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Monte Carlo study of the three-dimensional Coulomb frustrated Ising ferromagnet
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We have investigated, by Monte Carlo simulation, the phase diagram of a three-dimensional Ising model
with nearest-neighbor ferromagnetic interactions and small, but long-ré@ga@ombig antiferromagnetic
interactions. We have developed an efficient cluster algorithm and used different lattice sizes and geometries,
which allows us to obtain the main characteristics of the temperature-frustration phase diagram. Our finite-size
scaling analysis confirms that the melting of the lamellar phases into the paramagnetic phase is driven first
order by the fluctuations. Transitions between ordered phases with different modulation patterns are observed
in some regions of the diagram, in agreement with a recent mean-field analysis.
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[. INTRODUCTION odological aspects of our Monte Carlo simulations. We have
used two different algorithms: a cluster algorithm for small
Models with a competition between a short-range orderfrustration and a parallel tempering method for large frustra-
ing interaction and a long-range frustrating interaction arelion. The results, concerning the nature of the transition be-
relevant to describe a large number of experimental systenf¥/een the paramagnetic and the modulated phases, are pre-
in soft-matter physicgdiblock copolymer melt§1], cross- sentgd in Se_c. IV. A careful finite—si_ze sca_ling analysis
linked polymer mixtured2] and interpenetrating networks confirms the first-order character of this transition. We also
[3], oil-water surfactant mixtureg4—6]) and in magnetism give, in this section, a selected study of transitions between
(ultrathin magnetic filmg7-9]). These are also invoked to different modulated phases.
explain glass formation in quite different situations such as
doped Mott insulators[10—-12 and supercooled liquids
[13,14. Some generic features shown by these models ark THE COULOMB FRUSTRATED ISING FERROMAGNET
the existence of mesophases characterized by mod_ulated spa- A. The model
tial patterns and the importance of the fluctuations that o )
strongly influence the physics at and above the transition to The Hamiltonian of the model is
these various phases.
~ Asimple version of a system with such a uniform frustra- H= _JZ SSi+ 9 E v(rSS, (1)
tion consists of a Coulomb frustrated Ising ferromagnet, in {0 2 7
which Ising spins placed on a three-dimensional cubic lat-
tice, interact via both nearest-neighbor ferromagnetic cou-
plings and long-range Coulombic antiferromagnetic cou-whereJ andQ are both positive and denote the strength of
plings. The mean-field theory15] predicts a complex the ferromagnetic and the antiferromagnetic interaction, re-
temperature-frustration phase diagram in which the lowspectively; S==*1, is the Ising spin variable, and the
temperature region displays infinite sequences of commenstacket(i,j) means that the summation is restricted to dis-
rate and incommensurate modulated phases and is separat#t pairs of nearest neighbors; is the distance between
from the high-temperature paramagnetic region by a line ofhe sited andj on a three-dimensional cubic lattice, an)
second-order phase transitions. However, both an analyticagpresents a Coulomb-like interaction term such tht)
work based on the self-consistent Hartree approximatiéh ~ ~1/[r| when|r|—oo.
and a first Monte Carlo studyl7] indicate that the fluctua- Because of the Coulomb interaction, the existence of the
tions drive the transition from second to first order. At leastthermodynamic limit requires that the total magnetization of
in the region around the transition, the mean-field phase dighe system be zero. As a consequence, the ferromagnetic or-
gram is thus dubious. der is forbidden at all temperatures and for any nonzero
The purpose of this paper is to thoroughly investigate, byvalue of the frustration paramet&7/J. In three dimensions,
Monte Carlo simulations, the main characteristics of theone expects this system to have an order-disorder transition
phase diagram of the Coulomb frustrated Ising model. Comat finite temperature, but contrary to the case of the unfrus-
pared to other systems, this model poses several serious difated system, the low-temperature ordered region exhibits a
ficulties to computer simulations: one stems from the long-complex frustration-temperature phase diagram with a vari-
range nature of the frustrating interaction and the otheety of modulated phases. We first summarize the exact re-
concerns finite-size studies of phases with modulated ordesults obtained for the ground states and the results of the
After briefly presenting the model and reviewing the resultsmean-field theory{15], which both have guided the Monte
of previous work(Sec. I), we discuss in Sec. lll the meth- Carlo simulations.
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B. Ground states

