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Statistical mechanics of learning with soft margin classifiers
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We study the typical learning properties of the recently introduced soft margin clasc¥M(39, learning
realizable and unrealizable tasks, with the tools of statistical mechanics. We derive analytically the behavior of
the learning curves in the regime of very large training sets. We obtain exponential and power laws for the
decay of the generalization error towards the asymptotic value, depending on the task and on general charac-
teristics of the distribution of stabilities of the patterns to be learned. The optimal learning curves of the SMCs,
which give the minimal generalization error, are obtained by tuning the coefficient controlling the trade-off
between the error and the regularization terms in the cost function. If the task is realizable by the SMC, the
optimal performance is better than that of a hard margin support vector machine and is very close to that of a
Bayesian classifier.
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I. INTRODUCTION learning with multilayer neural networks. This is also a prob-
lem for the theoretical analysis, as the typical properties of
Neural networks are models of learning systems comsuch networks depend crucially on the structure of the
posed of interconnected units that, besides their biologicahninima in the weights’ space.
relevance, have been shown to be very useful for classifica- Recently, a new learning scheme has been proposed,
tion tasks. The weights of the connections are adjustewhich strives to get rid of the problem raised by the multiple
through a process callddarningusing a set oM examples. ~Minima. The obtained classifiers are callslabpor_t vector
It is assumed that these are labeled following an underlyin@“aCh'nes(SVMS) [9,10]. Instead of directly looking for a
rule, usually calledeacher The purpose of learning is not compllcateq discriminating sulrface. in mput space, the pat-
only to classify correctly the examples of the training set, putens are first mapped to a h|gh-d|men.5|ofmwre space
also togeneralizecorrectly on new inputs. To this aim, the whe_re_the rule to be Igarned(isopefull)o linearly separable..
network has to infer the teacher’s rule. The quality of thislf this is the_ case, a simple perceptron can be tra|r_1ed to find
inference is measured through the generalization esgor the separation in featyre Space. Denptmg the vyelghtw by
which is the probability of misclassification of a new, ran- < R, the perceptron’s OUtPUt to_ an input Re" is given
domly selected, input pattern. Ag is not a quantity avail- by o=sgnfw-x+b), wherebis a bias and the dot represents
able for the training process, learning is usually performedn® inner product in Re Thus, the patterns belonging to
through the minimization of a function of the training pat- different classes are separated by a hyperplane orthogonal to
terns. The tools of statistical mechanics allow us to study th&’ at distancgb]/|\w| from the origin, with{jw||= yw-w. The
properties of such learning systems, providing a deep undepYM's solution is themaximal stability perceptrortMSP)
standing of their typical behavigd—5]. In particular, it has [11] in feature space, also called maximal margin hyper-
been shown that the minimization of the training error, thatPlane. This is the hyperplane at maximal distargg, from
is, the fraction of training patterns misclassified by the netfhe closest patterns in the training set. Two different formu-
work, does not necessarily provide the best generalizelﬁt'ons of 'FhIS prqblem in terms of cost functions have been
[6—8]. This is why other cost functions, based on geometriProposed in the literature. In the first offd], the cost func-
cal properties such as the distance of the patterns to the diion counts not only the number of misclassified patterns, but
criminating surface, or on probabilistic error measures suciiS0 the number of correctly classified ones that lie at a dis-

as the likelihood, are used for training. tance smaller thar from the separating hyperplane
The simplest instance of a neural network, the perceptron, M

is a single binary unit whose output is the sign of the E _ “h 1

weighted sum of its inputs. It can only perform linear sepa- msel <) ,Z‘l O (xlwl=hy), @)

rations of the patterns. If the classification task requires more

complex discriminating surfaces, these may be implementedhere® is the Heaviside function, and

using feedforward networks with a layer of hidden units

whose number is priori unknown. The cost functions used h,=7,(w-x,+Db), (2
to tackle this problem usually have several minima, and de-

termining the lowest one is one of the main difficulties iniS called aligned field of the training patternx,,
7,€{— 1,1} being its class. If thél N-dimensional patterns

