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On-ramp simulations and solitary waves of a car-following model
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An on-ramp simulation of a car-following model reveals qualitatively similar results to previous simulations
of continuum models carried out by Helbirg al. [Phys. Rev. Lett82, 4360(1999] and by Lee, Lee, and
Kim[Phys. Rev. B59, 5101(1999]. Here, we discuss the solitary solution type in greater detail. It can be
approximated by a Kortweg—de Vries equation derived from the analogous continuum version. Hence, this
establishes a further link between these two traffic simulation types and supports the idea that models of either
kind lead to similar results when they contain a relaxation term.
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In this paper we use the discrete optimal velodi@®V) matching the speed of the surrounding cars at the ramp. For
model t<O0 the traffic state consists of equally distributed cars of
) density po=1/b, along the road with constant speed
vn=a[V(bp)—vn] (1) =V(by).
Inserting cars now becomes a discrete process both in
suggested by Bandet al.[1] with a monotonically increas- space and time in contrast to continuum simulations. To

ing OV function avoid crashes, vehicles only enter the road if a safety dis-
tanced, both to the car in front and behind, is given. It turns
V(by)=tank(b,—2)+tank(2). (2 out that this is fulfilled in the overwhelming majority of the

Each car’s acceleration is proportional to the difference begases.
prop The traffic states that can be found after the on-ramp flux

tbwe(fr? tzltia ;jenswe;j stﬁeébdgrl\?ﬁr]lr?;miIjuirgctlor;rollttbeadway sets in[Fig. 1(@)] turn out to be qualitatively the same as in
n {the distance fo the ca S current speel, . Helbing’s continuum moddl3]. The simulations are carried

This relaxation term is characteristic of most of the recentlyOut with asensitivity a= 1.5, for which the model Eq1) is

suggested traffic models, both car-following and continuuminearly unstable in a density regine= [0.39,0.69. This in

[2]. It seems to be an essential feature of traffic modeling i m corresponds to a headway rarige [1.45,2.53 [Fig
order to reproduce phenomena such as stop-and-go traffﬁb)]. Depending on the original densipy aﬁd 'Ehé on-rarﬁp
ang(l)tiz;piﬁreerzmg\?g T)Ilenegnst\r:\/%(:l;t{reommst.s to model oncominf]® dramp. We find triggered stop-and-ga'SG) traffic up-
vehicles ’near a ramp. First, Helbirg aﬁ) [3] and Leeet al gtrean‘(Fig. 2), oscillatory congested traffic upstream, homo-
[4] have simulated a%on-ra'm in their.continuum modeis byqeneous congested traffic upstream, and homogeneous *con-
introducing a source term to tﬁe fight-hand side of the equ gested” traffic downstream. Helbing correctly refers to the
tion for thg conservation of cars 9 W¥tter as free traffic, since the upstream flow is not affected
by the on-ramp at all, and the slightly higher downstream
+ =g (x,1), 3 density still corresponds to the free flow regime.
Pt (pu)x=Cin(x,1) ® At first sight it is very surprising that the car-following

Helbing used a macroscopic model to represent the on-ram@Ver, as shown by Beret al.[7], there is an analogous con-
and its vicinity, whereas the remaining stretch of road wadinuum counterpart of the OV model E@l), which is in
simulated by the corresponding microscopic mof&6]. good agreement _Wlth its dlscret_e version for moderate gradi-
Here, the question remains crucial as to how to incorporat8nts of the density. Moreover, it also resembles the former
the interaction of both systems near their interfaces. models of Helbing and Kernest al. _

In contrast to this two-phase approach, we aim for a direct e can now prove that the TSG traffic state can be ap-
on-ramp simulation of the discrete model Ed). Cars are proximated analytically using this continuum analogue
inserted in an open systeffiinfinitely” long road repre-

sented by 2500 vehicles in the numerical simulatjcgitsx — = Px  Pxx p§
=0 with constant flux,,y, aftert=0 (dimensionless run- vitvu,=alVip)—v]+aVi(p) Z“L 602 2p% 4)
ning time of programs between 1000 and 2KQBeir speed
V(p)=V(1lp). (5)
*Email address: Peter.Berg@bris.ac.uk,
URL: http://www.peterberg.net This model consists of an equation for the conservation of
"Email address: Andy@bpi.cam.ac.uk, cars[Eqg. (3)] and a governing equation for their acceleration
URL: http://www.bpi.cam.ac.uk [Eq. (4)]. In the following we neglect the nonlinear term in
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N FIG. 2. The TSG traffic state can be considered as a train of