At zero temperature, the phase diagram can be calculated <32 .
exactly. It was done numerically far(r) equal to the true
Coulombic interaction (1) and analytically forv(r) ex-
pressed in terms of the lattice Green functj@b]. For small
values of the frustration parameter, the ground state consists
of lamellar phases in which lamellae of width made up by
parallel planes of ferromagnetically aligned spins, form a
periodic structure of length along the orthogonal direc-
tion. When the frustration increases, the period of the lamel-
lar phases decreases until one reaahesl. Each lamellar
phase is the ground state for a finite interval of the frustration
parameterQ/J. When this latter goes to zero, the width of
lamellae diverges asy/J) *® and the range of stability of
the successive lamellar phases shrinks to zeroQs)(°.

For Q/J<1, the ground states obtained by the numerical
calculation for the true Coulombic potential and those ob- 0 0.2 0.4 0.6 0.8 1

tained by the analytical calculation for the inverse lattice Q

Laplacian are almost identical.

For larger values of the fru_stratl_on parame(@/rJ, the_ FIG. 1. Temperature-frustration mean-field phase diagram.
system loses the translational invariance in a second dir€Gpere js an infinite sequence of flowers of complex modulated
tion and the ground states then consist of tubular phaseghases appearing at finite temperatures in the range of the frustra-

Eventually, the translational invariance is lost in the thirdion parameter for which the ground states are simple lamellar
direction and the ground states are orthorhombic phases. Khases. The units are chosen such KaatJ=1.

the limit of large frustrations, the ground state is aeNe

antiferromagnetic phagé5]. Even if the sequence of ground lowed byn, lamellae of widthm,, and so on, where the;'s
states is the same for the true Coulombic potential and foand then;’s are integers and where two successive lamellae
the inverse lattice Laplacian potential, the sequence of frusare composed of spins of opposite sign. From the zero tem-
tration parameters to which these ground states are assogierature axis springs an infinite number of quasivertical lines
ated is more and more different wh&1J increases. In the that separate the various simple lamellar phases At fi-
following, we focus on the region of small or moderate frus-nite (nonzerg temperatures, these lines split into branches

0 P IO YR [N TN WO N NN TN TN T T T A S Y

tration parameters@/J<1). separating phases with more complex modulations, each
branch splitting itself at higher temperature into new
C. Frustration-temperature phase diagram branches, etc., according to “structure combination branch-

o ) ing processes[19]. Close to the transition line, one expects
At finite temperature, the phase diagram can no longer bg,.ommensurate phases. By using the soliton approach de-

obtained exactly. We summarize here the results obtainegebped by Bak and co-workef@0,21, an approach that
within different approximations. A detailed analysis has beergcises on the behavior of the domain walls that separate
performed within the mean-field approximatidS]. For — commensurate regions, one can study the melting of com-
each frustration paramet€/J, there is a continuous transi- mensyrate phases into incommensurate phases; the resulting
tion at finite temperature between the disordered phase angles are shown as the dotted and dashed curves in Fig. 1.
modulated phases. The wave vector that characterizes the |, 5qdition to the mean-field description, the mean-
modulation at the transition varies continuously with thespherical version of this model, in which spins are taken to
frustration parameter; as a result, a succession of iInCOMMeRy real numbers with the global constraint that their mean-
surate modulated phases is predicted along the transitio%uare value is equal to one, has also been sty@d In