_ are correctly classified, the aligned fields are all positive. The
*Also with Centre National de la Recherche Scientifique. SVM solution haswv andb corresponding toc,.x, the larg-
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est possible value of such thaE ysp( kmay) = 0. If the train-  and (6b) is convex, the minimum isinique[12]. This re-

ing set is not linearly separable,,,, becomes negative. No- markable property makes the new formulation attractive for

tice that there are no constraints on the nornwothat can ~ applications, as it allows to get rid of the multiple minima

be freely chosen. appearing in other learning schemes. Like in the hard margin
If the norm of the weight vector is chosen so that theformulation, the solutiofw,b} can be expressed as a linear

aligned field of the closest pattern be 1, this leads to aigombination of thesupport vectorswhich now include the

equivalent formulation of the problef®,10], in which the patterns with positive slacks. The corresponding coefficients

function to be minimized is may be obtained by solving thaual problem (see for ex-
. ample [13]) which, for k=1 or k=2 has a particularly
Esvm=zW-W, () simple expressiofil0]. Several efficient methods are known

for solving this kind of problems, and this is one of the
reasons why these classifiers are so widely used lately.
h,>1, w=1,...M. 4) In this paper we study the typical properties of the SMCs
e B obtained by solving equatiofb) subject to the conditions
Clearly, the constrainté4) can only be satisfied if it is pos- (62 and(6b), with the methods of statistical mechanics, us-
sible to classify correctly all the examples. In that case, theréd the replica approach. It has been shds,15 that the
are no training patterns in a strip of width||j on both  Statistical properties of SVMs in hlgh—dlmensmngl f(_aature
sides of the hyperplane, meaning that in the error-free regimgPaces[16] can be well approximated by considering a
1/|W||= kmay. AN interesting property of the SVM solution is Simple perceptron learning anisotropically distributed pat-
that the weight vector and the bias can be written as a linedfns. The amount of anisotropy depends on the normaliza-

combination of a subset of training patterns, spport vec-  tion of the mapping from the input to the feature space. In
tors, havingh,,=1. this paper we only consider the case of an isotropic pattern

The minimization of Eq(1) with k= ks iS equivalent  distribution, which corresponds to a non-normalized map-

to that of Eq.(3) with condition(4) only if the training setis PN9- _ _ . _
linearly separableIf errors cannot be avoided, the equiva- 1 he learning properties of a perceptron learning an isotro-
lence breaks down, as in one hand Bq.has either negative PiC input pattern distribution have been extensively studied
Kmax, OF Several minima ifc,,,,=0 is imposed, and on the [17], mainly for Iinearly separaple, ie., reali;able, tasks. In
other hand the constraintd) cannot be satisfied. This is why this case the hypothesis of replica symmetry is generally cor-
the second formulation has been generalfZé] through the ~ r€ct, allowing for a full analytical statistical mechanics cal-
introduction of a new set of variables,>0, calledslacks culation. In particular, the behavior of the generalization er-
which are a measure of the “amount of violation” of the fOr & In the limit of very largea=M/N has a universal
constraints. An increasing function of these is included in the?ower law decayy~a " with v=1. Its prefactor allows to
cost function(3) and the hard margin conditiong}) are characterize the convergence to perfect learning of different
modified to allow some patterns to be closer to the hyperlearning algorithms. If the rule to be inferred cannot be gen-

plane than J#||. The new problem amounts to minimizing €ralized without errors, the task is calledrealizable In this
case the replica symmetric solution, although generally un-

subject to the conditions

1 M stable, is believed to provide a good approximation of some
Ec’k=§W~W+CE 5,'1, (5 learning properties. However, in the case of a linearly sepa-
n=1 rable rule learned with noisy training patterns, which is thus
subject to the following conditions fou= 1 M unrealizable, the replica symmetric approximation gives an
ey exponentr=1/2 [2] whereas one step of replica symmetry
h,=1-¢,, (6g)  breaking shows[18] that this exponent is modified to
v=2/3. As this is but an approximation to the full replica
{,=0. (6b) symmetry breaking schenj#9] at zero temperature, it is not

