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Theoretical analysis of array-enhanced stochastic resonance in the diffusively coupled
FitzHugh-Nagumo equation

Takashi Kanamaru
Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japa

Takehiko Horita
Department of Mathematical Engineering and Information Physics, The University of Tokyo, Tokyo 113-8656, Japan

Yoichi Okabe
RCAST, The University of Tokyo, Tokyo 153-8904, Japan

~Received 10 April 2001; published 30 August 2001!

The array-enhanced stochastic resonance~AESR! in the diffusively coupled FitzHugh-Nagumo equation is
investigated. The two properties of AESR, namely, the scaling of the optimal noise intensity and the enhance-
ment of the maximum value of the correlation coefficient as a function of the coupling strength, are analyzed
theoretically. By transforming the dynamics ofN elements into that of the mean and the deviation from it, it is
found that AESR is caused by the correlation between them. A low-dimensional model that reproduces the
above properties is constructed.
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I. INTRODUCTION

In noisy nonlinear systems, stochastic resonance~SR! is a
well-known phenomenon where a weak periodic signa
enhanced by its background noise and observed in m
systems, such as bistable ring lasers, semiconductor dev
chemical reactions, and neural systems~for reviews, see
Refs. @1–4#!. When a periodic signal and noise are inject
to such systems simultaneously, the signal to noise r
~SNR! of the output signal is maximized at an optimal noi
intensity.

Generally, the neural system has several sources of
tuations. First, the receptor cells in sensory systems@5# re-
ceive signals from the outer world, thus they are expose
the fluctuations of the environment. Second, the ion chan
on the membrane of neurons are known to be stochastic@6#.
Third, in the central nervous system such as the hippoc
pus and the cortex, the synaptic transmission is less reli
than that of the peripheral nervous system such as the
romuscular junction@7–9#. Fourth, in the cortex, the sum o
synaptic inputs from the presynaptic neurons can work as
fluctuation @10–14#. Last, chaos in the neural system@15–
17# might work as fluctuations in the system. Thus SR m
play a significant role in the neural system.

The theoretical works on SR in a single neuron are p
formed on the integrate-and-fire model@18#, the leaky
integrate-and-fire model@19,20#, the FitzHugh-Nagumo
model @21–23#, and the Hodgkin-Huxley model@24#. In
those works, it is observed that the output SNR@22,24# or the
peak height of the interspike interval distribution@18–21#
takes a maximum as a function of the noise intensity. So
physiological experiments reinforce the hypothesis that
neural system utilizes SR to detect weak signals@25–29#. In
Ref. @25#, sinusoidally stimulated mechanoreceptor cells o
crayfish with additive noise show the property of S
namely, the existence of the optimal noise intensity t
maximizes the output SNR. In Ref.@26#, SR is observed in
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caudal photoreceptor interneurons of a crayfish by intrin
and not external noise.

SR in spatially extended systems is also investigated
some new features are demonstrated@30–35#. In Ref. @31#,
the dependence of the normalized power norm, which m
sures the correlation between the aperiodic input and the
put of the system, on the noise intensity by increasing
number of neurons composing the system is investigated

In some nonlinear systems@36–38#, the correlation be-
tween the input and the output takes a maximum as a fu
tion of not only the noise intensity but also the couplin
strength, and such a phenomenon is called array-enha
stochastic resonance~AESR!. The term AESR is introduced
by Linderet al. @37# to describe the enhancement of the o
put SNR of a chain of periodically driven damped oscill
tors, and they found that the degree of synchronization of
elements is also maximized when the output SNR is o
mized. A similar phenomenon is also observed in a circuit
diode resonators@38#.

Though the above researches treat only the system
periodic inputs, it is known that the coupling of the elemen
also enhances the ‘‘coherence’’ and the degree of synchr
zation of the elements in the system without common p
odic signals, and this phenomenon is called array-enhan
coherence resonance@39#. Thus the array enhancement
thought to be a universal phenomenon independent of
input.

In the present paper, we consider the mechanism of AE
in the diffusively coupled FitzHugh-Nagumo model. In Se
II, the properties of AESR, namely, the scaling of the optim
noise intensity in the strong coupling limit, and the enhan
ment of the correlation between the input and the out
caused by the coupling, are introduced. In Secs. III and
we transform the dynamics of the network ofN neurons into
that of the meanX and the deviationdx( i ), and construct the
models that describe AESR. It is found that AESR is cau
by the correlation between the meanX and the deviation
©2001 The American Physical Society08-1
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dx( i ). In Sec. V, the validity of the approximation is exam
ined, and it is found that the nonlinear effect cannot be
glected for largeN. Conclusions and discussions are given
the final section.

