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On-ramp simulations and solitary waves of a car-following model
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An on-ramp simulation of a car-following model reveals qualitatively similar results to previous simulations
of continuum models carried out by Helbinget al. @Phys. Rev. Lett.82, 4360 ~1999!# and by Lee, Lee, and
Kim@Phys. Rev. E59, 5101 ~1999!#. Here, we discuss the solitary solution type in greater detail. It can be
approximated by a Kortweg–de Vries equation derived from the analogous continuum version. Hence, this
establishes a further link between these two traffic simulation types and supports the idea that models of either
kind lead to similar results when they contain a relaxation term.
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In this paper we use the discrete optimal velocity~OV!
model

v̇n5a@V~bn!2vn# ~1!

suggested by Bandoet al. @1# with a monotonically increas
ing OV function

V~bn!5tanh~bn22!1tanh~2!. ~2!

Each car’s acceleration is proportional to the difference
tween the desired speedV given as a function of itsheadway
bn ~the distance to the car in front! and its current speedvn .
This relaxation term is characteristic of most of the recen
suggested traffic models, both car-following and continu
@2#. It seems to be an essential feature of traffic modeling
order to reproduce phenomena such as stop-and-go tr
and its upstream traveling shock fronts.

So far, there have been two attempts to model oncom
vehicles near a ramp. First, Helbinget al. @3# and Leeet al.
@4# have simulated an on-ramp in their continuum models
introducing a source term to the right-hand side of the eq
tion for the conservation of cars

r t1~rv !x5qin~x,t !, ~3!

wherer is the density andv is the speed of cars. Secon
Helbing used a macroscopic model to represent the on-r
and its vicinity, whereas the remaining stretch of road w
simulated by the corresponding microscopic model@5,6#.
Here, the question remains crucial as to how to incorpo
the interaction of both systems near their interfaces.

In contrast to this two-phase approach, we aim for a dir
on-ramp simulation of the discrete model Eq.~1!. Cars are
inserted in an open system~‘‘infinitely’’ long road repre-
sented by 2500 vehicles in the numerical simulations! at x
50 with constant fluxqramp after t50 ~dimensionless run-
ning time of programs between 1000 and 2500!, their speed
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matching the speed of the surrounding cars at the ramp.
t,0 the traffic state consists of equally distributed cars
density r051/b0 along the road with constant speedv0
5V(b0).

Inserting cars now becomes a discrete process bot
space and time in contrast to continuum simulations.
avoid crashes, vehicles only enter the road if a safety
tanced, both to the car in front and behind, is given. It turn
out that this is fulfilled in the overwhelming majority of th
cases.

The traffic states that can be found after the on-ramp fl
sets in@Fig. 1~a!# turn out to be qualitatively the same as
Helbing’s continuum model@3#. The simulations are carried
out with asensitivity a51.5, for which the model Eq.~1! is
linearly unstable in a density regimerP@0.39,0.69#. This in
turn corresponds to a headway rangebP@1.45,2.55# @Fig.
1~b!#. Depending on the original densityr0 and the on-ramp
flow qramp , we find triggered stop-and-go~TSG! traffic up-
stream~Fig. 2!, oscillatory congested traffic upstream, hom
geneous congested traffic upstream, and homogeneous ‘‘
gested’’ traffic downstream. Helbing correctly refers to t
latter as free traffic, since the upstream flow is not affec
by the on-ramp at all, and the slightly higher downstrea
density still corresponds to the free flow regime.

At first sight it is very surprising that the car-followin
model reveals the same results as continuum models. H
ever, as shown by Berget al. @7#, there is an analogous con
tinuum counterpart of the OV model Eq.~1!, which is in
good agreement with its discrete version for moderate gr
ents of the density. Moreover, it also resembles the form
models of Helbing and Kerneret al.

We can now prove that the TSG traffic state can be
proximated analytically using this continuum analogue

v t1vvx5a@V̄~r!2v#1aV̄8~r!F rx

2r
1

rxx

6r2
2

rx
2

2r3G , ~4!