line. As shown in Fig. 1, the phase diagram is divided intoy,ee dimensions, the transition between disordered and
two main regions: above the transition liitll line), the  moqulated phases is also predicted to be continuous, albeit
system is disorderedparamagnetic whereas an infinite ith a feature coined “avoided critical behaviof22]; for
number of modulated phases exists at low temperatoré$  \anishing frustration, the transition temperature goes to a
a few of them are displayed in Fig).IWhenQ/J goes to  yajye that is much below the temperatdi& of the unfrus-
Z€ro, the' line of C”t'%al pomts” goes continuously, buttrated model. Nussinoet al. [23] have subsequently shown
nonanalytically towardT¢, the critical temperature of the iha+ this behavior remains for spin variables w@kn) sym-
unfrustrated Ising model. To describe the Iow—temperaturc?netry wheneven>2. Forn=1 (Ising sping, one expects
region, it is convenient to use the short-hand notation introyne Coulomb frustrated model to be in the Brazovskii class
duced by Fisher and Selk&8] for characterizing modulated ¢ Hamiltonians[16] and consequently, as predicted from a
phasesi(mj'm;?, ... m) designates a modulated phase self-consistent Hartree approximation, to display a first-order
formed by the periodic repetition of a fundamental patterntransition between modulated and disordered phases. Since
consisting of a succession af lamellae of widthm,, fol-  the mean-field approximation predicts a continuous transi-
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tion (see abovg the change of order of the transition is =1 in at least one direction must be used, otherwise, the

induced by the fluctuations. system misses the proper phase transition, and the energy in
the low-temperature region is much higher than that obtained
I1l. SIMULATIONS with commensurate lattice sizes. This limits the range of
] frustration parameters that can be studied.
A. Introduction A first Monte Carlo study17] was performed by using a

The Coulombic interaction is the source of several diffi-Metropolis algorithm with the constraint of zero total mag-
culties and limitations for computer simulations that we nownetization. The phase boundary between the paramagnetic
review. phase and the modulated phases was located. The double
interactions in systems with periodic boundary conditionsion region, and the occurrence of a hysteresis loop between
the minimum image convention used in models with short-N€ating and cooling, runs strongly, suggesting that the tran-
range interactions cannot be used, and a complete calculati§#ion is first order. The purpose of the present work is to
of the site-site interaction terms requires considering all th&omplete this first study by a more exhaustive investigation
images of the simulation basic cell, a procedure that is realof the phase diagram and a finite-size scaling analysis. In
ized by using Ewald sumf24]. For a lattice system, the order to achieve th_|s, more efficient algorithms have be_en
site-site pair interaction terms are calculated once for all afieveloped. In all simulations, the true Coulomb potential
the beginning of the run and are stored in an array for the(1)=1/|r| is used.
entire run. Therefore, a large number of reciprocal vectors
can be included in the Ewald sum, which ensures a very B. Cluster algorithm
good accuracy for the calculation of the Coulomb potential.  £qr continuous and weak first-order transitions, cluster

(i) For a single spin flip, the energy update involving 5igqrithms improve the convergence of Monte Carlo runs
Coulombic terms is performed by summing over all lattice cjose o the transitiofi25]. Let us briefly review the avail-
sites. Therefore, for a lattice with a linear sizeand with a  5151e methods: the standard cluster algorith{8svendsen-
constant Monte6CarIo swap per spin, the computer time igyang[26] and Wolff[27]) take advantage of a local symme-
proportlonal toL® for a sygtem with Coulom_blc interactions try, like the up-down spin symmetry, but they cannot be used
whereas it goes only ak® for a system with short-range fo systems that have the constraint of zero total magnetiza-
interactions. For a given computer time, the maximum lineak;on, “For Hamiltonians with algebraic interactions, an effi-
size that one can consider for the Coulomb frustrated modelient full cluster method has been develof@8—30, that
systems is then r_oughly the square root of the Ilnc_aa_r size Oéeneralizes the Swendsen-Watgr Wolff) algorithm to
its counterpart v_wthout frustration. 'I_'hls s_trongly limits the long-range interactions. This method, as with the previous
largest system size that can be studied with the present corgpes, requires the existence of a local symmetry and cannot
puter capabilitiestypically L=20). _ be straightforwardly applied to Coulombic systerfRecall