clear whether this exponent is correct. The same exponent

The coefficientC in Eq. (5) is a hyperparameter that allows has been found in the case of a quadratic hard margin SVM
to control the trade-off between the error term, defined by théearning a linearly separable task, that is, a rule simpler than
slacks, and the regularization term, proportional to thethose implementable with the student’s architecfd&. An-
squared weights. As will be shown in Sec. IV, it may beother case of interest is that @ficonsistent learning 6],
selected to optimize the generalization performance. The exwhich refers to realizable tasks learned with algorithms that
ponentk in Eqg. (5) modulates the relative cost of errors, do not strive to minimize the number of training errors. In
depending on their distance to the hyperplane. Patterns inthis case, the exponent within the replica symmetric approxi-
strip of width 1)lw|| at each side of the hyperplane, whethermation was found to be=1/2[6].
correctly or incorrectly classified, as well as those incorrectly As the soft margin problem has a unique minimum for
classified outside of this strip, havg,>0. 1/|w| is called k=1 andk=2, even if the task is unrealizable, the replica
soft margin and the resulting classifiesoft marginSVM or ~ symmetry hypothesis should be always correct, providing a
soft margin classifie(SMC). framework for the study of complex classification tasks even

As the cost(5) is a quadratic function fok=1 and when the mismatch between the student and the teacher hin-
k=2, and the domain of minimization defined by E¢8a ders error-free learning.
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In this paper we present the statistical properties of SMC#otice that the only rule realizable for the student perceptron
learning several kinds of realizable and unrealizable rulesconsidered in this paper is that of the linear teachéz)
The model and the statistical mechanics approach are pre=z. . . .
sented in Sec. IIl. The theoretical properties of SMCs with In the following we study the properties of the solution to
exponentsk=1 andk=2 in the cost function5) are ob- the _so_ft margin pr(_)blem using Fhe by now standard tools of
tained as a function of the training set sizeM/N in the  Statistical mechanicfl,2]. That is, we assume that the en-
considered in Sec. IIl. One of our most striking results is thatN® energy functiort), at a fictitious temperature 2/ and
the generalization error for large exhibits a very rich vari- e take the zero temperature limit. The constra{6e and
ety of asymptotic behaviors, depending on the type of rule t46b) play the role of infinite potential wglls. N.ot|ce that the
be inferred. In particular, even if the task is realizable, the®"@se space in the present case has dimeéiol, as not

soft margin algorithm is inconsistent unle@s-c. For finite NIy the weightsw but also the slack§{,},-1,... m, have
C, we find that the fraction of training errors at finitieis ~ (© P€ leamed. The partition function is

finite, and the generalization error vanishes asymptotically

with a following a v=2/3 power law. In the unrealizable Zek(BiLy ,79)=f exd — BEc k(W,{Z,})]

tasks consideredsy converges to an asymptotic finite value

either exponentially or with a power law with=1/2. The M

usual exponent=1 only arises for error-free learning of a X H O(1,W-X,

realizable task. In Sec. IV we derive the best generalization w=1

performances of SMCs through the determination of the —(1-£,))0(L,) dwd{,. (9)

value C,,(a) that minimizes the generalization error. Fi- . _ .
nally we present a summary of our results in Sec. V, together The inverse temperatur@ has obviously no physical

with some open questions. Most details of the proofs are lefieaning whatsoever; it is only introduced in order to study
to the Appendix. the properties of the SMC which, being the single minimum

of the energy function, is selected in the lint—o~. We
assume that the number of training examples scales with the
input space dimensionM=a«aN, and take the thermody-
We consider a student perceptron of weight vectomamic limitN—o, M—o with a=M/N constant. The free
w=(wy, ...,Wy), without thresholdThat is, we seb=0 in  energy per input space dimension averaged over all the pos-
Eg. (6a). Given anyN-dimensional input vectox, the clas-  sible training sets oM patterns,fc (8;P), is calculated
sifier's output isoc=sgn-x): all the points lying on the with the replica method, that uses the identity
same side of a hyperplane orthogonalwiocontaining the