V̄~r!5V~1/r!. ~5!

This model consists of an equation for the conservation
cars@Eq. ~3!# and a governing equation for their accelerati
@Eq. ~4!#. In the following we neglect the nonlinear term i
©2001 The American Physical Society02-1
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rx
2 , since the same wave type also occurs in the abo

mentioned continuum models, which do not include t
term. Being that we are in the linear stable regime@Fig.
1~b!#, we can try to interpret the solitary wave type~Fig. 2!
as an upstream traveling wave away from the on-ram
Hence, there will be no source term on the right-hand side
Eq. ~3!, qin50.

Since the waves of Fig. 2 resemblesolitary waves, which
are solutions of the Kortweg–de Vries~KdV! equation

r t1~a1br!rx1rxxx50, ~6!

we are motivated to try and extract a KdV equation fro
Eqs. ~3! and ~4! by balancing nonlinear and dispersive e
fects, as well as neglecting the dissipation in the first pla

If we consider traveling-wave solutions away from t
on-ramp, changing to the reference system of the wave
introducing the coordinate

z5x2ct ~7!

with the wave speedc, the system of Eqs.~3! and ~4! turns
into

FIG. 1. ~a! Phase diagram of traffic states as a function of
original homogeneous flow of densityr0 and the on-ramp flux
qramp . It qualitatively resembles the phase diagram found in H
bing’s continuum model@3#. ~b! The fundamental diagram fora
51.5, showing the original flowq0 of density r0 before the on-
ramp perturbation sets in, contains an unstable region.
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2crz1qz50, ~8!

2cvz1vvz5a@V̄~r!2v#1aV̄8~r!F rz

2r
1

rzz

6r2G , ~9!

with the flow q being the product of the density and th
speed

q5rv⇒vz5
crz

r
2

qrz

r2
. ~10!

This way the dynamic equation~9! can be written as

2
rz

r3
q21S 2crz

r2
1

a

r D q5aV̄1S aV̄8

2r
1

c2

r
D rz1

aV̄8

6r2
rzz.

~11!

We then approximate the flowq to lowest order as

q5rV̄1a1rz1a2rzz. ~12!

The leading termrV̄ represents the fundamental diagra
@Fig. 1~b!#. It describes homogeneous, stationary, and sta
flow q of densityr and speedV̄(r). The parametersa1 and
a2 can be found by substitution of Eq.~12! into Eq. ~11! as

a15
V̄8

2
1

1

a
~V̄222cV̄1c2!, ~13!

a25
V̄8

6r
. ~14!

This leads to

q5rV̄1F V̄8

2
1

1

a
~V̄222cV̄1c2!Grz1

V̄8

6r
rzz. ~15!

FIG. 2. The TSG traffic state can be considered as a train
solitary waves, which decay only slowly when traveling upstre
due to small dissipation.
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If the second term inrz can be neglected in comparision
the third term inrzz, we can rewrite the equation of conse
vation of cars Eq.~8! as

2crz1~rV̄!z1
V̄8

6r
rzzz50. ~16!

If we consider perturbations of the density

r~x,t !5r* 1 r̂~x,t ! ~17!

near the maximum flowqmax5q(rmax51/2.78)'0.58, rV̄
can be approximated by the first terms of a Taylor series

rV̄5r* V̄~r* !1~rV̄!rur5r* r̂1
1

2
~rV̄!rrU

r5r*
r̂21••• .

~18!

Inserting this into Eq.~16! yields ~dropping the ‘‘hat’’!

2crz1@~rV̄!r1~rV̄!rrr#rz1
V̄8

6r
rzzz50, ~19!

which is the KdV equation that we were looking for. Th
equation is only a good approximation under the assump
ua1rzu!ua2rzzu. One way to show this is to derive the sol
tion of Eq. ~19! and then observe how accurately this con
tion is fulfilled.