(i) The mean-field analysis summarized above has regat in the present model this constraint stems from the ex-
vealed that upon decreasing the temperature at a fixed valygence of the thermodynamic limitRecently, Dress and
of the frustration parameteQ/J, the system undergoes a krayth[31] have introduced a cluster algorithm that makes
sequence of phase transitions involving different modulayse of the geometrical symmetries of the system. These sym-
tions before reaching the ground state. This complex phasgietries are conserved even in the presence of the constraint
diagram corresponds, of course, to a system in the thermesy zero total magnetization. Dress and Krauth first studied a
dynamic limit. In a Monte Carlo study, one must perform aparg.sphere system. Herringa and ®1632] subsequently
finite-size analysis in order to extrapolate to the limit of anjmplemented this algorithm for a lattice gésr correspond-
infinite system. For simple models in which only a finite jg1y an Ising spin systepwith short-range interactions. The
number of phases are present, one has to study a finite nugrocedure is the following: two thermal clusters of opposite
ber of transition lines; increasing the size of the system progjgns are simultaneously grown by randomly choosing a seed
gressively moves these lines toward their location in the thergjie and its symmetric counterpart obtained through a geo-
modynamic limit. In the present model, a small temperaturénetrical symmetry(translation, rotation, inversion, . ) .of
range may include a large number of modulated phases thgte Hamiltonian; the clusters are built by adding neighboring
may or may not be observed in a finite system depending 0gpins of the same orientation with the probabilipy=[ 1
the commensurability between the period of the modulation_ exp(—4pJ)]. It can be shown that, provided the symmetry
and the linear size of the system. Upon increasing the 'attebroup allows for particles to reach any site of the system, the

not only do the phase boundaries moles in a standard 5igorithm satisfies ergodicity, and the detailed balance is
mode), but new phases with more complex modulation pat-4iyen by
terns may appear as well. This feature, akin to a process ogf
degeneracy lifting, makes the finite-size analysis much more TiB_>inB_>jPiB:Tjﬁ_>iAjﬁ_>inﬁy 2
difficult.

(iv) To ensure that the proper ground state is obtained, the
size of the lattice must be compatible with the period of the\NhereTfij denotes the probability of growing two clusters
expected lamellar phase. For instance, for a ground state covhose global flips transform a spin configuratidinto j,
responding to agm) phase, a system of sizepth with p  A? s the acceptance ratio for this change of configurations,

1—]
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and P{’ is the Boltzmann distribution. With the two clusters neighboring spins of the same orientation in each cluster
built with the bond probabilityp=[1—exp(—43J)], one can  with the probability[ 1—exp(—48.sJ)] where Bqs< B.

easily show thaf32] The detailed balance is given by
B B _TB B

T, PP T A PP =TI AP, ®)

T, PP ® where all quantities are defined below H@&). Combining

Egs. (5) and(3) (this latter being expressed from the refer-

As can be checked by substituting E8) in Eq. (2), one can  €Nc€ Hamiltonianone obtains

then chooseA? =1, i.e., the flip of a cluster is always

1—j

accepted33]. APt ) )
For systems whose Hamiltonians can be divided into two Befjf =exf — BAEY + (Ber— B)AEL ], (6)
parts, a reference Hamiltonidt, with short-ranged interac- Ajﬂi

tions and a HamiltoniarH,; with long-ranged interactions, i )

we propose the following hybrid cluster algorithm. The clus-WhereAEg is the energy difference between tjth and the
ters are built with bonds corresponding to the referencéth configurations for the reference Hamlltoman.
Hamiltonian, but instead of accepting all the Ising clusters Note that whenBe¢— 0, the cluster size goes to 1, and

that are formed, the detailed balance is now expressed as ON€ recovers a two-spin Metropolis rule. For nonzgg,
the Metropolis rule for the cluster acceptance is the follow-

ing: the new configuration is accepted iAE%L(l

Aiﬁﬂj i —Beti! B)A Eg <0, otherwise, a random numbseris chosen
5~ SXH—BAEY), (4 petween 0 and 1 from a uniform distribution and the new
1=t configuration is accepted if<exd — BAE} + (Beti— B)AEL .