Il. STATISTICAL MECHANICS APPROACH

origin are given the same class. We assume that the percep- fe(BP)=— lim im Ze Bl P)
tron learns the classification with the soft margin algorithm, ' N—o '
using a seCy =1{(X,,7,)}.=1,... m Of M examples or train- —_—
ing patterns. These consist of input vectogsdrawn from an 1 InZg (BiLw,P)
isotropic Gaussian distribution, =~ lim N_lgl'mf' (10
N— o n—0
e~ N2 where the overline represents the average over the pattern
P(x)= (ZTN)N’Z (7)  distribution (7), with labels given by Eq(8). Z" is the par-

tition function ofn independent replicas of the problem, that

. become coupled after taking the average. The typical prop-
and labelst, e{~1,1} that represent the corresponding grties of the classifier are obtained by taking the lirgit
classes. The classification tasks considered in this paper are.,, The free energy10) turns out to be a function of the

given by the following teacher’s rule: following order parameters:
7=sgri P(wg-X)], 8 Wa- W,

g P(wo-x)] ® 0.t = 2 w1
wherewy is referred to as the teacher’s vector hereafter, and
P(z) is a polynomial ofz. Each of its zerog; [20] defines a (Wgq- Wp)
discriminating hyperplane at a distan{=g|/||wy|| from the Jab=— (11b)
origin. Rules of the kind8) partition the input space into as
many different regions as the number of zeros of the poly- _ m
nomial plus one, separated by parallel hyperplanes normal to Ra:T- (119

the teacher’s vectar,. Patterns in successive regions belong

alternatively to classt-1 or —1. As only the zeros of the where the brackets represent the phase space average and
function P(z) matter, there is no loss of generality in our and b are replica indices. The norm of the perceptron’s

assumption thatP(z) is a polynomial. We assumfwyl|  weight vectorQ, is one of the order parameters because in

=N, which is equivalent to imposing the unit of distance. the soft margin problem the weights are not normalized as
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usually.q,, is the overlap between two different weight vec- easy to see that there is a unique local minimum inside this
tors at temperaturﬁfl, andﬁa is the over|ap of the percep- interval fork>1. Fork= 1, Wis a quadraﬂc function Ot,

tron’s solution and the teacher’s vector.
As for k=1 andk=2 the energy in Eq(5) is a quadratic
function in a convex domain, it has a single minim{2i],

whose global minimum falls inside the allowed interval only
for a finite range of values df Outside this range, the mini-
mum lies at the boundary=0. As a consequence, for

irrespective of the kind of rule that is being learned. Therek=1 the inner integral inGc splits into two parts. The
fore, we may safely assume that all the replicas are equivdesults fork=1 andk=2 are, respectively,

lent, even in the case of learning unrealizable rules. We ob-
tain thus the typical properties for cases where, using other Ge1(Q.RX;P) =
more usual cost functions like the number of training errors, '

full replica symmetry breaking would be requirgt®]. The

excellent agreement of the theoretical predictions and the
numerical simulations presented in the following section is a

further justification of our hypothesis aéplica symmetry
Thus, we seQ,=0Q, q.,=0, andR,=R, and we define the

normalized overlapR=R/./Q, that only depends on the

angle betweenv andwy.

Due to the unicity of the soft margin solution, only one
point in phase space has nonvanishing probability in the limit
B—x, so thatg— Q. It is convenient to introduce a new
parameterx= B8(Q—q), which reflects how fast the fluctua-

tions around the minimum of E@5) vanish ag3— . In this

limit we obtain the typical free energy of the SMC learning a

rule defined by the polynomigp,

fo(P)=—extrqrx [Go(Q.RX)—aGc W(Q, R,X;P)(]iz)

where

GO(Q,R,X)=2Q—X(1—R2—X), (13

is an entropic term. The dependence on the rule to be learned

is embodied in the second term of E4.2) throughP(z),
and on the learning algorithm throudhand C. Integrating
out the slack variables in the limp—o using the saddle
point method, we get

Gc,k(Q,R,x;P)=f Dyf Dt
—o #(y;:Q,R,P)

XminW(Zy,t,Q,R,x,P), (14
¢
whereDt=dt exp(~t¥2)/2,
yR sgiP(y)]-141Q
;Q,R,P)= , 15
é(y;Q.R,P) NG (15)
and
W(Zy.t.Q.RX,P)
o A= QUI-RY [t 4(y;Q.R.P)]}?
=C "+ ox .
(16)
In (14), according to the saddle point method,

