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Universal magnetic fluctuations with a field-induced length scale
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We calculate the probability density function for the order-parameter fluctuations in the low-temperature
phase of the two-dimension&lY model of magnetism near the line of critical points. A finite correlation length
¢, is introduced with a small magnetic field and an expression fa@j(h) is developed by treating nonlinear
contributions to the field energy using a Hartree approximation. We find analytically a series of universal
non-Gaussian distributions of the finite-size scaling fé&fm,L,&)~L#*P (mL?'",£/L) and present a func-
tion of the formP(x) ~{exgx—exp&)[*" that gives the probability density functions to an excellent approxi-
mation. We proposa(h) as an indirect measure of the length scale of correlations in a wide range of complex
systems.
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. INTRODUCTION where §=tan (Z;sin 6 /3,cos@) is the instantaneous mag-

. ) ] netization direction.

There has recently been considerable interest in the fluc- This is perhaps the simplest nontrivial system in which
tations of a spatially averaged quantity in systems with corgne can study critical phenomena. At low temperature and in
relations over a macroscopic length scalel—8|. The most  ,qq field, there is a line of critical points, separated from the
accessible example from both an experimental and atheor%gh-temperature paramagnetic phase by the Kosterlitz-

ical point of view, is a critical system, where the diVergenceThouIess-Berezinskii phase transition. The physics of this

e corlaton el f nleupted by he ysten ik pwiemperaure phase i perecty capure by  harmonic
' y or spin-wave Hamiltonian. That is, one can, without loss of

a nonanalytic fixed point for the free energy in a renormal_generality, develop the cosine interaction to order—(aj)z

ization group flow, tells one that the fluctuations will not be d | h iodicity of . This Hamiltonian is di
Gaussian. Even so, extending the scaling hypothesis to ir:"® N9 ect the periodicity of; . This Hami'tonian Is diag-

clude the macroscopic scaleone can deduce that the prob- onal in reciprocal.s_pace and can be solved straightforwa_rdly.
ability density function(PDF) for order-parameter fluctua- AS @ result, all critical phenomena can be calculated micro-
tions should have universal properties. Further, the PDF musopically from Gaussian integration, without the need for
be a homogeneous function of L, and¢ of the following  €ither the scaling hypothesis, or the renormalization group.

form: [9] Along the line of critical points, the exponengsand v are
not individually defined, but there ratio is and the system has

P(m,L,&)~LA"P (mLA” ¢IL). (1) a single independent exponent28/v="T/27J.

We have previously been interested in the zero field, or

. . ... strongly correlated regime where the divergencé &f com-
Here, adopting the language of a magnetic phase transition, letely removed by the system site and P, becomes a
and B are the usual critical exponents relating to the diver-P €Y y Y L

ence of the correlation length and the singularity in thefunCtion of a single variablenL”'” [10]. We have found that
9 9 9 y P, when plotted as a function g=(m—(m))/o, is a

magnetizationm. The scaling hypothesis therefore predlctsuniversal function, not only of system size, but also of tem-

flgctu?tions of a uni.\g-;rl_sal form, independently of Sysn:‘\mperature and therefore of the critical exponentHere,(m)
size, for constant ratig/L. : o DA
We study the low-temperature phase of the two-1S t_he mean ano“_the standard_dewatlo_n of the d|str|b_ut|on.
dimensional2D) XY model, defined by the Hamiltonian This rather surprising result gives weight to our conjecture
’ [3] that the critical fluctuations of systems in certain univer-
sality classes are captured, at least qualitatively by the fluc-
tuations of the 2DXY model.
H= J@E,D cos0i—6)) hZ cos 6i)- @ In this paper we generalize our previous results by intro-
ducing a second length into the problem with the aid of a
hmagnetic field. The field breaks the symmetry moving the
system into an ordered magnetic state with finite correlation
ength &. However, taking a van Hove type thermodynamic
imit, with the ratio ¢/L constant, should lead to a family of
limit functions, all with divergent correlation length, varying
in form from the anisotropic limitsee Fig. 1to a Gaussian
m= i 2 cog 9i—§), 3) function, as the ratig@/L falls to zero. In Sec. Il, we develop
N <IN a starting Hamiltonian that satisfies the requirements of the

