PHYSICAL REVIEW E, VOLUME 64, 036114

Crossover and self-averaging in the two-dimensional site-diluted Ising model: Application
of probability-changing cluster algorithm
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Using the newly proposed probability-changing cluse€Q Monte Carlo algorithm, we simulate the
two-dimensional(2D) site-diluted Ising model. Since we can tune the critical point of each random sample
automatically with the PCC algorithm, we succeed in studying the sample-depéngkptand the sample
average of physical quantities at edaEf(L) systematically. Using the finite-size scalifigSS analysis for
T.(L), we discuss the importance of corrections to FSS both in the strong-dilution and weak-dilution regions.
The critical phenomena of the 2D site-diluted Ising model are shown to be controlled by the pure fixed point.
The crossover from the percolation fixed point to the pure Ising fixed point with the system size is explicitly
demonstrated by the study of the Binder parameter. We also study the distribution of critical temperature
T.(L). Its variance shows the power-ldwdependence, ", and the estimate of the exponenis consistent
with the prediction of Aharony and Harrj®hys. Rev. Lett77, 3700(1996]. Calculating the relative variance
of critical magnetization at the sample-dependisfL), we show that the 2D site-diluted Ising model exhibits
weak self-averaging.
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I. INTRODUCTION 1/8
It]
” 16" 2
The critical behavior of random spin systems has been [1+NIn(2/t])]

studied for several decadgl. The effect of randomness has
been attracting much attention because real materials contaivhich also shows the logarithmic corrections to the pure
impurities. In a pioneering work, Harr[€] studied the prob- Ising model without any change in critical exponents.
lem whether the randomness changes the critical behavior of The crossover is an interesting subject especially for ran-
the pure system in the case of quenched random systen®om spin systems. The critical behavior is controlled by a
The so-called Harris criteriof2] states that even a weak relevant fixed point. However, it is influenced by irrelevant
randomness changes the critical behavior if the specific hedixed points. Thus, as the system size becomes large, we
exponentap,e of the pure system is positive; the random observe the crossover behavior at the critical region between
system belongs to the different universality class from that ofthe relevant fixed point and irrelevant fixed points. In the
the pure system. Then, the randomness becomes relevantdase of diluted spin models, the magnetic order disappears at
the renormalization groufRG) terminology; the critical be- the percolation threshold even &t0. Then, the crossover
havior is controlled by the random fixed point. Earlier works between the pure fixed point, the random fixed péirthere
on random Ising modelg3,4] deserve to be mentioned. exist9, and the percolation fixed point is the subject of con-
The two-dimensional2D) Ising model is a marginal case. cern[9].
The specific heat diverges logarithmically at the critical The problem of self-averaging is also of current interest
point, that is,ap,e=0. We cannot tell whether the random- for random spin systen|d.0,11] because each sample has a
ness is relevant or not from the Harris criterion. Using thedifferent random configuration. The system is said to exhibit
quantum-field theory, Dotsenko and Dotserigpcalculated — self-averaging if the relative variance of the thermal average
the correlation length of the 2D diluted Ising system. Theyof a quantity goes to zero as the system size becomes infi-
showed that the randomness is irrelevant but there appeaite. Using the RG, Aharony and Hari8H) [10] discussed
logarithmic corrections. The expression for the correlatiorthe L dependence of the relative cumulants of singular quan-

length in the weak-dilution region is given by tities, whereL is the linear system size; they discussed the
self-averaging property of the random system, which de-
[\ In(L/t))] 2 pends on whether the'rando.mm.ass is relevant or not.
o . t=(T=T)IT,, (1) The Monte Carlo simulation is a powerful tool to study
It] difficult problems such as random spin systems. However,

