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We study the effect of noise-enhanced stability of periodically driven metastable states in a system described
by piecewise linear potential. We find that the growing of the average escape time with the intensity of the
noise is depending on the initial condition of the system. We analytically obtain the condition for the noise
enhanced stability effect and verify it by numerical simulations.
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Escape from a metastable state is a phenomenon observed o0, x=0
in several scientific areas. Among them there are the theory ,
of diffusion in solids, chemical kinetics, and transport in U=y hx O<x</ 2
complex systemgl]. E-k(x—/), /<x<b,

The mean first passage tinielFPT) of a Brownian par- . , .
ticle moving in potential fields usually decreases with noiseVith E=h/". Specifically we assumk>0 and|F(t)|<k.
intensity according to the Kramers formul2] or some uni- First we consider the system governed by ). with
versal scaling function of the system paramef@d]. The F(t)=0 and potential (2) with arbitrarh. If h>0 (E
dependence on the noise intensity of the MFPT for meta=0) the states ak</" become metastable. The exact ex-
stable and unstable systems was revealed to have resonarégssion of the MFPT from initial positiox, to boundaryb
character first noted by Hirsat al.[5] and then observed in IS known for the casé&(t) =0,
different physical system@®—11]. The most important con- 1 (b ,
cl_qsmn of these stud_les is that th_e noise can modify the sta- 7(Xo,0,9) = _j eu(z)J e "0dydz, @)
bility of the system in a counterintuitive way. The system aJx, -

remains in the metastable state for a longer time than in the . ] ] ) .
deterministic case and the escape time has a maximum ¥here u(x)=U(x)/q is a dimentionless potential profile.

some noise intensity. Noise-enhanced stabifi4ES) was  Evidently in physical systems we cannot observe the micro-
originally found numerically by Dayaret al. [6], and ob-  SCOPIC initial conditions. However the MFPT of EQ) it is
served experimentally in a tunnel diode by Mantegna and;.ufflc_len.t to .obtaln the MFPT with _arb|trary macroscopic ini-
Spagnolo[8]. More recently, it was found that the noise- tial distribution by simple integration. Therefore we further
induced slowing dowri10] and the noise-induced stabiliza- Study 7(Xo,b,q) because it contains the full information
tion [11] are related to NES phenomen(#]. about the system. If @x,</, the decay timer= 7, for the
Some questions arise from previous studi@sWhat is  Potential profile of Eq(2) is
the reason of the increase of the average escape time with the ,
noise intensityZii) What about the condition for which the _b-7 /=X q(h+k)
71(X0,b,0) = — Pt e

E/q__ ﬂehxo /q
h2

NES effect takes place? To answer both questions we inves- h2k

tigate the escape time from a periodically driven metastable

state for a piecewise linear potential. We study the nature of h+k a9 E—ayg

this phenomenon analytically. We find that for fixed potential - 2h (1-e™"%)— kh€ : 4

the decay time of unstable initial state can be dramatically

!npreased py the presence of a small noise dependmg on ﬂl‘ie/<x0<b, the decay timer= 7, is

initial condition of the system. We obtain the condition for

the NES effect, as an explicit relation between the driving 1[q(h+k)

frequency and the parameters of the potential. 72(X0,0,q)= Kl hk (e"Md—e 4F9) +b—x,

We consider the model of overdamped Brownian motion

described by the equation N %(e(E_AE)/q_e(E_A)/q) . )
dx dU(X) ]
T Tax +F(t)+ &), (1) HereA=k(b—/), andAE=k(xy— ).

These expressions show that at large noise intensity the
decay timer(q) decreases with noise agylfor arbitraryh.
where &(t) is the white Gaussian noise with zero mean,When the noise intensity is smatj<|E| the influence of the
(E()E(t+7))=2095(7), F(t) is the dichotomous driving potential barrier becomes significant. FBr<0 and h<0,
force, andU(x) is a potential profile defined as the barrier is absent, and the NES effect, also known as noise
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delayed decay, appears whij<k andx, is near/ [7]. 100
Indeed, forq<|E|,A, |E—A| the decay timer,(/,b,q) 80 | ——_
grows with noise temperatugg Whenx,= 0, the decay time \\\\
always decreases witlp 60 TSl
In the case with potential barrieE(0, h>0) the escape a0 | \\\\
time depends on the initial position of the particle with re- RN
spect to the potential barrier. When the particle is within the ™ 20 TS~
potential well k,</) the decay time of metastable state = ]
increases infinitely wheiq— 0, because if the noise is ab- or
sent, the particle can never surmount the potential barrier. 20|/
For g<E decay time(4) coincides with the Kramers’ time,
which in this case reads —40
0, 1 2 3
qth+k) g t
71(Xp,0,q) =1 =———e"1— . (6)

2
h°k a0 FIG. 1. Semilogarithmic plot of the asymptotic behavior of the

FPTD w,(t) vs timet for three values of the initial positior,,
When/ <x,<b the initial state of the particle is unstable. In =25 (AE>E, dotted-dashed line x,=2 (AE=E, solid line),

the absence of noise, the escape time from this unstable staiad x,=1.2 (AE<E, dashed ling The parameters aré=3,

is a finite value:r,(xg,b,0)=(b—xg)/k, which does not de- k=h=1,1=1,q=0.01.

