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The array-enhanced stochastic resong@€SR) in the diffusively coupled FitzHugh-Nagumo equation is
investigated. The two properties of AESR, namely, the scaling of the optimal noise intensity and the enhance-
ment of the maximum value of the correlation coefficient as a function of the coupling strength, are analyzed
theoretically. By transforming the dynamics Mfelements into that of the mean and the deviation from it, it is
found that AESR is caused by the correlation between them. A low-dimensional model that reproduces the
above properties is constructed.
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[. INTRODUCTION caudal photoreceptor interneurons of a crayfish by intrinsic
and not external noise.
In noisy nonlinear systems, stochastic resondS8¢® is a SR in spatially extended systems is also investigated and

well-known phenomenon where a weak periodic signal issome new features are demonstra@d—35. In Ref. [31],
enhanced by its background noise and observed in marthe dependence of the normalized power norm, which mea-
systems, such as bistable ring lasers, semiconductor devicesires the correlation between the aperiodic input and the out-
chemical reactions, and neural systeffier reviews, see put of the system, on the noise intensity by increasing the
Refs.[1-4]). When a periodic signal and noise are injectednumber of neurons composing the system is investigated.
to such systems simultaneously, the signal to noise ratio In some nonlinear systeni86—38, the correlation be-
(SNR) of the output signal is maximized at an optimal noisetween the input and the output takes a maximum as a func-
intensity. tion of not only the noise intensity but also the coupling
Generally, the neural system has several sources of flustrength, and such a phenomenon is called array-enhanced
tuations. First, the receptor cells in sensory systgiige-  stochastic resonand@ESR). The term AESR is introduced
ceive signals from the outer world, thus they are exposed tby Linderet al.[37] to describe the enhancement of the out-
the fluctuations of the environment. Second, the ion channelgut SNR of a chain of periodically driven damped oscilla-
on the membrane of neurons are known to be stochggtic tors, and they found that the degree of synchronization of the
Third, in the central nervous system such as the hippocanelements is also maximized when the output SNR is opti-
pus and the cortex, the synaptic transmission is less reliablgized. A similar phenomenon is also observed in a circuit of
than that of the peripheral nervous system such as the nediode resonatorg38].
romuscular junction7-9]. Fourth, in the cortex, the sum of =~ Though the above researches treat only the system with
synaptic inputs from the presynaptic neurons can work as thperiodic inputs, it is known that the coupling of the elements

fluctuation[10-14. Last, chaos in the neural systdit6—  also enhances the “coherence” and the degree of synchroni-
17] might work as fluctuations in the system. Thus SR mayzation of the elements in the system without common peri-
play a significant role in the neural system. odic signals, and this phenomenon is called array-enhanced

The theoretical works on SR in a single neuron are percoherence resonand89]. Thus the array enhancement is
formed on the integrate-and-fire modgl8], the leaky thought to be a universal phenomenon independent of the
integrate-and-fire mode[19,20, the FitzHugh-Nagumo input.

model [21-23, and the Hodgkin-Huxley mod€l24]. In In the present paper, we consider the mechanism of AESR
those works, it is observed that the output S[2R,24] or the  in the diffusively coupled FitzHugh-Nagumo model. In Sec.
peak height of the interspike interval distributiph8—21  II, the properties of AESR, namely, the scaling of the optimal

takes a maximum as a function of the noise intensity. Somaoise intensity in the strong coupling limit, and the enhance-
physiological experiments reinforce the hypothesis that thenent of the correlation between the input and the output
neural system utilizes SR to detect weak sighas-29. In  caused by the coupling, are introduced. In Secs. IIl and IV,
Ref.[25], sinusoidally stimulated mechanoreceptor cells of awe transform the dynamics of the networkMiheurons into
crayfish with additive noise show the property of SR,that of the meaiX and the deviatiox(), and construct the
namely, the existence of the optimal noise intensity thamodels that describe AESR. It is found that AESR is caused
maximizes the output SNR. In Rgf26], SR is observed in by the correlation between the meahand the deviation
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5xM, In Sec. V, the validity of the approximation is exam- 0.16 ' '
ined, and it is found that the nonlinear effect cannot be ne- /"f‘}(/*‘“*&‘_m
glected for largeN. Conclusions and discussions are given in 0.12 | LA‘\\ 1
the final section. e »
C 0.08 | b
IIl. AESR IN THE DIFFUSIVELY COUPLED FN MODEL we=0
In the present paper, we treat the diffusively coupled 0.04 1 VW;%
FitzHugh-NagumdFN) model written as . | | w;2:Q
du ue w N 0 0.01 0.02 0.03 0.04
T = vt U g TS+ 2 (), b
=1
! (1) FIG. 1. The dependence of the correlation coeffici@rin the
noise intensityD for w=0, 0.5, 1.0, and 2.0 witiN=10.
do; .
d—t'zui—ﬁuier, (2 X=2X; and Y=Y, are the numbers of input and output