The exchange interaction and magnetic field are of strehgt
and h, and the angley; gives the orientation of a classical
spin vector of unit length, confined to a plane. We define th
magnetization for a single configuration
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1.15 - - - - - - where 6 is the usual critical exponent for the response in a
finite field. Putting expressio(b) for £ in Eq. (6) leads to a
relation between the exponen&=2v/3, in disagreement

= Wy with the hyperscaling relatiod+ 1=dv/3, which should be
S valid for the 2DXY model[12]. The error comes from the
~ development of the field term in small angles. Even at low
N@ 105 ¢ temperature, when the nearest-neighbor different;eso,

s are small, the deviations &; from the fixed field direction

are divergent in the thermodynamic limit. The development

of the field term in small angles is therefore invalid. This

problem can be dealt with in the low-temperature phase, in

| the absence of vortices, using the Hartree approximation in-
T/ troduced by Pokrovsky and Uim[i.3]. Expanding co{) in

FIG. 1. [£(0)/£(T)]?%, as given by the Hartree approximations POWETS of67, we make a mean-field decoupling

for, from bottom to toph/J=0.01,0.05, and 0.FEQgs.(9) and(10)] 5 Doy o
as a function ofT/J. o; pHCp( o P )07, (7

scaling hypothesis, using a self-consistent Hartree approx?’-"herecp:(Zp).!/z(Zp_.2)! is a binomial counting factor.
mation. In Sec. lll we give theoretical results for the PDF forAS the underlying Hamiltoniart4) is quadratic, we can re-

.. . A 2p—2 H PR}
a finite field and compare our results with those from MontedUc&(6i" ©) using Wick's theorem, and after some resum-
Carlo simulation. In Sec. IV we fit the curve with a general- mation we eventually find
ized form of Gumbel's first asymptote from extremal statis- >

. 0
tics. cosf~1—(m) ?' (8)

Il. HARTREE APPROXIMATION

The field term in the Hamiltoniafd) then becomes
AND THE HYPERSCALING RELATION

: : ; ; 1
Expanding the field energy in smgll angles, m_the same hz cog 9i):Nh—§heff(T)E d’czw 9)
way as the exchange term and Fourier transforming gives a i q#0
convenient starting Hamiltonian
. hesf(T)=(m)h.
J
H=Ho+ 5 go 7q+3) b5, (4)  Using the scaling relatiogm)~ (h/J)?, the effective field

hetr—h(®* /% and the scaling argument, correctly yields the
hyperscaling scaling relationship defined above. Note, how-
. . : ever, that the scaling argument is valid in the thermodynamic
Fourier - transformed spin  variable.y,=4-2C0S) |imit where ¢/L<1 and the influence of the finite system
—2cos@y) and the sunkq is over the Brillouin zone fora ;¢ js negligible. In the crossover region that interests us,
square lattice with periodic boundaries, witaking on dis-  with ¢/L~0O(1) one cannot make this substitution, and in
crete  values q,=(2w/L)ny, qy=(27@/L)ny, ny,ny  general one must explicitly work with expressi).
=0,2,...yN. Here and throughout the paper, we have set The point of principle that poses the problem for the hy-
the nearest-neighbor distance on the lattice equal to unityerscaling relation is that making the substitution 69s{1
Expandingy, for smallq we can write the Green's function —(1/2)6? results in an order-parameter conjugate to the field,

where ¢, =R¢g 1\NZ; 6, exp(—idﬂ)] is the real part of the

propagator (m)=(1—(1/2)6?)=1—T/87J log(N) which diverges with
system size, for any finite temperature. In order for the hy-
G(a)~ _— = J3lh: 5 perscaling relation to holdm) must be a correctly defined
(@) q°+&? ¢ ® intensive variable. For this to be so, the higher-order terms in
o _ the expansion of co& must be retained, at least within the
the magnetic field indeed introduces a length s¢ale level of the approximation shown here. The calculation of

However, this naive starting point needs some developBerezinskii[11] is consistent with this thermodynamic argu-
ment before proceeding with the calculation as, as it stands ihent.
does not satisfy the well-known hyperscaling relation. To see  still, in the absence of vortices, an effective coupling con-
this, consider the following scaling argumefitl]: at the  stantJ,; can be calculated in a similar manner. In zero field
critical temperature but in a finite field, the thermally aver-we did not need to account for this, & for a quadratic
aged magnetization can be expressed in terms of dathd  Hamiltonian is independent of temperature throughout the
h: low-temperature regime. However, as the correlation length
Us depends on both thg field and the coupling constant, we now
<m>~§‘5’”~(—) ©6) have to calculate it if we are to have good agreement with
J) numerical data. Expanding cd@st 6,) in powers of the dis-
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TABLE I. Variation of hg¢s, &/L, a, and y with field h for L 0.5

=32 andT/J=0.4.

