and the magnetic order continuously disappears at the pe
lation threshold. The random bond mixture model ofJ1 and
J2 couplings with 50% concentration is also used@17,19–23#
because the critical temperatures are exactly known by
duality relation. The ground states of the latter model
always the complete ferromagnetic state except forJ2 /J1
50. In the weak-randomness region, the corrections du
the randomness of the two models seem to be the same
the crossover behavior from the percolation point may
different. The careful study of the crossover for both mod
is still desired. Moreover, the replica symmetry breaking
fects on the critical behavior of weakly disordered syste
were also discussed@32–34# in relation to the Griffiths sin-
gularity @4#. The check of this problem will be left to a futur
study.

We have studied the distribution of critical temperatu
Tc(L). Its variance shows the power-lawL dependence,L2n,
and the estimate of the exponent,n;2, is consistent with the
prediction of AH,n5D. We have also calculated the relativ
variance of critical magnetization at the sample-depend
Tc(L), Rm . It becomes asymptotically close to zero asL
becomes larger even for the case ofp50.7. Thus, the 2D
site-diluted Ising model is controlled by the pure Ising fix
point and exhibits weak self-averaging.

In this paper, we have studied the 2D diluted Ising mod
where the pure Ising~relevant! fixed point and the percola
tion ~irrelevant! fixed point are considered. For the thre
dimensional~3D! diluted Ising model@11,35–37#, the ran-
domness becomes relevant becauseapure.0; then there are
three fixed points to be considered, that is, the random fi
point, the pure Ising fixed point, and the percolation fix
point. The systematic study of the 3D diluted Ising mod
using the PCC algorithm is quite interesting, which is now
progress.
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