pulses respectively, and=>X;Y; is the number of coinci-
) dent pulses. The correlation coefficigbtbetween the input
if n/f<tsn/f+h (n=012...) and output pulse trains is defined as

Sy otherwise,

() c Z—(XY)/n
= €
(0 7 (t)) =D&y S(t—t"), @ VX(L=XIM)Y(1=Y/n)

[-1.1]. ©)

fori=1,2,... N, whereB, v, andr are system parameters Consider the periodic input pulse train with frequericthen

of the elementsy; is the variable that models the membrane 1 for every (1/Af)th bins
potential of theith neurony; is the variable that represents X = y
the refractoriness after the firing of thth neuron,S(f;t) is ) otherwise.
a periodic pulse train with heigl8,, width h, and frequency
f, 7 (t) is Gaussian white noise with intensifythat mod-  If the output sequenc¥; is identical withX;, namely, if the
els the fluctuations in the system, afgl denotes Kroneck- relationX;=Y; is satisfied for all, the correlation coefficient
er's delta. Note that the connection of the elements is diffuC takes the value 1. If the output seriéshas no correlation
sive, the periodic pulse trai$(f;t) is applied to all the with X;, the correlation coefficier€ takes the value 0 in the
elements, and noises for different elements are statisticalllargen limit. We setA=0.5 in the following.
independent. The dependence of the correlation coeffici€hbn the

A single FN model shows a characteristic of an excitablenoise intensityd for w=0, 0.5, 1.0, and 2.0 withN=10 is
system, namely, it has a stable rest stgte —1.2, and with ~ shown in Fig. 1. The data for eaghshows the typical prop-
an appropriate amount of disturbance it generates a pulsrty of stochastic resonance, namely, the existence of a peak
with a characteristic magnitude of height and width. Wagn of the correlation coefficienC as a function of the noise
takes a larger value than 1, we say that the system generatigéensity D. It is also observed that the optimal noise inten-
an output pulse. In the following, parameter valugs sity Dy increases with the increase of the coupling strength
=0.8, y=0.7, 7=0.1, $,=0.1, f=0.5, and h=0.3 are W, and the maximum valu€ ¢, of C at D=D, also de-
used. Note that the input pulse heightis so small that the pends onw.
system does not generate any output pulse without a certain The dependence of the optimal noise intenglfyon the
amount of noise, namely, the input pulse is subthreshold. coupling strengtiw for N=10, 50, and 100 is shown in Fig.

By the symmetry of the system, the behaviors of all the2. For largew, it is observed thaD, converges to a value
elements are statistically identical, and we regard the internalependent on the numbirof neurons. As shown in the next
stateu, (t) of the first element as the output of the system. Tosection, the asymptotic vaIUBgN)(OO) of the optimal noise
measure the correlation between the inf(f;t) and the intensity for the network oN neurons satisfies
outputu(t), let us define the correlation coefficie@tbe-
tween the input and output pulse traf#]. To incorporate DV (o) =NDEH (o). (7)
the effect of the firing delag; of the FN model, which is the
time lag of the firing since an input pulse is injected, the shift The dependence &, on the coupling strengtiv for
t—t—d; is applied to the time series of the output pulseN=10, 50, and 100 is shown in Fig. 3, and it is observed
train. After the shift oft, the time interval under observation that C., takes a maximum as a function wf This phe-
is divided inton bins of the widthA, and the number of nomenon where the correlation between the input and the
pulses in thath bin is denoted aX; andY; for the input and  output takes a maximum as a function of not only the noise
output pulses, respectively. Note that the widthis suffi-  intensity but also the coupling strength is called AESR and
ciently small so thai; andY, take the value 0 or 1. Then observed in some nonlinear systef36—38.