. ] In preliminary runs,Bq¢s has been tuned to obtain the
whereAEY is the difference of energy between thté and highest acceptance ratio. We have found that this latter is
theith configurations for the HamiltoniaH ;. Equation(4)  attained for an effective temperature slightly above the criti-
is fulfilled if AF_”- is chosen according to a Metropolis rule: cal temperature of the unfrustrated Ising mod&L#=5).
the new configuration is accepted AfE} <0, otherwise a  For higher effective temperatures, the cluster size decreases
random number; is chosen between 0 and 1 from a uniform very rapidly and the algorithm then reduces to a Metropolis
distribution and the new configuration is acceptedzif algorithm. WhenT =5, the system jumps from disordered
<exp(—BAE)). states to modulated states and vice versa along the run,

This algorithm remains efficient if,[{AEjli)zo for most  which suppresses the hysteresis between heating and cooling
generated configurations; the rate of acceptance is then clogéns observed in simulations performed with a simple Me-
to 1 and most generated configurations are accef@df  tropolis algorithm[17]. Since the system is now equilibrated
Unfortunately, for our model, the long-range antiferromag-at each temperature, one observes a double-peak striicture
netic interaction never satisfies the above condition, and théhe energy histograms around the transition temperaaume
acceptance ratio is then very small; clusters are almost nevéis possible to determine the value of the specific heat at the
flipped, and the procedure becomes inefficient. transition.

In order to construct a better cluster algorithm, let us first In addition to this hybrid cluster algorithm, we have also
analyze the drawback of the above method. Close to thémplemented a parallel tempering algorithm. First introduced
transition temperature, the clusters, which have been built by Hukusima and Nemotf85] in the context of spin glass
using the reference Hamiltonian, are actually too large. Infmodels, this method belongs to the class of multicanonical
deed they have been generated with a bond probability that fdonte Carlo algorithm$36] which are well adapted for the
too large because it corresponds, for the reference system, s¢udy of first-order transitions. For a small frustration param-
a temperature that is located below its critical temperatureeterQ/J<0.1, the first-order character of the transition from
Close to the transition temperatufe(Q/J), the typical ex- disordered to modulated phases is expected to be rather
citations in the pure Ising model are much larger than thos&eak, and the hybrid cluster algorithm has a better conver-
for the frustrated system because the existence of large dgence. For 0.£Q/J<1, the two methods have a compa-
mains is prevented in the latter by the frustrafjoecall that ~ rable efficiency. ForQ/J=1, the energy discontinuity be-
TC(Q/J)<TS]_ As a consequence, the acceptance ratio becomes higher, and the parallel tempering method is the most
comes very small and the generated clusters are almost nevedficient.
flipped.

It is possible to obtain a more reasonable acceptance ratio IV. RESULTS
by modifying the above procedure as follows: two thermal
clusters of opposite signs are grown simultaneously by ran-
domly choosing a seed site and its symmetric counterpart A first series of simulations has been performed for esti-
obtained through a geometrical symmefisanslation, rota- mating the location of the transition line that separates the
tion, inversion, ..) of the Hamiltonian. One then adds paramagnetic phase from the modulated phase. The transi-

A. Melting of the simple lamellar phases
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] ] ) ) FIG. 3. Log-log plot of the maximum of the specific heat vs the
FIG. 2. Phase diagram obtained by Monte Carlo simulation. Thejnear |attice size forQ/J=0.2, 0.22, 0.35, and 0.4L 4, 8, 12,

melting line of the simple lamellar phaseill, dark curve, and  ang 16. The straight line corresponds to &f behavior.
open symbols displays cusps aroun®=0.04, Q=0.13, andQ
=0.65. In these regions, intermediate modulated phases appear thp(L). (Since the total magnetization is set to zero, the cor-
correspond to mixed lamellar phasetashed lines and filled sym-  responding Binder cumulants cannot be used for this model.
bols). The inset zooms in on the region between (8¢ and(3)  For a first-order phase transition, the scaling laws for these
phases. The units are chosen such KgatJ=1. quantities are CTaX= CoLk and TC(L)=TC(00)+aL7k,
wherek is equal tod, the dimension of the system.