the simulation method sometimes suffers from the problems

where \(<1) is the strength of randomness. Shalae},  Of slow dynamics. Several new algorithms for the Monte
Shankar 7], and Ludwig[8] proceeded with the calculation Carlo simulation have been proposed to overcome such dif-
of magnetization, ficulties. Cluster algorithm$12,13 are examples of such
efforts. The histogram methdd 4] enables us to calculate
physical quantities for different parameters with a single
*Electronic address: ytomita@phys.metro-u.ac.jp simulation by using the reweighting technique.
Electronic address: okabe@phys.metro-u.ac.jp Quite recently, the present authors have proposed an ef-
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fective cluster algorithm, which is called the probability-
changing clustefPCQ algorithm[15], of tuning the critical
point automatically. The invaded cluster algorithif] was
also proposed to determine the critical point automatically,
but its ensemble is not necessarily clear. In contrast, with the
PCC algorithm, we approach the canonical ensemble asymp-
totically; we can use the finite-size scaliffgSS analysis for
physical quantities near the critical point. The PCC algorithm
is quite useful for studying the random spin systems, where
the distribution of the critical temperatufle due to the ran- : '
o e . 0 0.02
domness is important, because we can tune the critical point
of each random sample automatically. Wiseman and Domany
[11] pointed out the importance of determining the sample- F|G. 1. Size dependence of critical temperatui&s(L)] (in
dependenfl (L) in the simulational study of random spin units of Jkg) for p=0.7 and 0.9. The system sizesire 16, 32, 64,
systems. They applied a reweighting technique to search28, and 256. The solid curves are the best-fitted curves using Egs.
critical points of random samples, but the iteration proces$6) and(7) for p=0.7 and 0.9, respectively.
was needed and there was a difficulty in tuniRgL) for
some exceptional samples. The importance of the randomepending on the observation whether clusters are percolat-
averageafter finding the critical point of each sample was ing or not percolating. A simple negative feedback mecha-
also pointed out by Bernardet al. [17]. nism together with the FSS property of the percolation leads
In this paper, we study the 2D site-diluted Ising modelto the determination of the critical point. A&pKF, the
using the PCC algorithm. We focus on the crossover pheamount of the change @< becomes small, the distribution
nomena and the sample dependence of physical quantitiesf p“F becomes a sharp Gaussian distribution around the
The rest of the paper is organized as follows. In Sec. Il, wemean valugX"(L), which results in the determination of the
describe the model and the simulation method, the PCC akritical temperatureT,(L). We approach the canonical en-

gorithm. In Sec. lll, we address the FSS analysis of the datgemble in this limit. For the more detailed description of the
and the crossover between fixed points, paying attention tpCC algorithm, see Ref15].

the corrections to FSS. In Sec. IV, we StUdy the variance of We have made simulations for the 2D site-diluted |5ing

the quantities, and discuss the self-averaging property of thgodel on the square lattice with the system sizesl6, 32,
2D site-diluted Ising model. The summary and discussion arg4, 128, and 256. For the spin concentratipnwe have

[Te(L)]

0.04 0.06

1/L

given in Sec. V. picked up p=0.7 and p=0.9. We deal with the grand-
canonical ensemble of samples in which the occupation of
Il. MODEL AND SIMULATION METHOD each site is determined independently with probabgityhe

) ] ) ] percolation threshold for the site percolation of the square
We are concerned with the site-diluted Ising model wWhos@,ttice is known to be 0.592 74627]. The final value
Hamiltonian is given by of ApKF has been chosen adpXF=a/L, where a=
6.25x 10 ° for the system sizé. There are several choices
H= _JZ €€/SS;. 3) for the criterion to dgtermine percolating. We have employed
on the topological rule in the present study. The topological rule
is that some cluster winds around the system in at least one
Here, S is the Ising spin on the lattice siie ande; is a  of the D directions inD-dimensional systems. The random
random variable that takes(&pin or O (vacancy. The sum- average is taken over 2000 samples fo=16 to 128,
mation is taken over the nearest-neighbor pdir$). The and 1000 samples fdr=256. For each random sample we
concentration of the spin will be denoted pyThe 2D site- have made 10000 Monte Carlo sweeps to take the thermal
diluted Ising model was already studied by the Monte Carloaverage.
methods[18], and the 2D random-bond Ising model was
investigated by the Monte Carlo simulatiofi’,19-23, the |, £\ TE-SIZE SCALING ANALYSIS AND CROSSOVER
transfer-matrix calculatiorj24], and the high-temperature
expansiori25]. In the present paper we give special attention Let us start with the size dependence of the critical tem-
to the distribution of physical quantities using the PCC algoerature. We plofT,(L)] as a function of 1/ for both p
rithm. =0.7 andp=0.9 in Fig. 1, where the brackefs- -] repre-
Here, we briefly describe the idea of the PCC algorithmsent the random sample average. From now on, we represent
[15]. The PCC algorithm is an extended version of thethe temperature in units of kli{. The error bars are within
Swendsen-Wang cluster algorithn{12], where the the size of marks.
Kasteleyn-Fortuin (KF) representation[26] of the Ising We employ the FSS analysis foir.(L)]. According to
(Potts model is used. To form a cluster, parallel spins arethe theory of FS328], if a quantity Q has a singularity of
connected with the probabilitp“"=1—e 2Y%sT. For the the formQ(t)~t* near the criticalityt=0, the correspond-
diluted model, of course, only pairs of spin sites are con-ing quantityQ(L,t) for the finite system with the linear size
nected. In the PCC algorithm, we change the probaljlty L has a scaling form
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Q(L,t)~L X f(tL), (4) 0.8 ,