II. AESR IN THE DIFFUSIVELY COUPLED FN MODEL

In the present paper, we treat the diffusively coup
FitzHugh-Nagumo~FN! model written as

t
dui

dt
52v i1ui2

ui
3

3
1S~ f ;t !1h i~ t !1

w

N (
j 51

N

~uj2ui !,

~1!

dv i

dt
5ui2bv i1g, ~2!

S~ f ;t !5H S0 if n/ f <t<n/ f 1h ~n50,1,2, . . . !

0 otherwise,
~3!

^h i~ t !h j~ t8!&5Dd i j d~ t2t8!, ~4!

for i 51,2, . . . ,N, whereb, g, andt are system parameter
of the elements,ui is the variable that models the membra
potential of thei th neuron,v i is the variable that represen
the refractoriness after the firing of thei th neuron,S( f ;t) is
a periodic pulse train with heightS0, width h, and frequency
f , h i(t) is Gaussian white noise with intensityD that mod-
els the fluctuations in the system, andd i j denotes Kroneck-
er’s delta. Note that the connection of the elements is di
sive, the periodic pulse trainS( f ;t) is applied to all the
elements, and noises for different elements are statistic
independent.

A single FN model shows a characteristic of an excita
system, namely, it has a stable rest stateui.21.2, and with
an appropriate amount of disturbance it generates a p
with a characteristic magnitude of height and width. Whenui
takes a larger value than 1, we say that the system gene
an output pulse. In the following, parameter valuesb
50.8, g50.7, t50.1, S050.1, f 50.5, and h50.3 are
used. Note that the input pulse heightS0 is so small that the
system does not generate any output pulse without a ce
amount of noise, namely, the input pulse is subthreshold

By the symmetry of the system, the behaviors of all t
elements are statistically identical, and we regard the inte
stateu1(t) of the first element as the output of the system.
measure the correlation between the inputS( f ;t) and the
output u1(t), let us define the correlation coefficientC be-
tween the input and output pulse trains@40#. To incorporate
the effect of the firing delaydf of the FN model, which is the
time lag of the firing since an input pulse is injected, the sh
t→t2df is applied to the time series of the output pul
train. After the shift oft, the time interval under observatio
is divided into n bins of the widthD, and the number of
pulses in thei th bin is denoted asXi andYi for the input and
output pulses, respectively. Note that the widthD is suffi-
ciently small so thatXi and Yi take the value 0 or 1. Then
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X5(Xi and Y5(Yi are the numbers of input and outp
pulses respectively, andZ5(XiYi is the number of coinci-
dent pulses. The correlation coefficientC between the input
and output pulse trains is defined as

C5
Z2~XY!/n

AX~12X/n!Y~12Y/n!
P@21,1#. ~5!

Consider the periodic input pulse train with frequencyf, then

Xi5H 1 for every ~1/D f !th bins

0 otherwise.
~6!

If the output sequenceYi is identical withXi , namely, if the
relationXi5Yi is satisfied for alli, the correlation coefficient
C takes the value 1. If the output seriesYi has no correlation
with Xi , the correlation coefficientC takes the value 0 in the
largen limit. We setD50.5 in the following.

The dependence of the correlation coefficientC on the
noise intensityD for w50, 0.5, 1.0, and 2.0 withN510 is
shown in Fig. 1. The data for eachw shows the typical prop-
erty of stochastic resonance, namely, the existence of a p
of the correlation coefficientC as a function of the noise
intensityD. It is also observed that the optimal noise inte
sity D0 increases with the increase of the coupling stren
w, and the maximum valueCpeak of C at D5D0 also de-
pends onw.

The dependence of the optimal noise intensityD0 on the
coupling strengthw for N510, 50, and 100 is shown in Fig
2. For largew, it is observed thatD0 converges to a value
dependent on the numberN of neurons. As shown in the nex
section, the asymptotic valueD0

(N)(`) of the optimal noise
intensity for the network ofN neurons satisfies

D0
(N)~`!5ND0

(1)~`!. ~7!