The maximum of the specific heat versuss displayed
o0 a In-In plot in Fig. 3. The best linear square fit gives an
exponenk=3.00+0.21 forQ/J= 0.4, which is in very good

tion temperature for each value @fJ has been estimated by
first monitoring the melting of thegknown) ground state
when increasing the temperature. The results are shown
open symbolgand full, dark ling in Fig. 2. The decrease of . : o
the transition temperatur@. with increasing frustration is agreement ywth_the value expected foraﬂrst-ordertransmon.
more rapid than in the mean-field approximatidp/J drops (As shqwn |n.F|g. 3, for the other values Q¥J, k IS also
from 4.51 forQ=0, to 3.38 forQ/J=0.005, and to 2.02 for Ccompatible with the value of B.The same analysis have
Q/J=0.1. For the largest frustration studie@/J=1, T./J been performed for the shift (_)f th_e apparent transition tem-
=1.2, one notices, however, some peculiar features of thgerature, and the corresponding fits are also in good agree-

transition line so obtained; small cusps are observed arounriﬁ]ent with k:d:.3' This clearly shows th_aF, at_least |n'the.
Q/3=0.04,Q/3=0.13, andQ/J=0.65: this latter case even range of frustration parameters where finite-size scaling is

corresponds to an absolute minimum of the transition curngh'evable’ the transition between the paramagnetic and the

with T./J=0.934. These features can be understood by Comr_nodulated phases is a first-order one.

paring with the mean-field phase diagram in Fig. 1. The
cusplike regions precisely correspond to the location of the
springing “flowers” of phases with complex modulations,  For temperatures below the disordered-modulated transi-
and our study with limited system sizes misses the appeation, the mean-field theory predicts that the system under-
ance of these modulated phases. goes a series of transitions to various commensurate and,
Before coming back to the above point in more detail, wepossibly, incommensurate phases, which gives to the phase
first address the question of the order of the transition to theliagram the flowerlike structure illustrated in Fig. 1. Because
paramagnetic phase. To do so, we restrict the analysis to ¢f the finite size of the system studied in simulations, it is not
range of frustration parameters for which the interference opossible to observe incommensurate phases, but one can ex-
mixed lamellar phases with complex modulation patterns igpect to detect transitions between different commensurate
expected to be minimal; fo@/J between 0.2 and 0.4, one phases, provided that the lattice size is commensurable with
expects a direct melting of the ground state, the simplehe periods of the distinct modulated phases. Since the re-
lamellar phas¢2), into the disordered phagsee Figs. 1 and quired lattice sizes are larger than the maximum size of cubic
2). For several values d@/J (0.2, 0.22, 0.35, and 0O.Awe  simulation cells compatible with reasonable computer time,
have performed a finite-size scaling analysis of the transitionve have used anisotropic simulation cells. The main advan-
by varying the linear siz& of the lattice fromL=4 toL  tage is that the computer time increases only Ie?, where
=16. We have computed the maximum of the specific heal is the largest linear size of the lattice anid the size in the
CM™X(L) and the shift of the apparent transition temperatureperpendicular directions, instead bf for cubic cells. Note

B. Transitions involving mixed lamellar phases
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that, because of the anisotropy, finite-size scaling arguments 0.8 - T - T T T -
cannot be applied in a simple way. To characterize the tran- - k=nf2 1
sition between different modulated phases, we have here 0.7 / —
monitored the order paramet¥ (k) |2, which is defined as = k,=5m/12 .
R R 0.6 —
IM(K)[2= (80 (3~ k) [ / _

i=1

1 N 2 0.5
=N[<E s cos(k~ri>]>

IM(k,)]