04|
h hesf &L a y
0.0 0.0 o 15807  —0.89 = %37
0.001 0.001 0.987 1.611 —0.88 =
0.005 0005 04407 17416 —0.844 Q o2y
0.01 0.0101  0.3111 1.903 —0.801
0.05 0.0512  0.1381 3359 —0.583 01t
0.1 0.1034 0.098 5.333 —0.463
05 0523 00429 2182 —0.23 0 ¢ » P 0 , p

crete difference operatdi6; [11] and again using the decou- ~ FIG. 2. Monte Carlo data foP (x) for magnetic fieldh/J

; 3 )\ 2p : 3 . _=0.05and forT/J=0.1,0.4 and 0.7, using the Hamiltoni&?). The
pling (7) for (V6)™, we arrive at a self-consistent expres lines are for data generated from E#2) (dotted and for the func-

sion for Je¢4(T) [13,14]: fion (15) (dashed
3—3 T 10 where g,=1N*S:G(q)* and u=(m—(m))/o. The PDF
eff= < €X 4o¢s) (10 with a finite correlation length is calculated from the same

expression by inserting the modified Green’s functiGi

The Green’s function we finally use for the calculation of the The equivalence of Eqsl) and(12) is a result of the hyper-
PDF is therefore of the forni5) but with the correlation —scaling relatiorf10] and the functional dependence predicted

length given in terms of the self-consistent effective field and?y the scaling hypothesigl) comes directly from dimen-
coupling constant sional analysis of Eq(12). We note that the calculation can

easily be extended to explore the non-Gaussian but noncriti-
Jors cal behavior in all dimensions less than[40]. Summing
&= h (11 over the Brillouin zone for a large but finite system and
eff performing a numerical Fourier transforms we generate the
o ) ) o _data shown in Figs. 2 and 3. Data is shown in Fig. 2 for
The variation of¢ with temperature, for a fixed field is quite ,;3=0.05 (€/L=0.138 atT/J=0.4) and in Fig. 3 forh/J
small throughout the range of fields that interests us. In Fig_ 0.01, 0.05, and 0.5 corresponding &L =0.311, 0.138,
1 we show[£(0)/£(T)]? as a function of temperature for ang 0043 atT/J=0.4. It is compared with results from
three different field strengths. Even fWJ=0.5, there is \jonte Carlo simulation for a system of size=32. In each
only a 10% variation, up to a temperatufe]=0.7, above g6 theoretical and numerical data are shown for three tem-
which the Hartree approximation breaks down. As shoWneraryresT/J=0.1, 0.4, and 0.7. As in the zero-field case,
below, the temperature dependence of the resulting distribyshich can be considered as the extreme non-Gaussian limit
tion function is even weaker than that L., and for prac- o guch a system, the PDF’s are characterized by an expo-
tical purposes it can be considered as temperature indepeRantia| tail for fluctuations below the mean and a double
dent. The parameteits,; and §/L can be found in Table | eyponential above the me#h0]. Applying the field reduces
for a system of sizé =32 at temperaturd/J=0.7 and for  {he asymmetry and in a large field the data approach a
field strength betweeh=0.001 anch=0.5. For a finite field  gayssian distribution.

the ratio&/L varies fromé/L=0.99 to£/L =0.043. Agreement between the theoretical calculation and the
Monte Carlo simulation is generally extremely good, indicat-

1. THE PROBABILITY DENSITY FUNCTION ing that the Hartree approximations are accurate. In Fig. 2 all

IN A FINITE FIELD sets of data collapse, within numerical error, onto a single

) . curve independently of temperature. This is the case for all

We have previously developgd0,15 the following ex-  field values chosen. When plotted on a logarithmic scale,
pression for the PDF: temperature dependence is still not observable, but a differ-
ence between theoretical and numerical values can be ob-

" ix served along the exponential tail, for probability densities

PLlm)= J,wﬁe o), (12) smaller than 10%. The discrepancy appears largest for fields
aroundh/J~0.05. This must indicate the limit of the ability