The dependence ofCpeak on the coupling strengthw for
N510, 50, and 100 is shown in Fig. 3, and it is observ
that Cpeak takes a maximum as a function ofw. This phe-
nomenon where the correlation between the input and
output takes a maximum as a function of not only the no
intensity but also the coupling strength is called AESR a
observed in some nonlinear systems@36–38#.

FIG. 1. The dependence of the correlation coefficientC on the
noise intensityD for w50, 0.5, 1.0, and 2.0 withN510.
8-2
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In the following sections, we analyze the mechanism
AESR in the diffusively coupled FitzHugh-Nagumo mode

III. MODEL OF AESR: APPROXIMATION 1

To analyze the mechanism of AESR, the dynamics of
coupled FN model composed ofN neurons is rewritten as

dx( i )

dt
5F~x( i )!1

w

t
A~X2x( i )!1

1

t
h( i ), ~8!

X5
1

N (
i 51

N

x( i ), ~9!

^h i~ t !h j~ t8!&5Dd i j d~ t2t8!, ~10!

i , j 51,2, . . . ,N,

wherex( i )5(x1
( i ) ,x2

( i )) t5(ui ,v i)
t, h( i )5(h i ,0)t, and A is a

two-dimensional diagonal matrix with diagonal compone
A151 and A250. Note thatF(x( i ))5(F1(x( i )),F2(x( i ))) t

with

F1~x( i )!5
1

t S 2v i1ui2
ui

3

3
1S~ f ;t ! D , ~11!

F2~x( i )!5ui2bv i1g ~12!

FIG. 2. The dependence of the optimal noise intensityD0 on the
coupling strengthw for N510, 50, and 100.

FIG. 3. The dependence of the maximum valueCpeak of the
correlation coefficientC on the coupling strengthw for N
510, 50, and 100.
03190
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denoting the internal motion of thei th neuron. Let us define
the deviationdx( i ) of the i th neuron from the meanX as

dx( i )5x( i )2X. ~13!

The variablesX anddx( i ) obey

dX

dt
5F~X!1

1

tN (
i 51

N

h( i )1e, ~14!

d

dt
dx( i )5S DF~X!2

w

t
AD dx( i )

1
1

t S h( i )2
1

N (
j 51

N

h( j )D 1j( i )2e, ~15!

whereDF(x) is the Jacobian matrix ofF(x) and

e[
1

N (
i 51

N

F~X1dx( i )!2F~X! ~16!

and

j( i )[F~X1dx( i )!2@F~X!1DF~X!dx( i )# ~17!

areO(udx( i )u2). SinceF2 is a linear function and( i 51
N dx( i )

50, the nonlinear termse andj( i ) can be expressed as (e,0)t

and (j ( i ),0)t, respectively.
For sufficiently largew, with the approximationj ( i )5e

50, Eq. ~15! becomes

d

dt
dx1

( i )52
1

t
~w211X1

2!dx1
( i )2

1

t
dx2

( i )

1
1

t S h i2
1

N (
j 51

N

h j D , ~18!

d

dt
dx2

( i )5dx1
( i )2bdx2

( i ) , ~19!

where b is the parameter of the FN model. As shown
Appendix A, the variance ofdx1

( i ) is estimated to be

^~dx1
( i )!2&.

~12N21!D

2t~w211X1
2!

, ~20!

which justifies the approximation to neglect the nonline
terms

j ( i )52
1

t S X1~dx1
( i )!21

~dx1
( i )!3

3 D ~21!

and

e52
1

tN (
i 51

N S X1~dx1
( i )!21

~dx1
( i )!3

3 D ~22!

in Eq. ~15! for large w and thus, in the largew limit, the
mean dynamics ofX approaches to the dynamics of th
8-3
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single neuron, i.e., the dynamics governed by Eq.~14! with
e50. Note that Eq.~14! with e50 justifies the scaling of the
asymptotic value of the optimal noise intensity@Eq. ~7!#.

To analyze AESR, let us take the quadratic term in E
~14! into consideration by ignoring higher order terms, i.
we consider Eq.~14! with

e.2
X1

tN (
i 51

N

~dx1
( i )!2 ~23!

52
1

t
X1~dx1!2, ~24!

where

~dx1!2[
1

N (
i 51

N

~dx1
( i )!2. ~25!

As shown in Appendix B, for largeN, (dx1)2 is approxi-
mated by

~dx1!2.^~dx1
( i )!2&. ~26!