(6)
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0.25

denoting the internal motion of théh neuron. Let us define

oz _i_ Z:Ifoo T 1 the deviationsx(" of theith neuron from the meaK as
e —e—N=]f0/ oxW=xM—x, (13
o M« ] | |
ol S gt _ The variables< and 6x(" obey
0.05 | 7’;}/ - d—sz(x)+ * % P +e (14
é’k dt ™ =1 ’
0 I 1 I 1

0 2 4 6 8 10

d w _
v aé)‘x”z(DF(X)—:A) ox®
FIG. 2. The dependence of the optimal noise interBigyon the
coupling strengtiw for N=10, 50, and 100. 1 0 1 N 0 )
+ = V== D)+ g —
HE R ;1 | +&)—e (15

In the following sections, we analyze the mechanism of
AESR in the diffusively coupled FitzHugh-Nagumo model. whereDF(x) is the Jacobian matrix df(x) and

N

IIl. MODEL OF AESR: APPROXIMATION 1 1 ]
eENE F(X+ ox)—F(X) (16)
To analyze the mechanism of AESR, the dynamics of the =1
coupled FN model composed bf neurons is rewritten as and
N T NS T £)=F(x+ ox) - [FO)+DFOO &) (17)
t T T . .
are O(|8x[?). SinceF, is a linear function an& ., sx®
LN =0, the nonlinear terme and&") can be expressed as, Q)"
X=— > x0, (99 and ¢V,0), respectively. _
N =1 For sufficiently largew, with the approximatiort()= e
=0, Eq.(15) becomes
(mi(t) mi(t"))=Dgo(t—t"), (10 q 1 1
syl Zw— 2\ o (i) _ T oy (i)
t12 N G o= —(w-14+X3) ox{)— ~ ox§
wherex" = (x{) xM)t=(u; ,v))!, 7= (%.0),, andA is a i .1 S n (18)
i AL a2 . . ! 7 N : 7>
two-dimensional diagonal matrix with diagonal components =1
A;=1 and A,=0. Note thatF(x")=(F(x"),F,(xM))! .
with agx(zi)zéx(li)_lgb‘x(zi), (19
1 u? . .
Fi(x()y== —vi+ui—§+5(f;t) , (1)  where g8 is the parameter of the FN model. As shown in
T Appendix A, the variance obx{" is estimated to be
Fz(x(i)):Ui—ﬁUi‘l"y (12) (2 (1_N71)D
(X)) = ———F—7~, (20)
0.18 27(W—=1+X7)
0.16 which justifies the approximation to neglect the nonlinear
terms
Cpeak 0.14 (3
. 1 o (0X17)
: 0=~ Z| Xy (ox{)2 — ) (1)
0.12 |& T 3
0.1 and
N (i)\3
1 (axdy
e=—— 2 | Xy(x{) — ) (22
™N =1

FIG. 3. The dependence of the maximum valDg,, of the ) ) o
correlation coefficientC on the coupling strengthw for N in Eq. (15) for large w and thus, in the largev limit, the

=10, 50, and 100. mean dynamics oX approaches to the dynamics of the
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0.1 : : : 9 05 | : :
—A—  N=50,(8x,)
0.08 / 0.4 ke N=50,(8x)%pi
0.06 | 5 0s I —o—  N=10,8)2
(6x1)2 3 —o- N=10,(6x1)app1
(8x,7 0.04 (8, P 3 X, 0.2 f, t&%&
0.02 1 o -
A7 Rea. 1
ol XI p MMK
0 ) 1
-0.02 . : s -3 0 2 4 6 8 10
0 4 8 12 16 w

t FIG. 5. The values of d;)Z,; and (dx;)? for N=10 and 50

FIG. 4. The time series of8&;)? and X, for N=50, w=10,  along the curves inv-D plane in Fig. 2 are plotted against
andD=0.125.
of (8X1)2 With (8X1)3,p0- IN Fig. 5, (9X1) 5 and(dx,)? for
single neuron, i.e., the dynamics governed by @4) with N=10 and 50 along the curves win— D plane in Fig. 2 are
€=0. Note that Eq(14) with e=0 justifies the scaling of the plotted againsiv. It is observed that&xl)gppl well describes
asymptotic value of the optimal noise intendifyg. (7)]. the behavior of 8x,)? for largew.