wherev is the correlation-length exponent. Then, if the cor-
rections are negligible, the critical temperaturg for the
infinite system can be estimated through the relation

[TC(L)]:TC+AL71/V' 5

[<Img|>]

But the corrections to FSS due to irrelevant fixed points are
important especially in the strong-dilution region. Then, we
use the relation

[Te(L)]=Te+ AL~ Y(1+B L™ (6)

10 L 10°

FIG. 2. Logarithmic plot of {|mc(L)|)] versusL for p=0.7 and
to determinel . andv for p=0.7. Using the nonlinear fitting, 0.9. The system sizels are 16, 32, 64, 128, and 256. The solid
we estimateT . as 1.0712(5) and &/as 0.961) for p=0.7.  curves are computed by the non-linear fitting using E8sand(9)
Here, the number in the parentheses denotes the uncertairfgy p=0.7 and 0.9, respectively.
in the last digits. The correction-to-scaling exponéhtis
estimated as 0.630). In the weak-dilution regionf{=0.9), same as that for the case [of.(L)]. In the weak-dilution
the corrections to FSS given in E¢p) are rather small. region, we take account of the logarithmic correctipis 8.
However, there appear small logarithmic corrections, as wakor finite systems, we use the fitting function
pointed out by Dotsenko and Dotsenks), around the pure _ —Blvtbo(InL) @

Ising fixed point; for finite systems, the corrections to FSS [(Ime(L))]=apL#r et o, ©)
due to the logarithmic term in E41) may be ascribed to the yhich is similar to Eq(7). The nonlinear fitting based on Eq.
corrections to the critical exponent. Thus, we use the equag) have led to the estimate @ as 0.1261) for p=0.9.
tion For both cases of T¢(L)] and [(|mc(L)|)], the FSS
[TC(L)]=TC+a1L‘1’”+b1('” L@ @) analysis takir)g account of the correction; to scaling has
yielded the critical exponents of the pure Ising model, which

for the analysis of the data far=0.9. A similar analysis was SNows that the critical phenomena of the 2D site-diluted
employed by Talapov and Shchi@1] with w=1. Here, we Ising model are controlled by the pure fixed point. In the

regardw as a free parameter to include higher-order Contri_strong—dilution region, the corrections due to the irrelevant

butions. Our estimate of, with the nonlinear fitting is fixed point are important, whereas in the weak-dilution re-
1.90226) and that of 1 iSC 1.0q1) for p=0.9. The solid gion, the logarithmic corrections around the pure Ising fixed
curves in Fig. 1 are the best-fitted curves using &g.and point are domlnan_t. . .

Eq.(7) for p=0.7 andp=0.9, respectively. Since the critical The effects of irrelevant fixed points also appear as th_e
exponent 1# for the 2D Ising model is 1, our estimates of crossover phenomen_a. In the present case, the percolation
1/v for the 2D site-diluted Ising model show that the critical f|xeq pointis such a f|xed.p0|nt. In order to see the crossover
phenomena are controlled by the pure Ising fixed point. explicitly, we study the size dependence of the Binder pa-

Next, turn to the average value of magnetization at théameter[zg] defined as

critical temperature],{|m.(L)|)]. Here, the angular brackets 1 (m*
(---) represent the thermal average. We have measured the 9=5 3-—5 | (10
magnetization at the sample-dependent critical temperature (m®)

T.(L) for each sample; then we have taken the sample ave

age. The efficiency of this procedure for high-precision .
: ; ) prefactors of the. dependence in Ed4) are canceled out,
analysis was pointed out by Wiseman and Domgi}. The one may determine the critical point from the crossing point

qu(—alggnp:gt 01‘2[<_||_ng( Ié?lz)]r \tgzzu;:_e fgr;?:o'.zh%n?hg'g. '2 ofOf the data of temperature dependence for different sizes as
?r:\;rksl 9. 2. gain withi 12€ Olar as the correction to FSS are negligible.