Note that with the same accuracy of approximati
(1/N)((dx1

( i ))3.0, which also supports the approximatio
~23!. For large enoughw, Eq. ~26! with Eq. ~20! is approxi-
mated by

~dx1!2.
~12N21!D

2tw
, ~27!

which is a constant independent oft and denoted by
(dx1)app1

2 in the following.
The time series of (dx1)2 and X1 constructed from the

numerical solutions ofx1
( i ) for N550, w510, and D

50.125 are shown in Fig. 4. Although it is observed th
(dx1)2 largely fluctuates around its mean value, it may
plausible to compare the long time average

~dx1!2[ lim
T→`

1

TE0

T

~dx1!2dt. ~28!

FIG. 4. The time series of (dx1)2 and X1 for N550, w510,
andD50.125.
03190
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of (dx1)2 with (dx1)app1
2 . In Fig. 5, (dx1)app1

2 and(dx1)2 for
N510 and 50 along the curves inw2D plane in Fig. 2 are
plotted againstw. It is observed that (dx1)app1

2 well describes
the behavior of(dx1)2 for largew.

Based on the above discussions, let us describe the m
dynamicsX by

dX

dt
5F~X!1

1

t
ĥ1e, ~29!

ĥ[~ĥ,0! t, ~30!

e[S 2
1

t
X1~dx1!2,0D t

, ~31!

^ĥ~ t !ĥ~ t8!&5
D

N
d~ t2t8!. ~32!

Note that this model is derived by substituting the const
value (dx1)2 for (dx1)2 in Eq. ~24!. In the following, the
system governed by Eqs.~29! and~31! is called the approxi-
mation 1. The numerical simulations of the approximation
are performed as follows.

~1! Fix a set of values ofw andD on the curve in thew
2D plane in Fig. 2.

~2! Numerically obtain the value of(dx1)2for the network
of N neurons with the above fixedw andD.

~3! Obtain the correlation coefficientC of X1 for the ap-
proximation 1 with the aboveD and(dx1)2.

The dependences of the peak valuesCpeak’s of the corre-
lation coefficientC on the coupling strengthw of the ap-
proximation 1 and the network ofN neurons are compared i
Fig. 6. It is observed that the approximation 1 does not sh
the enhancement ofCpeak, namely,Cpeak of the approxima-
tion 1 always takes smaller values than that of the sin
neuron;0.13. In other words, the quadratic term (dx1)2

modeled by the constant(dx1)2 cannot reproduce the prop
erties of AESR. This suggests that the time dependenc
(dx1)2 is important for the enhancement of stochastic re
nance.

In the next section, we take the time dependence
(dx1)2 into consideration by retrieving the meanX1 in
^(dx1

( i ))2&.

FIG. 5. The values of (dx1)app1
2 and(dx1)2 for N510 and 50

along the curves inw-D plane in Fig. 2 are plotted againstw.
8-4
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IV. MODEL OF AESR: APPROXIMATION 2

In this section, the approximation of (dx1)2 by

~dx1!app2
2 5

~12N21!D

2t~w211X1
2!

~33!

is considered according to Eqs.~20! and ~26!. Note that Eq.
~33! is valid only for w@1 as shown in Appendix A and a
leastw must be greater than 1 in order that the denomina
does not vanish.

Let us consider the approximation 2 governed by Eq.~29!
with

e[S 2
1

t
X1~dx1!app2

2 ,0D t

. ~34!

The dependences ofCpeak’s in both the approximation 2 an
the network ofN neurons onw are shown in Fig. 7. It is
observed that the enhancement ofCpeak for w.0 is qualita-
tively described by the approximation 2.

From the above discussions, it can be concluded
AESR is caused by the dependence of the term (dx1)2 on the
meanX1 of N neurons. Compared with the single neur
case, which is also realized by Eqs.~29!, ~33!, and~34! in the
largew limit, the modification of the system bye is consid-
ered to make the system to fire more easily, i.e., the mo
cation lowers the threshold of firing of the system. The no
intensity is adjusted for the change ofw according to Fig. 2,

FIG. 6. The dependences of the peak valuesCpeak’s of the cor-
relation coefficientC on the coupling strengthw of the approxima-
tion 1 and the network ofN neurons.

FIG. 7. The dependences ofCpeak’s of the approximation 2 and
network ofN neurons onw.
03190
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thus the noise intensity applied to the system withw.1.5 is
smaller than that for the single neuron (w@1). Since the
threshold of firing is lowered, the relatively small noise e
ables the system to fire more coherently correlated with
periodic input and brings an enhancement ofC.