pend on the potential well. When we add the noise the influ-

ence of potential well becomes important. It follows fromtheand c=k/2q, y=+/s/q, p=+c?++y%, A=p-c, u

exact expression of E@5) that the MFPT rises to infinity if =p+c, B=k//q. Using the limit theorems of Laplace

AE<E, transform, we can obtain from E¢) the asymptotic expres-
sion fort—o andq<E,

a0, b,0) = e Ao @ 1
q-0 Lt 57k 2
Was(t)zG(t) 1+ E : _ﬁ e[740(xo)0(b)/"kt]
while for the case(t) =0 we have the decay time obtained 0 0
from the deterministic Eq), i.e., the MFPT has a singular- )
ity at =0, whenAE<E. From a physical point of view this G(t)= b exr{ _ (t—to) )
singularity can be explained as follows: When the particle is NET nt )’

initially located in the region”’<xy<b, a small quantity of

noise added in the system can eventually push the partichere 6(x)=(x—27)/k, to=6(b)—60(Xo), t1=46(b)
into potential well. Then, the particle will be trapped there + 6(Xo), and n,=4q/k. The time dependence of,(t) is
for a long time because the well is very deep. This type ofshown in Fig. 1 for three different values of the initial posi-
trajectories of the Brownian particles therefore leads to a bidgion xo=2.5 (AE>E), xo=2 (AE=E), andxo=1.2 (AE
“tail” in the first passage time distributiofFPTD) w(t). If <E). One can see that the tail of the FPTD rises wihdh
the potential well is very deep, namely/;>AE, the trapping decreases. IAE>E, the trapping time in the well is not very

time is so long that the integral for MFPT, long and the integral of Eq8) always converges. Neverthe-
less, the average decay time increases with small noise, reach
® the maximum and, then, decreases. The plots,0f) for
T= fo tw(t)dt, (8) various relations betweekE andE are shown in Fig. 2. The

main conclusion from the above analysis is that the strong
effect of NES can appear for the fixed potential profile with
diverges wherg— 0. The FPTD obeys the backward Fokker- barrier, if the initial probability distribution is located within
Planck equation and can be obtained for piecewise lineahe interval (,b), i.e., in an unstable state beyond the poten-
potential using the Laplace transform methftl]. The tial well. The physical system can be brought in this non-
Laplace transform of the FPTD for our potential, when  equilibrium state by a sudden change of control parameters.

=k and/<xy<b, reads Examples of such situations include spinodal decomposition
in the dynamics of phase transitions and the process of laser

. % - B(Xg,S) switch-on[4,13]. Such relaxation processes in the systems

w(s)= Jo w(t)e *'dt= B(b.s)’ (9 which are far from equilibrium attract now a great deal of

attention[10,11,14.
The main aim of this Rapid Communication, however, is

where to study the escape from the metastable state with an initial
distribution located within the potential well in the presence
B(x,5)=cue"* 2 —cre #XT2M 4 207 Bem mX 4 ghX) of periodical driving. Further we will apply the above results,
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3 that during the entire process of decay the potential profile
®(x,t) has no barrier. In this case the average escape time is
not increased by the noidsee Eq.(4) at x,=0 andh=

—a]. In the case of-(0,b,0)>T/2, average escape time can
be represented as follows:

Ux)

i
A
\
A
A
\
\
A

7(0,b,0)= ;-i-r[X(T/Z),b,O], (11

wherex(T/2) is the position of the particle at time=T/2.
The conditiong10) and 7(0,b,0)>T/2 together mean that

/<X(TI2)<b. (12
0 Now we add a small quantity of noise into the system. The
0 1 q/E 2 MFPT 7(0,b,q) can be written as

FIG. 2. Normalized decay time,(q)/ 74 (with 74 the determin- 7(0,q) = 7(0x;,q) + 7(x; ,b,q), (13

istic time) vs the dimensionless noise intens@yE for the same

where x; is an arbitrary point between 0 arldl For x;
parameters as Fig. 1. Inset: the potentigk) of Eq. (2). ' yp '

=x(T/2) and very small noise, the first term on the right-
. . . . . hand side of Eq(13) is approximately equal to the determin-
obtained in the static case, for analysis of periodical forcggi. time- 10x(T/2),q]= [ 0x(T/2),0]=T/2, because the
effect. Le.t us consider th? same potgnnal praflle) of Q. \ppr varies smoothly with noise, when the barrier is absent
(2) but with h=0. The driving force is-(t) =aw(1), where  se0 Eq (4)], In this case,r(0b,q)=T/2+ [ x(T/2),b,ql,
v(t) is the dlchotomous §|gnal switching betv!eErl v_wth and 7 x(T/2),b,q]> 7 x(T/2),b,0] because of the potential
penodT' an.da is the amphtgde. We choos&(t')— ~1de, barrier, which makes the average escape time very large just
the barrier is absepfor the first half of the period. The exact for q— 0 [see Eq(7)]. As a result the decay time(0,b,q)
&will increase withg and the NES appearfThe decay time
7(0,b,q) will not grow infinitely atq— 0 because the barrier
xists for only a half of the periofiThus, we may conclude