To analyze AESR, let us take the quadratic term in Eq. Based on the above discussions, let us describe the mean
(14) into consideration by ignoring higher order terms, i.e.,dynamicsX by

we consider Eq(14) with

\ dX 1.
___12 (ox()2 23 Gt P+ onte (29)
N
7=(7,0)}, (30)
1
=~ —Xq(6xy)?, (24) 1, —— |\
! GE(—;Xl(ﬁxl) ,0) , (31
where
. D
1N . (n(t)n(t")) = ot-t"). (32
(dxp)?=5 2, (&) (25

Note that this model is derived by substituting the constant
As shown in Appendix B, for large\, (8x,)? is approxi- value (6x;)? for (8x;)? in Eq. (24). In the following, the
mated by system governed by Eq&9) and(31) is called the approxi-
mation 1. The numerical simulations of the approximation 1
(5X1)22<(5X(1i))2>. (26) are performed as follows.
(1) Fix a set of values ofv andD on the curve in thev

Note that with the same accuracy of approximation~ P Planein Fig. 2. —
(1/N)E(6x(1'))3zo, which also supports the approximation (2 Numerlca_lly obtain the vglue dfox,) “for the network
(23). For large enoughv, Eq. (26) with Eq. (20) is approxi-  ©f N neurons with the above fixea andD.

mated by (3) Obtain the correlation coefficiel@ of X, for the ap-
proximation 1 with the abov® and (6x;)?.
(1-N"HD The dependences of the peak val@&s s of the corre-
22— - V= . C. .
(OXy) Y (27)  lation coefficientC on the coupling strengtiw of the ap-

proximation 1 and the network &f neurons are compared in
Fig. 6. It is observed that the approximation 1 does not show
the enhancement &p.x, Namely,Cq, of the approxima-
tion 1 always takes smaller values than that of the single
The time series of &Xl()l) and X, constructed from the neuron~0.13. In other words, the quadratic ternaxg)?
numerical solutions ofx;’ for N=50, w=10, and D 5
modeled by the constaifx,) cannot reproduce the prop-

=0.125 are shown in Fig. 4. Although it is observed that _ . : .
(6x,)? largely fluctuates ground its rﬁean value, it may beertles of AESR. This suggests that the time dependence of
1 ' (8x4)? is important for the enhancement of stochastic reso-

plausible to compare the long time average

which is a constant independent of and denoted by
(5x1)appl in the following.

nance.
10T In the next section, we take the time dependence of
(8%1)%= lim —J (x,)2dt. (28)  (6xy)? into consideration by retrieving the meay in
T TJo ((x()?).
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-~ Aa 0.2 -
0.15 | £ ﬁ—A.-A-A-A.A-v-A—-A—A—L.A__;A /// -
o f P D 953030 015 | }//
Cpeak 0.1 y Do o //! e "
T £ —a— N=30 01 ,;f’(}/
0.05 "4 --&- N=50 (approx.1)| 0.05 | ﬁ/
id —o— N=10 7%
13 —e&— N=10(approx.I) o /G*"'
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FIG. 8. The location\{/s,Dg) of the maximum ofC, where
C attains its maximum as a function of boihandw for several
fixed values olN. Three curves show the optimal noise intenfity
as a function ofv for N=10, 50, and 100.

FIG. 6. The dependences of the peak valdgs,ys of the cor-
relation coefficientC on the coupling strengtv of the approxima-
tion 1 and the network ol neurons.

IV. MODEL OF AESR: APPROXIMATION 2
thus the noise intensity applied to the system witk 1.5 is

In this section, the approximation ob,) by smaller than that for the single neurows$1). Since the
. threshold of firing is lowered, the relatively small noise en-
(Sx1)2 e (1-N"9)D (33 ables the system to fire more coherently correlated with the
Vapp2 27(w—1+X?) periodic input and brings an enhancemenCof

Meanwhile, as shown in Fig. Ty Of the approxima-
is considered according to EqR0) and (26). Note that Eq.  tion 2 still underestimates that of the networkMineurons,

(33) is valid only forw>1 as shown in Appendix A and at and the deviation seems to grow for lare In the next
leastw must be greater than 1 in order that the denominatofection, we consider this effect and examine the validity of

does not vanish. the above approximation.
Let us consider the approximation 2 governed by @8)
with V. VALIDITY OF THE APPROXIMATION
1 5 t In the above analyses, we used two approximations,
€=| — ~Xu(X1)app. 0] - (34 namely, the linearization of the dynamics &) [Eqs.(18)

and (19)], and the neglect of the fluctuation 0bx;)? [Eq.