N 2
+<i21 [asin(k-ri>]> } (7

whereN is total number of spins on the lattice and the brack-
ets denote a thermal average. For each of the three directions
of the lattice, the wave-vector components are equal to
2ap/L, with p going from —L/2+ 1 to L/2. Since the total
magnetization must be zerb,has to be an even number and
the k=0 component of the order parameter is always
zero. The periodic boundary conditions imply that FIG. 4. Order parametéM(k,)| vs temperaturd for two non-
M (k=2pm/L)|=|M(k=—2pm/L)|, where p=1,..., zero ordering wave vectots,= 7/2 andk,=5/12 and forQ/J
(L/2—1). After adding the last componef (k= )| (cor- =0.144. The first transition appearsTat=1.85 and corresponds to
responding tgp=L/2) the number of independent wave vec- an ordering wave vectok,=57/12 ((323Z) phas¢; the corre-
tors for each direction is theh/2. All components of the sponding order parameter vanishes at a lower temperafure
order parameter vanish in the paramagnetic phase, Where§§..77, at which a second transition to a lamellar phase character-
one or several components are different from zero in thdzed by a nonzero value ¢M(k,)| for k,= /2 ((2) phas¢ takes
modulated phases. place.
In order to show that intermediate modulated phases ap-
pear in the regions where the transition line has cusps, rearoundT=1.77 to the transition between thi8232) phase
gions that correspond to the flowers predicted by the mearand the(2) phase. Whei®/J increases, the two peaks of the
field approximation, we have investigated three differentheat capacity versus curve get closer, and fdp/J=0.17,
ranges of frustration parameters by using anisotropic latticeghe heat-capacity curve has a single pese Fig. 6a)]. It is
First, we have performed a series of runs@/J between
0.13 and 0.17 with a 212X 24 lattice. In order to observe T T T T T T T
intermediate phases, the modulation must appear along the
largest direction. To prevent the system from choosing the
direction at random, we introduce a bias by forcing the
modulation of the ground state in the largest direction. We
have checked by comparing with cubic simulation cells that
the transition temperatures are not changed. This trick guar-
antees that the transition between different modulations does
take place in the largest direction chosen aszlais. The S
order parameters is only calculated along this direction,
which also saves computer time. For the range of frustration
parameters studied, one obtains a sequence of two transi-
tions. Figure 4 shows the variatigwith temperaturgof two
different components of the order parametes= w/2 and
k,=5m/12, for Q=0.144. An intermediate phase character-
ized by a nonzero value dM(k,=5m/12)|, which corre-
sponds to thg3232Z) mixed lamellar phase, appeared for
temperatures betweén=1.85 andT=1.77. AtT=1.85, the
(3232) phase melts into the paramagnetic phase, whereas at T
T=1.77, 1t tranSfor_mS to the simple _lame”ar phald), FIG. 5. Specific heat vs temperature for<122x 24 lattice and
which is characterized by the ordering wave vecigr for Q/J=0.144. The right peak corresponds to the disordered-
=m/2 and represents the ground state. The transitions akfodulated transition(the modulation is characterized b,
also observed by monitoring the heat capacity; in Fig. 5, the=57/12) and the left peak corresponds to the transition between
peak aroundl=1.85 corresponds to the transition betweenthe (3232) modulated phasévave vectotk,=57/12) and the(2)
the disordered and thg8232) phase, and the second peak phase(wave vectork,= /2).
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r T ] ground state <(16)> 7 Tedd
10 — 03l m T7-=45 _|
sl | K .
I ’ eE‘J' 02| .
5 6k — = L <(11)210> phase .
AL i K .
0.1 i v -
2 — - i i J

L N . -
ol _| 0 0.2 0.4 0.6 0.8 1
l ) ] \ ] : l K
1.75 1.8 1.85 1.9
T FIG. 7. Order parametdM (k,)| vs k, for Q/J=0.000 48 for
three different temperatures. Fbr= 3, there are two nonzero com-
0.5
T T T T

| ' ponents of the order parameter fg= /16 andk,= 37/16, which
(b) corresponds to &16)) simple lamellar phase. F@r=4.1, the only
. nonzero component is fok,=3#/32 , which corresponds to a

K modulation with a half-period of 64/B ((11)?10) phasgé. For T
04— !" . =4.5, all components are zero and the system is paramagnetic.
I3
- ! “ . larger values 0ofQ/J that correspond to the widest flower
: taking place between thel) and(2) lamellar phases. The
031 ' -

range of frustration parameters, where we have observed in-
termediate phases, goes fro@/J=0.55 to Q/J=0.90.
We have performed simulations for different lattice sizes,
10X10x12, 10<10x14, and 1X10Xx16. Intermediate
modulated phases occur for these different lattices, but, due
to commensurability reasons, the nonzero component of the
order parameter is different from one lattice to another. By
comparing the energy per site of the three intermediate
phases so obtained, we have found that the phase appearing
on the 1x10x12 lattice with a nonzero componekt,
=2/3, is the most stable one f@/J, between 0.55 and
0.75. This phase is@1) mixed lamellar phase and is shown
E in Fig. 2. For 0.75:Q<0.90, the 1& 10X 12 lattice has an
intermediate phase whose largest nonzero component is for
FIG. 6. (a) Specific heat vs temperature fQ/J=0.17.(b) En- k,=5m/6, whereas the 010X 16 lattice has an intermedi-
ergy histograms foQ/J=0.17 at different temperaturds=1.795, ate phase whose largest nonzero component is kfor