is unknown. Three recent papdrs4] develop a theory of
escape rates for periodically driven systems. Smelyanski

driving amplitude. Lehmanret_a_l. consi_der the regime of inequality can be rewritten as follows:
strong and moderately fast driving. Maier and Stein analyze
the crossover regime. In all these cases the deterministic es- / ab+k/

cape time is infinity. In the present work we consider the 25<T<2m- (14
different regime of strong and moderately slow modulation

when the deterministic escape time is finite. Inequality (14) and the conditiora<k give the area on
Therefore, we first start our investigation from the deter-y,o (T,a) plane where the NES effect takes place. In Fig. 3
ministic caseq=0, and second we define the condition for .o show this area fok=1, /=2, andb=7, and the results
the NES effect when noise intensity is smallxj=0, EQ.  of nymerical simulationgshaded aréa We perform 3000
(1) has a per|_0d|c solution in the deterministic regime Tor ifferent realizations of the decay procegs) to determine
<2/1/a. In this casex(t)</ for anyt and the particle al- 1o ayerage escape time for each couple of values of the
ways remains in the metastable state. If the period is amplitudea and the periodr of the driving force. We con-
sider more than 100 points on th&,&) plane. We find that
T>2/1a, (100 within the area defined by inequalitg4) the NES effect is
very strong: the average escape time increases more than
the particle surmounts the potential barrier at titae//a. 10% above the deterministic escape time. Outside this area
To obtain the NES effect we should consider only the caseand below the lower boundary the deterministic decay time
when the states are unstable without ngBk Consequently becomes infinite and NES disappears. In the presence of
the first condition for NES is given by Eq10). It follows  noise we obtain Kramers-like behavior. This case was stud-
from the above analysis that the decay time in the presended in detail by Lehmanet al.[14]. Inside the area the mag-
of noise strongly depends on potential barrier, namely, thaitude of the NES effect decreases from the lower to the
barrier is responsible for the strong increasing of decay timeipper boundary. Above the upper boundary the NES effect
with noise. The exact expressions for fixed potential showdecreases sharply. When the peribdnd the amplitude of
that increasing of decay time in the case without barrier ighe driving force are chosen near the upper boundary of Eq.
much smaller, and it appears only if the particle is near th&€14), the potential barrier is very small or absent during the
pointxy=/ [see Eqs(4) and(5)]. Therefore, it is important process of decay. It explains why the effect is very small
to consider two casedi) 7(0,0,0)<T/2 and (ii) 7(0,b,0) when we are near this boundary. We also carried out simu-
>T/2. In the first case the modulation frequency is so lowlations fora>k and found the NES effect. This parameter
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NES is defined correctly: it is the role of the potential barrier
e which appears after the particle has crossed the poaft
e maximal potential. Consequently inequal{ty2) is the most
I ] general condition for the NES effect because it can be ap-
plied to a system described by an arbitrary potential with
metastable state and whefds the x-coordinate of the maxi-
A . mum of the barrier appearing &t T/2. The mechanism of
B T NES explains why the FPT distributions obtained in simula-
tions and in experiments are multipeaked, periodic, and with
an exponential time decaying envelpf®8]. The peaks ap-
pear only for small noise intensity, where the NES effect
occurs. The first peak corresponds to the deterministic escape
: time. The second peak arises because the small noise pro-
1 . , vides the above-considered inverse probability current,
0 0.2 0.4 0.6 08 1 which moves some particles into the potential well. The re-
a turned particles can escape only in one period. Therefore, the
FIG. 3. Shaded area is the region of the planeT(h), where second peak is one period apart from the first one. After each

the NES effect is very strong: the average escape time is great®eiod we have the same physical situation, and as a conse-

than 10% above the deterministic escape time. The parameters dfslence, fewer partlclgs go back into the potential well.

b=7,k=1, /=2. Inset: the average escape time vs the noise in-1 Nerefore, the probability peaks have perib@nd they de-

tensity fora=0.3 andT =13.5. The dashed line indicates the deter- crease with time. The probabilities of escape are independent

ministic escape time. and equal for successive oscillations of the potential. So if
the escape probability per oscillationpsthe probability to

. . . . escape at theth cycle is (1-p)" *p=pe*e (VT where
region, however, gives less information about the mecha_a:m(l_p) andn=t/T. Therefore, the magnitude of the

nisms of the NES effect from the viewpoint of the interplay . . I
O .FPT peaks are exponentially decreasing with time.
between the regular, random, and periodical forces. In this

region in fact the deterministic motion of the particle is char-

acterized by oscillations and the driving force prevails the We acknowledge Dr. R. N. Mantegna for carefully read-

regular one described by the potentii(x). ing the manuscript. This work was supported by INFM,
Therefore, we conclude that the numerical simulations ardMURST, and RFBR(Project Nos. 99-02-17544 and 00-15-

in good agreement with the theory. The main mechanism 096620.
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