1 G(q) of the Hartree approximation in dealing with the fluctuations.

In @(X)=—ixX \ [ -7 For a very small field, its effect is small and so errors are
20, gz0 N negligible, while for larger fields, critical fluctuations are

smaller and one can imagine that the Hartree approximation
becomes quantitatively very accurate. Only in the intermedi-
ate field range oh/J~0.05, the combination of these two

1 _\Fe(q)
—quo |n[1—l a N X
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10° — . . . . . Note that with the definition(3) we explicitly study the
longitudinal magnetization, irrespective of its direction in
space. This is the quantity that becomes critical at a phase
transition in a system with continuous symmetry. The intro-
duction of the magnetic field breaks the orientational sym-
metry in the thermodynamic limit and the variable conjugate

to it is the projection ofm along the field direction. The
fluctuations in these two quantities are different for a small
field and in the crossover region, as-0, the latter quantity
becomes ill defined16]. The two quantities become indis-
tinguishable foré/L~0.1.
4 The skewnesy=(u>), which parametrizes the asymme-
(a) 1} try of the curve, varies from-0.89 in the extreme non-
Gaussian limit to—0.23 for a ratio&/L=0.043, and indeed
goes smoothly to zero fo&/L—0. Numerical values can
also be found in Table I.

The origin of the skewness becomes clear if one considers
the contribution made by the normal modes. The magnetiza-
tion can be written

102 |

102 |

P (W)

107 |

10% |

100 =t

P (W)

m=1-12NY ¢+ --. (13)
q>0

To leading order ing,, m therefore consists of a sum over
variables mq=(¢§/2N) which, within the spin-wave ap-
proximation, are statistically independent, with generating
function

10 : : : : : P(mg) =\ /%mgme*ﬁ%fmz*§‘Z>mq. (14)

In zero field, the mean amplitudém,) vary from a micro-
102} ] scopic valueD(1/N) for modes on the zone edge through to
a value ofO(1) for the long-wavelength modes at the zone
center and the dispersion in the contributions is divergent in
the thermodynamic limit. In two dimensions the density-of-
states is linear im, which is just what is required to engage
] the entire zong10].
o Violation of the central limit theorem therefore arises be-
106 : : ; ; : cause the individual elements, although statistically indepen-
-6 4 2 0 2 4 dent, are not individually negligible. The modes of divergent
© U amplitude near the Brillouin-zone center are responsible for
FIG. 3. Monte Carlo data foP, (1) for magnetic field(a) h/J the anisotropy, although all parts of the zone are required for
=0.01, (b) h/3=0.05, and(c) h/J=0.5 for T/J=0.1,0.4, and 0.7. & detailed reconstruction &(m). Introduction of the length
The lines are for data generated from Ej2) (full) and for the ~Scaleé removes the divergence fo—0 and reestablishes
function (15) (dashedl Theoretical curves for different temperatures the criterion that the statistically independent elements are
are superposed. individually negligible. In the limit that/L— 0 the distribu-
tion becomes Gaussian. If the thermodynamic limit is taken
effects is sufficient to give the small deviation from the while keeping the rati@/L constant, the amplitudes remains
Monte Carlo data. divergent, but the contribution from the zone center becomes
In all cases, both numerical and theoretical, the indepenprogressively less, as the ratiéL is reduced and the skew-
dence of the results on temperature is quite remarkable andiifess falls to zero.
leads one to suggest that, as in the case of a zero field, the
distribution is truly temperature inde_pendent throughout t_he IV. EITTING WITH A GENERALIZED GUMBEL
range of tempergture and system size for yvh|ch the ex_cna- FUNCTION
tion of vortex pairs can be neglected. This point requires
further study, but it is already clear that, from a pragmatic In Refs.[10,15 we have compared the functional form of
point of view, temperature dependence is not an observable (u«) with a series of standard expressions. Although none
phenomena. are exact solutions, they all give good fits to the data and

P (1)
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therefore offer very useful analytical functions as well as 10°

giving some insight into the physical processes responsible

for the asymmetric PDF. Here, we only pursue one of these, 10}

the generalized Gumbel function for the statistics of ex-

tremes[17] . 102

N

oo, =wexgab(u,~s)—ae’= 9], (15) £ g

which gives theath largest or smallest values of a sethMf

random numberg; , in the limit thatN— . For the smallest 104 ¢

values,u,=(z—(z))/o,. The constantsv, b, ands depend

on a through the three conditions of normalizatiofy,) 10°

=0 and(u2)=1 and one finds
a
— a aao_ FIG. 4. Evolution of P (x) from the function(15) with h/J.
I'a) * Moving from left to right for fluctuations below the mean, the data
is for h/J=0, 0.01, 0.05, 0.1, 0.5, and.