The dependences (s in both the approximation 2 and (26)]'. In Fhis section, we examine the validity of these ap-
the network ofN neurons orw are shown in Fig. 7. It is Proximations. . o .
observed that the enhancemen@af, . for w>0 is qualita- Fl_rst,.we examine t.he validity of the linearization by in-
tively described by the approximation 2. vestigating the magnitude of6k,)* at the several points
From the above discussions, it can be concluded thathown in Fig. 8. Three curves in Fig. 8 show the optimal
AESR is caused by the dependence of the tesr )2 on the ~ NOIse intensityD, as a function ofw for three fixedN, and
meanX, of N neurons. Compared with the single neuronthe circles indicate the locationvg,Dg) of the maximum of
case, which is also realized by E¢89), (33), and(34) inthe ~ Cpeak, WhereC attains its maximum as a function of bdth
largew limit, the modification of the system by is consid- ~andw for several fixed values ol (see also Fig. B Our
ered to make the system to fire more easily, i.e., the modificoncern is the validity of the linear approximation forand
cation lowers the threshold of firing of the system. The noisev aroundD§ andw,. In Fig. 9, (8x;)? with D§ andwy is
intensity is adjusted for the changewfaccording to Fig. 2, plotted againsi, and it is observed thatdx,)? increases
with the increase ol with a power law~N°®in this range

0.18

-y j j j j
£,  —a- N=50 1

4}: s --&- N=50(approx.2)
or | e/e/a-ae/e

0.16

Mg q ‘N—gt‘;—"“"

Cpeak 0.14 !

"0-9-% oo 858

PY : 4 9 (371)2 T AN O3
—
0.12 —o— N=I0 1 0.01 |
—&— N=10(approx.2)

0.1 4

0 2 4 8 8 10 0.001 , ,

w 1 10 100 1000
N
FIG. 7. The dependences Gf, s of the approximation 2 and
network of N neurons orw. FIG. 9. (8x,)? againstN at the points shown in Fig. 8.
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- NN " Palyit) p[ e F A (LY )l
20yst)xexpg — y— 1)) Iny
0.04 (8, Fpp 1o 2((ox?y\ " N—1
(35
(6x,7 0} 5 X, for largeN. The fitting with Eq.(35) with a constant instead
of time-dependen{(6x,)?) is in good agreement with the
(8, F - (8x, Jow2 empirical distribution. It is also observed that the distribution
-0.04 ¥ 11 is highly asymmetric, thus the fluctuations afx})? tend to
4 take large positive values. Note that the large positive fluc-
008 . , , 3 tuations of (¥x;)? help the meaiX; to fire because the term
o 4 8 12 16 o —X,(6%,)? in Eq. (24) gives the positive influences to
t X1(<0) in the equilibrium.

Furthermore, as shown in Appendix B, the variance of

. . . 5
FIG. 10. The time series of the fluctuations afx¢) for N (5)(1)2 is written as

=50, w=10, andD=0.125. The time series of; and (6X1)3,
are also shown.

<((ax1>2—<<ax1>2>>2>=&<(ax§'>>2>2- (36)
of N. This behavior of 8x,)? is understood as follows. Since
the system is driven by Gaussian white noisewifs fixed,  Equation(36) indicates that the magnitude of the fluctuations
(8x1)? increases wittD and (x;)>—% asD—w. On the  of (5x,)? depends orf(6x{")?) andX;. It may be plausible
other hand, the coupling of the elements suppresses the fluts consider that the asymmetrically distributed fluctuations
tuation of the elements as in E(3), and the balance be- with the amplitude depending oX; enhancesC and this
tween D and w controls the magnitude o¢5x1)2. In the may be one of the reasons for the discrepancy between the
range ofN considered in Fig. 9D% grows faster than the a@pproximation 2 and the full system. Moreover, the scaling
growth of wy with N and the dependendax;)?~NCS is ((5x(1'2))2>~N°-5 and Eq.(36) indicate that the fluctuations of
observed. This dependence W on N is expected to (6x1)¢ do not decay withN, thus the fluctuations cannot be