Meanwhile, as shown in Fig. 7,Cpeak of the approxima-
tion 2 still underestimates that of the network ofN neurons,
and the deviation seems to grow for largeN. In the next
section, we consider this effect and examine the validity
the above approximation.

V. VALIDITY OF THE APPROXIMATION

In the above analyses, we used two approximatio
namely, the linearization of the dynamics ofdx( i ) @Eqs.~18!
and ~19!#, and the neglect of the fluctuation of (dx1)2 @Eq.
~26!#. In this section, we examine the validity of these a
proximations.

First, we examine the validity of the linearization by in
vestigating the magnitude of (dx1)2 at the several points
shown in Fig. 8. Three curves in Fig. 8 show the optim
noise intensityD0 as a function ofw for three fixedN, and
the circles indicate the location (w0 ,D0* ) of the maximum of
Cpeak, whereC attains its maximum as a function of bothD
and w for several fixed values ofN ~see also Fig. 3!. Our
concern is the validity of the linear approximation forD and
w aroundD0* andw0. In Fig. 9, (dx1)2 with D0* andw0 is
plotted againstN, and it is observed that(dx1)2 increases
with the increase ofN with a power law;N0.5 in this range

FIG. 8. The location (w0 ,D0* ) of the maximum ofCpeak where
C attains its maximum as a function of bothD and w for several
fixed values ofN. Three curves show the optimal noise intensityD0

as a function ofw for N510, 50, and 100.

FIG. 9. (dx1)2 againstN at the points shown in Fig. 8.
8-5
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of N. This behavior of(dx1)2 is understood as follows. Sinc
the system is driven by Gaussian white noise, ifw is fixed,
(dx1)2 increases withD and (dx1)2→` as D→`. On the
other hand, the coupling of the elements suppresses the
tuation of the elements as in Eq.~33!, and the balance be
tween D and w controls the magnitude of(dx1)2. In the
range ofN considered in Fig. 9,D0* grows faster than the
growth of w0 with N and the dependence(dx1)2;N0.5 is
observed. This dependence of(dx1)2 on N is expected to
hold for largeN until its magnitude becomes large such th
the nonlinear terms in Eq.~15! cannot be neglected and th
linear approximation in Eq.~18! cannot hold. Thus, for large
N, the linear approximation shall not be valid.

Next, let us consider the effect of the deviation of (dx1)2

from (dx1)app2
2 , i.e., the fluctuations of (dx1)2 under the

assumption that the linear approximation in Eq.~18! is valid.
If the fluctuations of (dx1)2 cause the deviation of the ap
proximation 2 from the network ofN neurons, they mus
enhanceCpeak of the approximation 2 as shown in Fig. 7.

The time series of the fluctuations of (dx1)2 is shown in
Fig. 10, and it is observed that the fluctuations have la
intensity and cannot be neglected in comparison w
(dx1)app2

2 . The probability density function of the fluctua
tions of (dx1)2 is shown in Fig. 11. As shown in Appendi
B, (dx1)2 obeys the distribution

FIG. 10. The time series of the fluctuations of (dx1)2 for N
550, w510, andD50.125. The time series ofX1 and (dx1)app2

2

are also shown.

FIG. 11. The distribution of the fluctuations of (dx1)2.
03190
c-

t

e
h

P2~y;t !}expF2
N21

2^~dx1!2&
S y2

N23

N21
^~dx1!2& ln yD G

~35!

for largeN. The fitting with Eq.~35! with a constant instead
of time-dependent̂ (dx1)2& is in good agreement with the
empirical distribution. It is also observed that the distributi
is highly asymmetric, thus the fluctuations of (dx1)2 tend to
take large positive values. Note that the large positive fl
tuations of (dx1)2 help the meanX1 to fire because the term
}2X1(dx1)2 in Eq. ~24! gives the positive influences t
X1(,0) in the equilibrium.

Furthermore, as shown in Appendix B, the variance
(dx1)2 is written as

^„~dx1!22^~dx1!2&…2&.
2

N21
^~dx1

( i )!2&2. ~36!

Equation~36! indicates that the magnitude of the fluctuatio
of (dx1)2 depends on̂(dx1

( i ))2& andX1. It may be plausible
to consider that the asymmetrically distributed fluctuatio
with the amplitude depending onX1 enhancesC and this
may be one of the reasons for the discrepancy between
approximation 2 and the full system. Moreover, the scal
^(dx1

( i ))2&;N0.5 and Eq.~36! indicate that the fluctuations o
(dx1)2 do not decay withN, thus the fluctuations cannot b
neglected even if they are small compared with^(dx1)2&.