W(¢Zy,t,Q,R,x,P) has to be taken at its minimui(t,y)
e[0,JO(1-R? ¢(y;Q,R,P) for each couple \t). It is

xc-1)ANQ_ (tYQ+1)?
/¢ ot Y rp)
(

~1)I\Q
o xC
+f DtC(t\/aJrl——)
(xC—1)INQ 2
Xg(t;R,P),

& C(t\/Q+1)2
GC]Z(Q,Ryx;P):f—]_/GDt 1+2xC

with

(17)
o(t;R,P),

(18

_ (y sgnP(y))+tR)?
2(1-R? '

: _ dy
g(t,R,P)—f mexp(

(19

Deriving the free energyl12) with respect taQ, R, andx
gives three coupled equations for the order parameters.
These in turn determine the properties of the SMC. The ex-
plicit expression of the saddle point equations ker1 and
k=2 is left to the Appendix, where we also derive some
general properties of the learning curves described in the
next sections.

The generalization errogy, which is the probability of
misclassification of any pattern drawn with probabili@, is

a geometric property that depends onlyRand the rule to
be learned. In the case of rules of ty(®, it is straightfor-

ward to obtain
tR sgnP(1)]
€= | DtH| ———
g f J1-R2

whereH (x) = [ Dt. In the particular case of a linearly sepa-
rable ruleP(z) =z, Eq. (20) reduces to the usual expression
€,=arccosR)/ .

The distribution of stabilitiesy,=h, /|w] of the training
patternsp(y) is given by

: (20

1 (—-1+xC)/\Q
p(y)=38| y— J_—Q) JMG Dtg(t;R,P)

1 \e 7”2
+®(7—\/——Q)ﬁ9(—7;R,7’)
+®(i_y)exp{—(y—xC/\/6)2/2]

VQ V2w
xg _7+\/——g;R,7’ (22
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for the casek=1, whered(y) is the Dirac delta, and A ' ' ' '
Sg Y Linear rule .- 0 €=0.003
1 .
[exp— 5[«y(1+2xc)—2xc:/\/6]2] 0.2
:@ —_—
p(7) ( Q Y 2
X (1+2 C)+2XC RP) (1+2xC)
gl —v X —R, X 041 f
JQ
1 )e72’2
+0| y——=|—7=9(—7»RP) (22)
JQ/ Ve S O O
0.0 T ST T T 4
for the cas&k=2. The Dirac delta present in E@®1) implies 0 4 P 12 16 20
that in the thermodynamic limit there is a macroscopic frac- (0

tion of the examples that are at a distance of exactiyQL/

from the hyperplane of t.he. student, for the césel, thh low, €4 above corresponding to an exponekit 1 in the cost func-

is not the case ik=2. This is a consequence of the.dlfferent tion, for different values of the hyperparamet@rThe generaliza-

structure of the support vectors in both cases, which can bg, errors of the MSP and the optimdayesian generalizer, are

obtained by analyzing the dual problemki1, all the vec-  jncjuded for comparison. The learning curves of the optimal SMC,

tors at the distance Q are support vectors, whereas for discussed in Sec. IV, are also represented. Symepla, black, €

k=2 they are not. in white, correspond to results of computer simulations wth
The training errore, is the average fraction of incorrectly =100. Error bars are smaller than the symbols.

classified training patterns. Integrating Eq21) and (22)

FIG. 1. Linearly separable rule. SMC'’s learning curves lfe-

; i ; k=1 andk=2, respectively. The generalization error of the
over the negative stabilities we obtain, hard margin classifier, solution of E() with conditions(4),
and that of the optimal Bayesian generalif28], both of
Et:J Dt H (R sgiP(D]+kxC/VQ ) (23)  Which are error-free solutions, are included in the figures for
V1—R? comparison. Despite the fact that the task is realizable by the

student perceptron, the training error for fintas positive.
As expected, the training error is always strictly smaller thant goes through a maximum and vanishes asymptotically in
the generalization error. Both converge to the same limit foithe limit «— . As expected, both fok=1 andk=2 at any
a—®, «a, € is larger the smaller the value &f which controls the
relative importance of the error term in the cost functibn
IIl. LEARNING CURVES We can also see from the figures that, givgrthe machine
with k=2 performs better than the one wikx=1. This can
In this section we present the learning curves, namely, thee understood from the fact that, according to g the
training errore;(«) and the generalization erreg(«) of the  examples that are errors hagg>1 and those that are not
SMCs for different teacher rules. The results of computererrors satisfy 8¢,<1. Thus, the second term in E¢p),
simulations drawn on the same figures have been obtained iyhich is proportional togl'f“ penalizes the errors more
solving numerically the dual probleffl3] using the Qua- heavily in the casek=2, forcing the machine to classify
dratic Optimizer for Pattern Recognition progrd@®], that  petter than in the cade=1.
we adapted to the case without threshold treated in this pa-
per. The average has been taken over as many training sets 0-2 % ! .