; ; 2
hold for largeN until its magnitude becomes large such thatneglected even if they are s_mall c;o_mpared withx, ) >

. : From the above discussions, it is found that neither the
the nonlinear terms in Eq15) cannot be neglected and the

: o2 linearization of the dynamics afx(") nor the neglect of the
linear approximation in Eq18) cannot hold. Thus, for large fluctuation of (6x,)? a)r/e valid for largeN. To congtruct more
N, the linear approximation shall not be valid.

recise theories for AESR, the effects of nonlinear terms and
Next, let us consider the effect of the deviation ék()? b

> - ’ 5 the fluctuations must be considered.

from (6X1)zpps i-€., the fluctuations of 4x;)“ under the
assumption that the linear approximation in Etg) is valid.
If the fluctuations of x,)? cause the deviation of the ap-
proximation 2 from the network oN neurons, they must The array-enhanced stochastic resona®€SR) in the
enhanceC ., of the approximation 2 as shown in Fig. 7.  diffusively coupled FitzHugh-Nagumo model is investigated.

The time series of the fluctuations ofX;)? is shown in AESR is characterized by the following two properties,
Fig. 10, and it is observed that the fluctuations have larg@amely, the scaling of the optimal noise intensf¥) (<)
intensity and cannot be neglected in comparison withfor N neurons with the sufficiently large coupling strength
(8%1)5pp2- The probability density function of the fluctua- obeying
tions of (6x,)? is shown in Fig. 11. As shown in Appendix

VI. CONCLUSIONS AND DISCUSSIONS

B, (8x1)? obeys the distribution DV () =ND§Y(=0), 37
100 and the enhancement of the maximum vallig.,, of the
correlation coefficientC as a function of the coupling
strengthw.
10¢ By transforming the dynamics dfl neurons into that of
the mearX and the deviatiox(", it is found that AESR is
P 1 well described by a reduced dynamics of the marpar-
ticularly by the correlation betweens;)? and X;.
01 b The validity of the approximation is examined, and it is
found that neither the linearization of the dynamicssaf’
0.01 , , , nor the neglect of the fluctuation obx,)? are valid for large
008  -0.04 0 0.04 0.08 N. To construct more precise theories for AESR, the effects
6x)° - (8,22 of nonlinear terms and the fluctuations must be considered.
Note that our analyses are independent of the input, thus
FIG. 11. The distribution of the fluctuations 0fX;)?. the above discussions are also applicable to the array en-
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(a) (1-N"HD
008 (D)=, (A1)
. 27(w—1+X7)
0.04 | regulation of D
003 | | from the linearized stochastic differential equation
P oo e ] 0 i — S (W— 14X oot S (A2)
.02 | 1 — =——(w— - -,
L » regulation of w dtot T VO T 0%
0.01 | .
d
0L~ e gt PXa= OX1 = Xz, (A3)
0 2 4 6 8 10
w ~ ~
02 (b) () n(t"))=(1-N"HDs(t—t"), (A4)
where the suffix(i) that denotes the index of the neuron is
0.15 | ] omitted for simplicity.
With the vectorx=(8x,,dX,)!, Egs.(A2) and (A3) are
C o1} ] written as
d
0.05 | . &X=A(t)x+f(t). (A5)
°, ) 5 3 4 s Let us denote the solution &= A(t)x asx(t) =B(t)x(0) by
w the solution matrixB(t). Then, with B(t,s)=B(t)B (s),

the solution of Eq(A5) is written as
FIG. 12. (a) The dependence of the optimal noise intengiy t
on the coupling strengtiv for N=10. (b) The dependence of the
correlation F():oeaficieng on the coupling strengthF/) for D=0.015 X(t) =B(t,to)x(to) + ftodsB(t,s)f(s). (AB)
andN=10.

We assume thaB(t,s) rapidly converges to 0 als-s— oo,
hancement in the system without the input, namely, arraywhich enables us to neglect the nonlinear tegf¥sande in
enhanced coherence resonaf@®. the dynamics ox(") governed by Eq(15).