From the above discussions, it is found that neither
linearization of the dynamics ofdx( i ) nor the neglect of the
fluctuation of (dx1)2 are valid for largeN. To construct more
precise theories for AESR, the effects of nonlinear terms
the fluctuations must be considered.

VI. CONCLUSIONS AND DISCUSSIONS

The array-enhanced stochastic resonance~AESR! in the
diffusively coupled FitzHugh-Nagumo model is investigate
AESR is characterized by the following two propertie
namely, the scaling of the optimal noise intensityD0

(N)(`)
for N neurons with the sufficiently large coupling streng
obeying

D0
(N)~`!5ND0

(1)~`!, ~37!

and the enhancement of the maximum valueCpeak of the
correlation coefficientC as a function of the coupling
strengthw.

By transforming the dynamics ofN neurons into that of
the meanX and the deviationdx( i ), it is found that AESR is
well described by a reduced dynamics of the meanX, par-
ticularly by the correlation between (dx1)2 andX1.

The validity of the approximation is examined, and it
found that neither the linearization of the dynamics ofdx( i )

nor the neglect of the fluctuation of (dx1)2 are valid for large
N. To construct more precise theories for AESR, the effe
of nonlinear terms and the fluctuations must be consider

Note that our analyses are independent of the input, t
the above discussions are also applicable to the array
8-6
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THEORETICAL ANALYSIS OF ARRAY-ENHANCED . . . PHYSICAL REVIEW E64 031908
hancement in the system without the input, namely, arr
enhanced coherence resonance@39#.

As for the information processing in the neural syste
AESR gives a mechanism for an effective regulation of
noise intensity even for the ‘‘uncontrollable’’ noises. A
shown in Fig. 12~a!, the regulation of the noise intensity i
the w-D plane is represented by a vertical arrow, and
dependence of the correlation coefficientC on the noise in-
tensityD along this arrow is shown in Fig. 1. Note that th
correlation coefficientC takes a maximum when the arro
crosses the curve that shows the optimal noise intensity.
the other hand, a horizontal arrow in Fig. 12~a! represents the
regulation of the coupling strength, and the dependenceC
on the coupling strengthw along this arrow is shown in Fig
12~b!. It is shown that the correlation coefficient takes
maximum whenw crosses the curve of optimal noise inte
sity shown in Fig. 12~a!. Thus the regulation ofw might
work as a mechanism for the effective regulation of the no
intensity even for the ‘‘uncontrollable’’ noises in the neur
system.
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APPENDIX A: DERIVATION OF Š„dX1
„ i …
…

2
‹

In this appendix, we analytically derive the ter
^(dx1

( i ))2& given by Eq.~20!, namely,

FIG. 12. ~a! The dependence of the optimal noise intensityD0

on the coupling strengthw for N510. ~b! The dependence of th
correlation coefficientC on the coupling strengthw for D50.015
andN510.
03190
-

,
e

e

n

e

^~dx1!2&.
~12N21!D

2t~w211X1
2!

, ~A1!

from the linearized stochastic differential equation

d

dt
dx152

1

t
~w211X1

2!dx12
1

t
dx21

1

t
h̃, ~A2!

d

dt
dx25dx12bdx2 , ~A3!

^h̃~ t !h̃~ t8!&5~12N21!Dd~ t2t8!, ~A4!

where the suffix~i! that denotes the index of the neuron
omitted for simplicity.

With the vectorx5(dx1 ,dx2) t, Eqs. ~A2! and ~A3! are
written as

d

dt
x5A~ t !x1f~ t !. ~A5!

Let us denote the solution ofẋ5A(t)x asx(t)5B(t)x(0) by
the solution matrixB(t). Then, with B(t,s)[B(t)B21(s),
the solution of Eq.~A5! is written as

x~ t !5B~ t,t0!x~ t0!1E
t0

t

dsB~ t,s!f~s!. ~A6!

We assume thatB(t,s) rapidly converges to 0 ast2s→`,
which enables us to neglect the nonlinear termsj( i ) ande in
the dynamics ofdx( i ) governed by Eq.~15!.