X

: solitary waves, which decay only slowly when traveling upstream
v due to small dissipation.
E —Cp,+0,=0, 8
' (b)
5 = = Pz P
X —cv tvv,=alV(p)—vl+aV'(p)| 5o+ 5|, (9
L 2p  6p
' _ lincarly unstable
i , with the flow q being the product of the density and the
0.1 0.2 0.3 0.4 0.5 0.6 07 0.8 Speed
Po
; ; ; Cpz Qp;
FIG. 1. () Phase diagram of traffic states as a function of the q=pr=v,=— — ——. (10)
original homogeneous flow of densify, and the on-ramp flux p p?

Gramp- It qualitatively resembles the phase diagram found in Hel- _ _ )
bing’s continuum mode[3]. (b) The fundamental diagram fa  This way the dynamic equatioi®) can be written as
=1.5, showing the original flowg, of density p, before the on-

ramp perturbation sets in, contains an unstable region. pz , [2Cp, @ _ (aV' ¢? av’
-3 —2+; q=aV+ W_F? pz+szz-
pi, since the same wave type also occurs in the above- P P (11)
mentioned continuum models, which do not include this
term. Being that we are in the linear stable regiffég.  We then approximate the flogto lowest order as
1(b)], we can try to interpret the solitary wave tygdeg. 2
as an upstream traveling wave away from the on-ramp. q:pv+alpz+a2pzz- (12)
Hence, there will be no source term on the right-hand side of
Eq. (3), 4in=0. The leading termpV represents the fundamental diagram

Since the waves of Fig. 2 resemlslelitary waveswhich  [Fig. 1(b)]. It describes homogeneous, stationary, and stable
are solutions of the Kortweg—de Vri¢kdV) equation flow q of densityp and speed/(p). The parametera, and

pit (a+ Bp) oyt proo=0, 6) a, can be found by substitution of E¢L2) into Eq.(11) as
we are motivated to try and extract a KdV equation from _z } 2 a2
Egs. (3) and (4) by balancing nonlinear and dispersive ef- =5 * a(v 2ev+co), (13
fects, as well as neglecting the dissipation in the first place.
If we consider traveling-wave solutions away from the \VZ
on-ramp, changing to the reference system of the wave by a2=5. (14

introducing the coordinate

7=x—ct 7) This leads to

! !

. _ _ _ \Y
with the wave speed, the system of Eqg3) and (4) turns a=pV+| 5+ a(V2—2(:V+ c?) |p,+ BpPe (15

into

035602-2



RAPID COMMUNICATIONS

ON-RAMP SIMULATIONS AND SOLITARY WAVES OF A.. .. PHYSICAL REVIEW E64 035602R)

If the second term i, can be neglected in comparision to  0.55 - - -
the third term inp,,, we can rewrite the equation of conser-
vation of cars Eq(8) as

T T
numerical data  +

— 05| 1
_sz+(pv)z+ 5[’221:0- (16)
. . . 045 | 1
If we consider perturbations of the density
oo
pX)=p* +p(x.t) (17

04t i W ]
near the maximum flovt,ax=d(pmax= 1/2.78)~0.58, p\V' ./ \

can be approximated by the first terms of a Taylor series S
035 1 1 1 1 1
= T . — ~ 1 ~y -190 -180 -170 -160 -150 -140
PV=pNV(p* )+ (pV)plp=prp T 5(pV)pp|  poH- - y
p=p*
(18 FIG. 3. The solitary wave solution of the car-following simula-
. o . . s tion (TSG) is only partially matched by the analytical soluti¢@b)
Inserting this into Eq(16) yields (dropping the “hat) due to higher-order and dissipative effects. The latter reaches about

— 82% of the actual amplitude represented by the %éith

—Cp+[(pV),+(pV)ppplpzt gpzzzzov (19 which has to be added {g* . Therefore, we end up with two

parameters to be fitted, the wave speeahd p*. They are

which is the KdV equation that we were looking for. This not independent of each other, since they should ideally ful-
equation is only a good approximation under the assumptiofill the flow conservation criterionthe downstream flow
laip,|<|ayp,,. One way to show this is to derive the solu- must equal the sum of the on-ramp flow and the average flow
tion of Eq.(19) and then observe how accurately this condi-0f the upstream solitonlike profile. This is how the soliton is
tion is fulfilled. being selected.