As fqr the mformauqn processing |n.the neura_l system, \jith 7=0, Eq.(A2) is solved to be
AESR gives a mechanism for an effective regulation of the
noise intensity even for the “uncontrollable” noises. As 1t
shown in Fig. 12a), the regulation of the noise intensity in ox1(t) = ¢(t,to) 5X1(to)—;f dse(t,s)6Xy(s), (A7)
the w-D plane is represented by a vertical arrow, and the o
dependence of the correlation coeffici€bn the noise in-  \here
tensity D along this arrow is shown in Fig. 1. Note that the
correlation coefficienC takes a maximum when the arrow 1 LN
crosses the curve that shows the optimal noise intensity. On ~ #(t.8)=exp — —(w—1)(t—s)— ;Ldt X3t
the other hand, a horizontal arrow in Fig.(&Rrepresents the (A8)
regulation of the coupling strength, and the dependené of
on the coupling strengtiv along this arrow is shown in Fig. The assumption th&(t,s)— 0 ast—s—o requires the con-
12(b). It is shown that the correlation coefficient takes adition that ¢(t,s)—0 ast—s— .
maximum whenw crosses the curve of optimal noise inten-  If the convergence ofp(t,s) to 0 ast—s—x is suffi-
sity shown in Fig. 18a). Thus the regulation ofv might  ciently rapid,&x,(s) in Eq. (A7) can be replaced byx,(t).
work as a mechanism for the effective regulation of the noisenith this assumption, EqA7) becomes

intensity even for the “uncontrollable” noises in the neural
system. OX1(t) = (t,tg) 6X1(to) — ¢h(t,tg) SXa(1), (A9)

1t
ACKNOWLEDGMENT Y(t,s)= ;f dt’ ¢(t,t"). (A10)
s

The authorqT.K. and T.H) are grateful to Professor H.
Hata for his stimulating discussion and encouragement.  Substituting Eq(A9) in Eq. (A3), we obtain

APPENDIX A: DERIVATION OF ((5x<1i))2) %5)(2: B(t,to) SXq(to) — ((t,to) + )Xo, (All)
In this appendix, we analytically derive the term
((8x{))?) given by Eq.(20), namely, and it is solved as

031908-7
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X5(to)

t
SXy(t)= exr{ - jt ds(y(s,tg) + B)
0

t t
+ftodsexp[—fsdt ((t' o) + B)

X @(s,tp) 6X4(to). (A12)

From Egs.(A9) and (A12), for t>s, we obtain

t t
B,(t,8)= Lds’ exp{ — J'S,dt’(z/;(t’,s)Jrﬁ)} ¢(s',s),

(A13)

t
Boo(t,s)= exp{ — f ds'(y(s',s)+B)|, (A14)
Bll(tvs)zd’(t!S)_lp(tiS)BZl(tvs)! (A15)
Biat,s)=—#(1,5)BoJt,S). (A16)

With the assumption that the convergenceddt,s) to 0 as
t—s—oo is sufficiently rapid, the lower bounsl of the in-
tegration in Eq.(A13) can be replaced by, and we obtain

t
Ba(t,5)=By(t,s) J;ds’ d(s',s). (A17)
With f(t)=(77(t)/r,0)t and Eq.(A6), we obtain
5X1(t)= Bll(tltO) 5)(1(t0)+ Blz(t,to) 5X2(t0)
1 ~
t t0'877(S)Bll(t,5) (A18)
to

_ 1 t d >

_;f—w Sn(S)Bll(t!S)v (Alg)

where the limitt,— — is taken, and

1 [t [t -~ -
<5X1(t)2>=§J'OJwdegBll(t:S)Bn(t,S’x77(5) 7(s"))
(A20)
D rt
-~ f " dsButs)? (A21)

whereD=(1-N"1)D.

In order to obtain an approximate form for the variance
(8%4(t)?), let us roughly evaluat®,;(t,s) by the approxi-

mation ¢(t,s)~e ™ “("9) with large x, which leads to

1— (t,
(t,s)~ # (A22)
B,y(t,S)~ %(t’s)szz(t,s). (A23)

PHYSICAL REVIEW E 64 031908
For the variance in EqA21), the three terms in

BL=¢?—2¢yBy+ y*B3, (A24)

give the contributions of the magnitudes of!, « 3, and
k%, respectively, thus we obtain
D rt
(8x,(1)2)== f dse(t,5)2 (A25)
T — 00

Dt 2
—;f_mdsex - ;(w— 1)(t—s)

2 [t
——f dt’ X3(t") |. (A26)
TJs

If (w—21)/7 is sufficiently large, by replacing(t’) by
X(t), we obtain

, Dt g 2 )
(8%,(1) >__72f_w sexy ——(w—1+X3(0)(t~s)
(A27)

(1-N"HD

= A28
27(w—1+X%) (A28)

APPENDIX B: DISTRIBUTIONS OF X AND (&x;)?