With h̃50, Eq. ~A2! is solved to be

dx1~ t !5f~ t,t0!dx1~ t0!2
1

tEt0

t

dsf~ t,s!dx2~s!, ~A7!

where

f~ t,s![expF2
1

t
~w21!~ t2s!2

1

tEs

t

dt8X1
2~ t8!G .

~A8!

The assumption thatB(t,s)→0 ast2s→` requires the con-
dition thatf(t,s)→0 ast2s→`.

If the convergence off(t,s) to 0 as t2s→` is suffi-
ciently rapid,dx2(s) in Eq. ~A7! can be replaced bydx2(t).
With this assumption, Eq.~A7! becomes

dx1~ t !.f~ t,t0!dx1~ t0!2c~ t,t0!dx2~ t !, ~A9!

c~ t,s![
1

tEs

t

dt8f~ t,t8!. ~A10!

Substituting Eq.~A9! in Eq. ~A3!, we obtain

d

dt
dx25f~ t,t0!dx1~ t0!2„c~ t,t0!1b…dx2 , ~A11!

and it is solved as
8-7
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dx2~ t !5expF2E
t0

t

ds„c~s,t0!1b…Gdx2~ t0!

1E
t0

t

dsexpF2E
s

t

dt8„c~ t8,t0!1b…G
3f~s,t0!dx1~ t0!. ~A12!

From Eqs.~A9! and ~A12!, for t.s, we obtain

B21~ t,s!5E
s

t

ds8 expF2E
s8

t

dt8„c~ t8,s!1b…Gf~s8,s!,

~A13!

B22~ t,s!5expF2E
s

t

ds8„c~s8,s!1b…G , ~A14!

B11~ t,s!5f~ t,s!2c~ t,s!B21~ t,s!, ~A15!

B12~ t,s!52c~ t,s!B22~ t,s!. ~A16!

With the assumption that the convergence off(t,s) to 0 as
t2s→` is sufficiently rapid, the lower bounds8 of the in-
tegration in Eq.~A13! can be replaced bys, and we obtain

B21~ t,s!.B22~ t,s!E
s

t

ds8f~s8,s!. ~A17!

With f(t)5„h̃(t)/t,0…t and Eq.~A6!, we obtain

dx1~ t !5B11~ t,t0!dx1~ t0!1B12~ t,t0!dx2~ t0!

1
1

tEt0

t

dsh̃~s!B11~ t,s! ~A18!

5
1

tE2`

t

dsh̃~s!B11~ t,s!, ~A19!

where the limitt0→2` is taken, and

^dx1~ t !2&5
1

t2E2`

t E
2`

t

dsds8B11~ t,s!B11~ t,s8!^h̃~s!h̃~s8!&

~A20!

5
D̃

t2E2`

t

dsB11~ t,s!2, ~A21!

whereD̃[(12N21)D.
In order to obtain an approximate form for the varian

^dx1(t)2&, let us roughly evaluateB11(t,s) by the approxi-
mationf(t,s);e2k(t2s) with largek, which leads to

c~ t,s!;
12f~ t,s!

tk
, ~A22!

B21~ t,s!;
12f~ t,s!

k
B22~ t,s!. ~A23!
03190
For the variance in Eq.~A21!, the three terms in

B11
2 .f222fcB211c2B21

2 ~A24!

give the contributions of the magnitudes ofk21, k23, and
k24, respectively, thus we obtain

^dx1~ t !2&.
D̃

t2E2`

t

dsf~ t,s!2 ~A25!

5
D̃

t2E2`

t

dsexpF2
2

t
~w21!~ t2s!

2
2

tEs

t

dt8X1
2~ t8!G . ~A26!

If ( w21)/t is sufficiently large, by replacingX(t8) by
X(t), we obtain

^dx1~ t !2&.
D̃

t2E2`

t

dsexpF2
2

t
~w211X1

2~ t !!~ t2s!G
~A27!

5
~12N21!D

2t~w211X1
2!

. ~A28!

APPENDIX B: DISTRIBUTIONS OF dX1
„ i … AND „dx1…

2

In this section, we derive the distributions ofdx1
( i ) and

(dx1)2. As shown in Eq.~A19! in Appendix A, dx1
( i ) is ex-

pressed as

dx1
( i ).Zi2

1

N (
k51

N

Zk , ~B1!

Zi[
1

tE2`

t

dsh ( i )~s!B11~ t,s!, ~B2!

^h ( i )~s!h ( j )~s8!&5Dd i j d~s2s8!. ~B3!