L . . . Here, we investigate the sample average of the Binder
The FSS relation including the corrections to scaling for 9 b 9

L ; parameter at each.(L), [g.]. We plot[g.] for p=0.7, 0.9,
the magnetization may be described as and 1 in Fig. 3, whergo=1 is nothing but the pure Ising

[{Imo(L))]=A,L A"(1+B,L %) (8)  model. The error bars are within the size of marks. As for the
size dependence, the lbgcontributions may appear, al-

for the strong-dilution region. We can estimate the exponenthough the explicit form ol dependence is not clear; we
Blv by using Eq(8). We should note that we dwtneed the plot[g.] as a function of 1/logL in Fig. 3, and the solid
information of T, for the estimate of3/v. We estimate the curves are guiding the eye. We also shiayy] for the per-
critical exponentB/v as 0.128) for p=0.7 using the non- colation problem at the sample-dependent percolation thresh-
linear fitting. The estimated value @ v is consistent with  old, p.(L), in Fig. 3. We define the magnetization for the
that of the pure Ising model, 1#80.125. The estimate of the geometric percolation problem by assigning the Ising spins
corrections-to-scaling exponefit is 0.664), which is the on each cluster randomly with the probability of 1/2. The

[hich is often used in the analysis of the FSS. Since the
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1/logqol
. FIG. 5. Size dependence of variance of critical temperature
07,0.5, and 1. The Binder parameter for the percotaton probler (11 GVen by EG.(11. The siopes of sold lies give the
RS ’ P P P exponentn for L™"; n=1.95(3) and 2.08) for p=0.7 and 0.9,

is also shown. Solid curves are guiding the eye. .
respectively.

values of[g.]| extrapolated td_=< for p=1 and percola-
tion are shown by the arrows. We see from Fig. 3 that the (AT(L)?=[T(L)?]—[T(L)]? (11
Binder parameter of the dilute Ising model approaches the
value of the pure Ising model as the system size becomagsing the RG argument, AH10] discussed the power-law
large. It is the manifestation of the crossover from the persjze dependence, that iEAT.(L))2cL ™" for large L. Ac-
colation fixed point to the pure Ising fixed point with the cording to AH, the exponent depends on whether the ran-
system size. o dom system is controlled by the pure fixed point or the ran-

The fraction of lattice sites in the largest clusteplays a 4o fixed point, that is
role of order parameter in the percolation problem. The mo- ' ’
ment ratio ofc, (c)?/(c?), has the same FSS property as the D (for pure fixed point
Binder parameter because the prefactors oltdependence n
are canceled oyi30]. o

We plot the sample averaddc)</(c)] at the critical . . . . .
tempergture of eachpsample fgg 0>.7,<O.g,] and 1 in Fig. 4. whereD is the spatial dimension Q”dand_ls_ the correlation-
For each sample, we have measucedt eachT,(L), and l€ngth exponent for ';he random fixed point.
have taken average over random samples. We also give the We plot (AT(L))" for p=0.7 and 0.9 in Fig. 5. The
data for the percolation problem. The error bars are withirvariance(AT(L))? becomes smaller as the system size be-
the size of marks. We show the values extrapolated. to comes larger. Since the logarithmic scales are used in Fig. 5,
=o for p=1 and percolation by the arrows. We find that thewe find the power-law size dependence from the linearity of
value off {c)?/(c?)] of the dilute Ising model approaches the the data; we can estimate the exponeritom the slopes of
value of the pure Ising model as the system size becomédies. Our estimates afi using least squares method are
large, which is the same as the case of the Binder parametet,1.95(3) for p=0.7 andn=2.02(3) for p=0.9, respec-
[gc]- tively. These values are consistent with the prediction of AH

[10], that is,n=D=2.
IV. SELF AVERAGING We treat the relative variance for the thermal average of

In this section, we study the distribution of physical quan-physical quantity X),
tities. We first deal with the variance of the critical