We first transform the KdV equation into a standard form  However,p* determines all remaining parameters in Eq.
found in most books about this topj8]. In order to do so, (25 by taking their values ap=p*. An analysis of the
we introduce a new variable individual terms reveals that the solution does not vary much

with p* being close to the maximum of the flow curve.

1 — — One way to determine the two parameters is to use the
u(2)=gleV),+(pV),ppl. (200 humerical results, which both deliver to the wave speed
Now Eq.(19) turns into € andV'/6p negative
—(—c)u,—6uu,+| — a) u,,~0. (21) 0.5
A coordinate transformation 0.38 04 Q42 044 046 048 05 052
0 1 Il 1 1 1 1 1
_ 6 P
z=1\/— V—F:z (22
0.5 4
yields
—(—C)uz— Buuz+t Uzzz=0, (23 1]
which is the standard form whose solution is a,
— C R 1 24 -1.5 1
u(z)= 2sec 5 cz|. (24
This in turns delivers o

FIG. 4. The coefficients of the expansion Eg2) in the density
pV)pp range of the soliton solution. The solitons form in the regime of
(25 negligible dissipation.

1 [6cp
> V—p(X ct)

(x,t)= 3 sech
a (PV)p
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c=-0.64+0.03 (26) a small perturbatiom,p,, to the KdV equatior(19), and the
solution is then found by introducing multiple time scales
and the density [9]. This comprehensive method goes beyond the scope of
. this publication.
g*=0.30+0.01. (27) Another effect, which might explain a further discrepancy,

. : - . Is that we assumed,=V'/6p to be constant. In fact, it var-
These lead to a soliton solution, as shown in Fig. 3, which ) .
. ; . . les with p between—2.2 and— 1.2 across the density range
illustrates that the analytical solution does not quite reach th(e)f the soliton solution. If the term depends pnhowever. it
right amplitude or width. This might be based on the fact that . ' . -P pn T

will not allow for an analytical solution any longer. Similar

due to its high amplitude, higher-order terms come into play ;

that have been neglected in this analysis and, futhermor&rgxg]?nn;t!;?:ggogggsem?ﬁé eggirl]tqsetgfrst;]ri]sa‘g-er coincide
dissipation might broaden the distribution. Nevertheless, th%vith carlier oublications ’which consider varioSs pOV models

analytical solution can be regarded as a good first-order a P : ‘

proach, even though the flow criterion cannot be exactly fulat’ therefore, supports the idea that OV models that contain

filled. This is different for the fit, which shows in addition 2" unstable density region in the fundamental diagram lead

that the numerical data really has the shape of a’ssclir to similar predictions O.f on-ramp statgE0]. It does not im-
ton ply that all states of Fig. () can be actually found in real

. . traffic [11,12. It has to be regarded as a sheer mathematical
If we now consider the values @f; anda, as shown in o 4 .
. . . . .theory, whose predictions might not fully cover real traffic
Fig. 4, it becomes clear that the soliton solution appears in . . o g .
the regime where the dissipation term becomes negligibleevents, since it lacks stochasticity, varying vehicle param-
and |a,(p~0.365),|<|a,(p~0.365),, applies. There- eters, and time delay. Hence, it is doubtful if the TSG state

. . can really be interpreted aynchronized floyust because of
fore, as a first-order approach, we can neglect this term ang high flux and slowly varying spedds3].

the KdV equation is justified. Nevertheless, dissipation
would also contribute an asymmetric correction term that Peter Berg would like to thank the Alfried Krupp von
explains the discrepancy between the left-hand and the righBohlen und Halbach-Stiftung and the EPSRC for their spon-
hand side of the maximum in Fig.[3]. It can be treated as sorships of this project.
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