From the definition of the stochastic integral@41#, Eq.~B2! is
modified as

Zi.
1

t (
k51

M
B11~ t,sk!1B11~ t,sk11!

2
@h ( i )~sk11!2h ( i )~sk!#,

~B4!

5 (
k51

M

akzk , ~B5!

where

ak[
B11~ t,sk!1B11~ t,sk11!

2t
, ~B6!

zk[h ( i )~sk11!2h ( i )~sk!. ~B7!
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Note thatzk is a random variable that follows a Gaussi
distribution with the mean 0 and the varianceDDt, where
Dt[sk112sk . The distributionP(Z,t) of Zi is calculated as

P~Z;t !5^d~Z2Zi !& ~B8!

.E )
j 51

M

@dzj P~zj !#dS Z2 (
k51

M

akzkD , ~B9!

}E )
j 51

M

dzj expS 2
1

2DDt (
k51

M

zk
2D

3dS Z2 (
k51

M

akzkD ~B10!

5E )
j 52

M

dzj expF2
1

2DDt H (
k52

M

zk
21

1

a1
2

3S Z2 (
k52

M

akzkD 2J G ~B11!

5E )
j 52

M

dzj expS 2
1

2DDt H a1
21a2

2

a1
2

3F z22
a2

a1
21a2

2 S Z2 (
k53

M

akzkD G 2J D expF2
1

2DDt

3H (
k53

M

zk
21

1

a1
21a2

2 S Z2 (
k53

M

akzkD 2J G ~B12!

}E )
j 53

M

dzj expF2
1

2DDt H (
k53

M

zk
21

1

a1
21a2

2

3S Z2 (
k53

M

akzkD 2J G ~B13!

}•••}expF 2
1

2DDt

Z2

( ak
2G . ~B14!

From the definition ofak and Eq.~A21!, DDt(ak
2 is written

as

DDt(
k

ak
2.

D

t2E dsB11~ t,s!2 ~B15!

.
^~dx1

( i )!2&

12N21
~B16!

[s0
2 , ~B17!

thusZi is Gaussian following
03190
P~Z;t !}expS 2
Z2

2s0
2D ~B18!

and they are statistically independent of each other. The
tribution P1(y;t) of dx1

( i )5Zi2(1/N)(Zk is calculated as

P1~y;t !.E )
j 51

N

@dZj P~Zj ;t !#dS y2Zi1
1

N (
k51

N

ZkD
~B19!

}expS 2
y2

2s0
2~12N21!

D ~B20!

5expS 2
y2

2^~dx1
( i )!2&

D . ~B21!

Thus it is concluded thatdx1
( i ) follows a Gaussian distribu

tion with the mean 0 and the variance^(dx1
( i ))2&.

Next the distribution P2(y;t) of (dx1)2

[(1/N)((dx1
( i ))2 is calculated as

P2~y;t !5^d„y2~dx1!2
…& ~B22!

5K dS y2
1

N (
i 51

N

~dx1
( i )!2D L ~B23!

5K dF y2
1

N (
i 51

N S Zi2
1

N (
k51

N

ZkD 2G L
~B24!

5E )
j 51

N

@dZj P~Zj ;t !#

3dF y2
1

N (
i 51

N S Zi2
1

N (
k51

N

ZkD 2G . ~B25!

Introducing cylindrical coordinates

h5
1

N (
i 51

N

Zi , ~B26!

r 5A1

N (
i 51

N

~Zi2h!2, ~B27!

andN22 angles, Eq.~B25! is calculated as

P2~y;t !}E dhdr rN22d~y2r 2!expS 2
N

2s0
2 ~r 21h2!D

~B28!

}E
0

`

dr r N22
1

2r
d~r 2Ay!expS 2

N

2s0
2

r 2D ~B29!
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}y(N23)/2expS 2
N

2s0
2

yD ~B30!

5expF2
N

2s0
2 S y2

N23

N
s0

2 ln yD G . ~B31!

With this distribution, the mean and the variance of (dx1)2

are calculated as
n

-

v.

n

ys

J.

nd

03190
^y&5~12N21!s0
25^~dx1

( i )!2&, ~B32!

^~y2^y&!2&5
2

N21
^~dx1

( i )!2&2. ~B33!

From Eqs. ~B32! and ~B33!, the approximation (dx1)2

.^(dx1
( i ))2& is justified for largeN.
F.

ure

.

J.

ev.

ys.
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