- 2/vyang. (for random fixed point 12

temperature [(X)?]=[(X)]?
P Ry(L)=——————— (13
[(X)]
0.94r percolation . . . . -
I when we discuss self-averaging. The system is said to exhibit
x self-averaging iRy(L)—0 asL—o. AH [10] predicted that
v the size dependence &y(L) for the random system de-
s pends on whether the system is controlled by the random
< 0.9t p=0.9 1 fixed point or the pure fixed point; that is,
B ___._.___'___.-———"”/ 1 alv 1 i
— ot | L(@/pure (for pure fixed point
Rx (L) , o (14)
e const(#0) (for random fixed point
0 0.5 1

1/logolk for L—o. In the case of the random fixed point, the random

FIG. 4. Sample average of the moment ratio for the fraction ofSyStem has no self-averaging. On the other hand, the system
lattice sites in the largest clustigfc)?/(c?)] for p=0.7, 0.9, and 1.  exhibits weak self-averaging in the case of the pure fixed

The data for the percolation problem are also shown. Solid curvepoint. Since the 2D Ising model is a marginal case, it is
are guiding the eye. interesting to study thé dependence oRy(L).
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0.006 T

the weak-universality scenario, that is, the exponeistcon-
centration depende22,31]. No crossover was found in a
recent work by Kim[23], Here, we make a comment on the
. model. In the present paper, we have studied the diluted Ising
model. Ballestero®t al. [18] studied the same model. The
ground states are partial ferromagnetic states for dilution,
and the magnetic order continuously disappears at the perco-
lation threshold. The random bond mixture modelgfand
1 J, couplings with 50% concentration is also u$&éd,19-23
L T because the critical temperatures are exactly known by the
0 0.5 1 duality relation. The ground states of the latter model are
1/log40L always the complete ferromagnetic state exceptJotd;
_ ) N o =0. In the weak-randomness region, the corrections due to
FIG. 6. Relative variance of critical magnetization at the the randomness of the two models seem to be the same: but
sample-dependeffig(L), Ry . Solid curves are guiding the eye. e crossover behavior from the percolation point may be
o different. The careful study of the crossover for both models
We plot Ry(L) for the magnetizatiorm at the sample- g || desired. Moreover, the replica symmetry breaking ef-
dependentT¢(L), Ry, as a function ofL in Fig. 6. The  fac5 on the critical behavior of weakly disordered systems
absolute value oR, is smalll forp=0.9. It has larger value \yere also discussd®2—34 in relation to the Griffiths sin-
for smallerL for p=0.7, but it becomes smaller for larger gy jarity[4]. The check of this problem will be left to a future
Since there may appear the logontributions, we have cho- gyqy,
sen 1/logeL for the horizontal axis as in Figs. 3 and 4, but e have studied the distribution of critical temperature
the explicit form of size dependence is not clear. Anyway,t (L). |ts variance shows the power-ldwdependencd, ",
from Fig. 6 we realiz&ky,—0 asL —; the 2D diluted Ising  an the estimate of the exponent; 2, is consistent with the
model exhibits weak self-averaging. In other words, the therp egiction of AH,n=D. We have also calculated the relative
mal average of magnetization does not depend on samples @griance of critical magnetization at the sample-dependent

0.004f

0.002f

the system size becomes infinite. T.(L), Ry. It becomes asymptotically close to zero las
becomes larger even for the casewf0.7. Thus, the 2D
V. SUMMARY AND DISCUSSIONS site-diluted Ising model is controlled by the pure Ising fixed

nt and exhibits weak self-averaging.

. . : N 0i
To summarize, we have investigated the 2D S|te-d|Iutedp In this paper, we have studied the 2D diluted Ising model,

Is!qg mod'el using the PCC algorithm. Since we can tune th%vhere the pure Isingrelevani fixed point and the percola-
critical point of each random sample automatically, we hav;q, (iirelevany fixed point are considered. For the three-

succeeded in studying t_he samplc_e?depend’QQIL) and the dimensional(3D) diluted Ising model[11,35-31, the ran-
sample average of physical quantities at edgfl.) system- domness becomes relevant becaagg>0; then there are

aticallyh dth vsis T h h three fixed points to be considered, that is, the random fixed
o We have use ft e FSS analysis Te(L ). We _avle S OV‘:P oint, the pure Ising fixed point, and the percolation fixed
the importance of corrections to FSS due to irrelevant |xecgoim_ The systematic study of the 3D diluted Ising model

points in the strong-dilution regionp=0.7); on the other | sinq the PCC algorithm is quite interesting, which is now in
hand, the logarithmic corrections are relevant in the weaks

dilution region (=0.9). The critical phenomena of the 2D progress.
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