. . Linear rule m---0 C=0.2
necessarytypically ~500 for smallee and~ 50 for big «) to v.‘\ ke ®---0 C=2
ensure that the error bars are smaller than the symbols. The€ '
simulations are in excellent agreement with the theoretical
predictions.

01}
A. The linear rule
Introducing the expressioff(z)=z corresponding to a
linearly separable teacher’s rule in E49), we obtain €¢
S
(GRP)=2H| — (24
gLk, J1-R?)’ oopr——""~ L LT , o '
0 4 8 12 16 20

The training and generalization errors, obtained after solv-

ing the extremum equations for different values of the hyper- FIG. 2. Linearly separable rule. Same as the preceding figure,
parameterC, are plotted againstr on Figs. 1 and 2 for with an exponenk=2 in the cost function.
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081 - - - - where the constard, is independent o€ and is larger for
N Shifted linear rule ®----0 C=0.00001

k=1 than fork=2. In the limit C—« Eq. (25) no longer
holds, and the well-known deca%,wcfl characteristic of
error-free trained perceptrons learning realizable tasks is re-
covered.
Independently of the value df, both the regularization
term, proportional toQ, and the slacks term diverge like
g ~a?Pfor a—x. In fact, this divergence arises because we
divided the free energy in Eq10) by N, instead of dividing
by N(1+ «), which gives the energy per degree of freedom.
In the largea limit, this converges to 0 as it should, like
a~ Y3, The separable case is the only one where the error
term in the cost function presents the same asymptotic be-
havior as the regularization term. In this limit, the soft mar-
FIG. 3. Shifted linear rule. SMC's learning curves correspond-9/N 1NQ \{anlshes likea"*%, in contrast with the hard mar-
ing to an exponerk=1 in the cost function, for different values of 9in behaviorkpa~a* [Ref.[24]].
the hyperparameteC. Symbols correspond to results of computer
simulations withN=>50. Error bars are smaller than the symbols.
Asymptotically, e, =0.1179.

omsp O

B. The shifted linear rule

Next we analyze the case of a linear teacher with a bias
On increasingC, the learning curves approach those of 9>0. The corresponding polynomial has a single root:

the MSP. In fact, by taking the limi€—c in our saddle P(z)=z— 6. This teacher separates linearly the examples
point equations we get exactly the equations of the MSP foWith a hyperplane at a distan@yN from the origin. As the
every value ofe, independently of the powes This is not  Student perceptron has no bias=(0), zero generalization
surprising, as in this limit the error term dominates com-€rror cannot be achieved: this rule is unrealizable. The lowest
pletely the soft margin cost functiof®), which can only be Vvalue ofegy, obtained by taking the asymptotic linf—1 in
minimized if all the slack variables, and consequently theEQ. (20), is €;=0.5—H(J).
training error, vanish. This is possible because the rule is The functiong defined by Eq(19) is
realizable. It is well known that the generalization error of

the MSP is larger than that of the Bayesian generalizer even R P)=H Rt+o Ty Rt—0o 26
asymptotically, as forr— o both algorithms have,~a/«, 9(tR.P)= J1I—-R? JI-R?)’ (26)