We first transform the KdV equation into a standard fo
found in most books about this topic@8#. In order to do so,
we introduce a new variable

u~z!5
1

6
@~rV̄!r1~rV̄!rrr#. ~20!

Now Eq. ~19! turns into (c andV8/6r negative!

2~2c!uz26uuz1S 2
V̄8

6r
D uzzz50. ~21!

A coordinate transformation

z̄5A2
6r

V̄8
z ~22!

yields

2~2c!uz̄26uuz̄1uz̄z̄ z̄50, ~23!

which is the standard form whose solution is

u~ z̄!5
c

2
sech2S 1

2
A2cz̄D . ~24!

This in turns delivers

r~x,t !5
3c

~rV̄!rr

sech2F1

2
A6cr

V̄r

~x2ct!G2
~rV̄!r

~rV̄!rr

,

~25!
03560
n
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which has to be added tor* . Therefore, we end up with two
parameters to be fitted, the wave speedc and r* . They are
not independent of each other, since they should ideally
fill the flow conservation criterion: the downstream flow
must equal the sum of the on-ramp flow and the average fl
of the upstream solitonlike profile. This is how the soliton
being selected.

However,r* determines all remaining parameters in E
~25! by taking their values atr5r* . An analysis of the
individual terms reveals that the solution does not vary mu
with r* being close to the maximum of the flow curve.

One way to determine the two parameters is to use
numerical results, which both deliver to the wave speed

FIG. 3. The solitary wave solution of the car-following simul
tion ~TSG! is only partially matched by the analytical solution~25!
due to higher-order and dissipative effects. The latter reaches a
82% of the actual amplitude represented by the sech2 fit.

FIG. 4. The coefficients of the expansion Eq.~12! in the density
range of the soliton solution. The solitons form in the regime
negligible dissipation.
2-3
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c520.6460.03 ~26!

and the density

q* 50.3060.01. ~27!

These lead to a soliton solution, as shown in Fig. 3, wh
illustrates that the analytical solution does not quite reach
right amplitude or width. This might be based on the fact t
due to its high amplitude, higher-order terms come into p
that have been neglected in this analysis and, futherm
dissipation might broaden the distribution. Nevertheless,
analytical solution can be regarded as a good first-order
proach, even though the flow criterion cannot be exactly
filled. This is different for the fit, which shows in additio
that the numerical data really has the shape of a sech2 soli-
ton.

If we now consider the values ofa1 anda2 as shown in
Fig. 4, it becomes clear that the soliton solution appear
the regime where the dissipation term becomes negligi
and ua1(r'0.365)rzu!ua2(r'0.365)rzzu applies. There-
fore, as a first-order approach, we can neglect this term
the KdV equation is justified. Nevertheless, dissipat
would also contribute an asymmetric correction term t
explains the discrepancy between the left-hand and the ri
hand side of the maximum in Fig. 3@9#. It can be treated as
ug

olf
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a small perturbationa2rzz to the KdV equation~19!, and the
solution is then found by introducing multiple time scal
@9#. This comprehensive method goes beyond the scop
this publication.

Another effect, which might explain a further discrepanc
is that we assumeda25V8/6r to be constant. In fact, it var
ies with r between22.2 and21.2 across the density rang
of the soliton solution. If the term depends onr, however, it
will not allow for an analytical solution any longer. Simila
arguments hold for the other parameters in Eq.~25!.

As mentioned above, the results of this paper coinc
with earlier publications, which consider various OV mode
It, therefore, supports the idea that OV models that con
an unstable density region in the fundamental diagram l
to similar predictions of on-ramp states@10#. It does not im-
ply that all states of Fig. 1~a! can be actually found in rea
traffic @11,12#. It has to be regarded as a sheer mathemat
theory, whose predictions might not fully cover real traffi
events, since it lacks stochasticity, varying vehicle para
eters, and time delay. Hence, it is doubtful if the TSG st
can really be interpreted assynchronized flowjust because of
its high flux and slowly varying speed@13#.
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