1 °T(a) 1 ol'(a)]?
b= T(a) oaZ - T(a) oa |’ (16) small difference in the slopes of the exponential tails can be
detected. However, this disappears with increasimgd the
1 1 dI'(a) fitting function can be regarded as an excellent working tool
s= b log(a)— m a for describing the data. In Fig. 4 we illustrate the evolution

of the distribution from the anisotropic limit to the uncorre-

The function therefore has only one parameter, which is callated Gaussian limit as a function of field using Etf). The
culated by comparing the Fourier transform of Etp) with ~ values ofa(h) are shown in Table I. In terms of extremal
@ (x) of Eq.(12). Using the notation of Eq12) we have, for statistics, the evolution af(h) means that we are describing

the Gumbel function, the PDF of less and less extreme values, which becomes
more and more normal.
wl(a) Y(a) In(a) X2 For a strong field, one can solve E@.9) analytically.
In g(x)=In—"F —|X<S+ b b | —V'(a) Evaluatingg, andg; using a continuum approximation and
sd 2b using Stirling’s formula, I1'(a)~aln a—a, one finds
x3 x4 x> 2
AR Y1/ Ay i (4) m L
oSV (@) - ) aNE{H 2_775) _ 20

+ (17)  This simple expression givesto a good approximation even

outside the range d values for which Sterling’s formula is

whereW (z) is the digamma functiol” (2)/I'(2). For® we \aiiq and reproduces our previous result for0. It also

have allows one to see thaa has a contribution coming from
1 \/5 2\/5 fluctyations within a correlated domain _and_q contribution
In @(x)= — =x2—i 93 5, 94 4, ,2VO5 5 y coming from the fact that the system, with finife can be
2 3032 293 5052 divided into a numbeN.;= (L/£)? of statistically indepen-

(18  dent domains.

from which it follows that the constara is implicitly given V. CONCLUSION

by
a In conclusion, we have made a microscopic calculation of
v'a) _..03 19 the generalized scaling functio®, (mL?'” ¢/L) for order-
vi(a)R T g, (19 parameter fluctuations near the line of critical points of the

low-temperature phase of the 20Y model. A Hartree ap-
For the zero field, the solution is~ /2, rather than an proximation is used to treat the nonlinear corrections to a
integer value, showin&(m) is not simply an extreme value quadratic Hamiltonian. The approximation is necessary to
distribution. This solution is an approximation although aensure that the hyperscaling relation between critical expo-
good one, which can be seen by comparing the ratio ohents is satisfied. We show that the hyperscaling relation is a
higher-order terms in the two expansiofis?) and (18). consequence of the nonlinearity necessary to ensure the cor-
These diverge slowly from unityl0]. Solving Eq.(19) for a  rect system size dependence of the order parameter, conju-
finite field, givesa increasing withh. The subsequent curves gate to the applied magnetic field. This is a requirement of
are superimposed in Figs. 2 and 3, where one can see that ttieermodynamics, rather than a general requirement for the
fitting function reproduces the results of the theoretical cal-observation of non-Gaussian fluctuations for global quanti-
culation to a good approximation. For a small field a veryties. Indeed, observation of hyperscaling in nonthermody-
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namic system$18], could be taken as an indication that an trate, at least qualitatively, universal features for correlated
equivalent phenomenology exists. For a fixed magnetic fieldsystems from different universality classes. This idea, as well
the correlation length is modified only slightly by thermal as alternative interpretation$,19], could be tested for ex-
fluctuations and this manifests itself in the functi® ,  ample, in an enclosed turbulent flow using the experimental
which is essentially independent of temperature. The factetup described in Ref§l,5], by varying the ratio of the
that the exponeng/v=4=T/J is small and thab=8xT/J  power injection length scale to the enclosure length scale.
—1 is large, may be important for this observation. More
work is required to clarify this point.

Finally, we propose that our fitting parametgih) could ACKNOWLEDGMENTS
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