1.805, 1.815, 1.825, and 1.835. Note that Tor 1815(thICk Iine) =37/4. This latter phase is more stable and Corresponds to a
the system is able to flip between three different phases, the parg212) mixed lamellar phasésee Fig. 2

magnetic, the(323Z), and the(2) phases and the histogram has * \ye have also investigated other regions of the phase dia-

three peaks. gram, where a complex structure of phases is expected. In
o . - articular, we have obtained a sequence of two transitions for
worth pointing out that as illustrated in Fig(l§, for the P ' q

temperature corresponding to the peak maximum, the energ SEER
histogram has a triple peak structure. The results are summze 1 '
rized on the phase diagram in Fig. 2. We have also consid:

ered the region, wher®/J is between 0.12 and 0.127 with a
8X8X48 lattice. One observes an intermediate modulated
phase between the paramagnetic phase and the lamellar

ground state with an ordering wave vector=37/8 (see FIG. 8. Spin configuration for 4(16)) simple lamellar phase

Fig. 2. with a half-period of 16 obtained at low temperatures €@#tJ
In a second series of simulations, we have focused or=0.000 48(the lattice is 8<8X 64).

PE)
-

T

aa

gu
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TABLE |. Observed sequence of transitions for several frustra-
tion parameters.

Q/J Lattice geometry Phases

0.000 48 8 8x 64 paramagnetic ((11)%(10))— ((16))
0.001 8x8x32 paramagnetic (65%) — (8)
0.144 12 12% 24 paramagnetie (323%) —(2)
0.6 TXTx12 paramagnetie (12)—(2)

FIG. 9. Spin configuration for (11)>(10)) mixed lamellar
phase with a half-period of 32/3 obtained at intermediate temperagonfirms that the mean-field approach, although incorrect
tures forQ/J=0.000 48(the lattice is 8<8X 64). concerning the order of the transition from paramagnetic to
_ _ modulated phases and overestimating its temperature, pro-
Q/J=0.00048. The ground state is a simp(@6)) lamellar  yjges the right structure for the low-temperature phases. As
phase of half-period 16. By using ax®X 64 lattice, we  expected, the mean-field predictions becomes more accurate

have observed a transition between the ground state and @@ |ower temperatures are consideteee Figs. 1 and)2
((11)*(10)) mixed lamellar phase of half-period

21.333,....This is shown in Fig. 7, where the components
of the order parameteM (k,)| are plotted folT=3, 4.1, and
4.5. In the low-temperature regiol € 3), two components We have studied the main characteristics of the phase dia-
are(significantly different from zero, namelk,= #/16 and gram and of the transition for the three-dimensional Cou-
k,=3m/16; for T=4.1, only one componenk,=37/32 is  lomb frustrated Ising model by means of refined Monte
(significantly different from zero, and for higher tempera- Carlo algorithms. We have been able to show that the phase
tures (T=4.5), the system is paramagnetic and the ordediagram retains the complex structure predicted by the mean-
parameter is identically equal to zewwithin the precision of field theory. In particular, we have observed in some regions
the simulation. Typical spin configurations are displayed in of the temperature-frustration diagram, transitions between
Fig. 8 (ground stateand Fig. 9(intermediate((11)>(10))  different modulated phases corresponding to simple and
phase. Table | summarizes the transitions that we have obmixed lamellar patterns. Away from these regions, we have
served for different values of the frustration parameter. shown by a finite-size scaling analysis, that the melting of

Going further into the details of theomplex phase dia- modulated phases into the paramagnetic state is a first-order
gram would become a very tedious task. The partial phastansition, thereby confirming that it is driven from second to
diagram that we have obtained in the present paper alreadirst order by the fluctuations.

V. CONCLUSION
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