In this section, we derive the distributions ék{" and
(8%,)2. As shown in Eq(A19) in Appendix A, 5x(1') is ex-
pressed as

N

. 1
ox=z— kzl Z, (B1)

1t .
Z= ;f_mdsn(')(s)Bll(t,S), (B2)
(nV(s)nV(s"))=D & 8(s—s). B3)

From the definition of the stochastic integfdll], Eq.(B2) is
modified as

Zi—; P2 > [79(se1) — 7501,
(B4)
M

=2 a, (B5)

=1

where
B4(t,s¢) +Bqy(t,s
kE ll( k) 11( k+ 1) ’ (86)
27

z,=1"(s11) — 7(s)). (B7)

031908-8
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Note thatz, is a random variable that follows a Gaussian
distribution with the mean 0 and the varianDé\t, where

At=s,, ;—s. The distributionP(Z,t) of Z; is calculated as
P(Z;t)=(8(Z2—-Z)) (B8)
M M
:f ,-Hl [dsz(zj)]a(z—k21 azy |, (B9)
M M
. 2
“J 11, a2 eXp( 2DAt & k)
M
x8lz-2, akzk> (B10)
k=1
M M
1 1
_ _ 2, —
_jJI;IZ dzjexr{ 2DAt[k22 Z %
M 2
x| z=> akzk) ] (B11)
k=2

a M 2 1
2
Xz Z— az exp — ==—
* a?+al > "") ]) F{ 2DAt
M 1 M 2
X1 2 B+ —5——|2-2 akzk) (B12)
k=3 a;ta; =
M M
1 1
o dz exg — 2
jll_[:? ' F{ 2DAt|k23 “ a2+al
M 2
X Z—E akzk) ] (813)
k=3
! z B14
.. oceX —m—z ( )
2 ay

From the definition of, and Eq.(A21), DAtEaﬁ is written
as

D

DAtEk aZ= ;f dsBy(t,s)? (B15)
((x{)?)

=N (B16)

=02, (B17)

thusz; is Gaussian following

PHYSICAL REVIEW E64 031908

ZZ
P(Z;t)xex -—
20'0

and they are statistically independent of each other. The dis-
tribution P4 (y;t) of &x{?=2;—(1/N)2Z2, is calculated as

(B18)

N 1 N
Pl(y;t)ZJ jl;[l [dZ;P(Z; ;t)]5(y—zi+ N kgl Zk>

(B19)
y2
p(ﬁ) (820
y2

Thus it is concluded thadx{ follows a Gaussian distribu-
tion with the mean 0 and the varian¢esx{?)?).

Next the distribution Py(y;t)  of  (8x)?
=(1N)2(6x{)? is calculated as
Pa(y;t)=(8(y—(8x1)?)) (B22)
1 N
=<6(y—ﬁz (5x<1‘>>2)> (823
i=1
1 N 1 N 2
Aprazlaizel]
(B24)
N
=f ,1:[1 [dZ;P(Z;;1)]
1 N 1 N 2
X8y 2‘1 Zi-§ 21 zk) . (B25
Introducing cylindrical coordinates
1 N
=N ; (B26)
1 N
“ Vi (B27)

andN—2 angles, Eq(B25) is calculated as

N
Pz(y;t)ocf dhdr rN25(y—r2)exp( — —(r*+h?)
20

(B28)

o 1 N
o N-2 " o _ _ "2
Jo drr o o(r \/y)exp( > il ) (B29)

Jo

031908-9
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=(1-N"He2=((sx{")?), B32
my(Na)/zeXp(_%y (B30) (y)=( Jog={(6x1")%) (B32)
0
2 _
N/ N-3, ((y=(yn?)= =g (2 (B33
=eX —F Yy T(T()lny . (831)
0

With this distribution, the mean and the variance ék{)> From Egs. (B32) and (B33), the approximation §x;)?
are calculated as =((6x{")?) is justified for largeN.
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