but a=0.5005 in the case of the MSP4], whereasa
=0.442 for the Bayesian perceptrf2g]. ) )
The obtained behavior of the learning curves at figits ~ L€@rning curves for different values Gfare represented as a
reminiscent of that arising with other learning algorithms function of a in Fig. 3, for the particular valug=0.3.
having a hyperparameter. In the inconsistent algorithms stud- T We take the limitC— < in our equations, we get those
ied by Meir and Fontanafi6], patterns closer to the hyper- corresponding to the MSP only far<aysp. At ayse, the
plane than a finite imposed distange> k4, contribute to training error of the SMC_ starts increasifgjscontinuously
the cost, linearly in the case of the perceptron algorithm andf K=2) and the generalization error curve detaches down
quadratically in the case of the relaxation one. In the algoffom that of the MSP, both through a second order phase
rithm Minimerror [24] the hyperparameter is equivalent to a fransition. The learing curves obtained in the lir@it-
learning temperature. By training with these algorithms, ag'e different fork=1 andk=2, in contrast with the realiz-
well as with the SMC studied here, the generalization errofPl€ rule considered before, in which they converge to that of
can be made smaller than that of the MSP by choosing a he MSP irrespective of the value kfThe same features are
propriate values for the hyperparameters, at the price geresent for all the unrealizable rules st_udled in this paper. I_:or
learning with errors. The reason is that, in contrast with the¥™ @wsp the exact curve for the MSP is unknown, as in this
MSP, the Bayesian solution presents a finite fraction of train/€dion the symmetry of the replicas is broken. _
ing patterns at any distance of the hyperplf8ie Thus, so- For th_e shifted linear rulesyy sp is a decreasing function
lutions with a small controlled fraction of training errors may Of é. It diverges a=0, as the problem becomes separable,
be closer to the optimal bayesian hyperplane than the MS@Nd tends to the perceptron’s capaeity=2 in the infinite
which has no patterns at distances smaller thgg. limit. aysp cannot be smaller thaa. since in the thermo-
Unlike the generalization error of the inconsistent learn-dynamic limit any training set can be learned without errors
ing algorithms, that vanishes asymptotically likg~1/\/a for a<a, [Ref. [25]].

[Ref. [6]], SMCs with finite C present a faster power law For finite values ofC the transition atw),5p becomes a
decay: crossover both fore; and €y, at values ofa<aygp that

decrease on decreasi@@ The training error for alla is

larger than that for infiniteC, both fork=1 andk=2. The
(25) generalization errors for different values @f cross each

other as a function of. The envelope of the curveg(a)

€0

€= "~ 4
g )
C1/6a2/3
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FIG. 5. Sandwich rule. SMC’s learning curves corresponding to

FIG. 4. Shifted linear rule. Same as the preceding figure, with arﬁn exponenk:é inSthebC(I)st function, ]:;)r differer;t vaI;Jes of the
exponentk=2 in the cost function. Simulation results correspond "YPerparameteiC. Symbols correspond to results of computer
to N=100. simulations withN=100. Asymptotically,eq =0.023.

learning task and diverging faf— .

corresponds to the lowest possible valuesgfreachable by The properties of the SMC are obtained by replacing

the corresponding SMCs. It depends on the expokent
The convergence of the generalization error to its

asymptotic limit, for all values ofC, is exponentially fast  ¢t.R p)=2H Rt +H O-RU) [ RS
with a: V1-R? V1-R? V1-R?
(28)

o

€g— € ~exp{ T a (27 in the saddle point equatiori81)—(A3) of the Appendix.

The learning curves fok=2, for different values of the
The decay constard, does not depend o. A stronger hyperparamete€, corresponding to a widtld=2, are rep-
exponential drop of the generalization error, witf in the ~ resented in Fig. 5. Even though the corresponding curves for
exponent, has been fourid6] for SVMs learning “easy” k=1 are qualitatively similar, for large enoughthe training
teacher rules. These not only are realizable, but present a g&pror curvese,(«) for k=1 are below those fdk=2, given
in the patterns distribution close to the discriminating sur-C. This is so because the unavoidable errors, which are very
face. In contrast, here the student’s hyperplane is surroundddr from the hyperplane, are more heavily penalized if
by unlearnable patterns. The student cannot get rid of the=2. Thus, the SMC tries to learn these examples even if this
errors by decreasing the soft margin, like with the linear ruleincreases the overall number of errors. As a result, learnable
On increasingr, Q converges to a constant that depends orpatterns close to the hyperplane, that have small slacks, are
k and & while the error term in Eq(5) increases withw. For  incorrectly classified. This can be checked up by taking a
large enoughy, the cost function is mainly dominated by the look at the distribution of stabilities, Fig. 6.
error term, and thei€ only plays the role of an irrelevant Like with the previous shifted linear rule, the norm of the
multiplicative constant. This is why the convergence rate testudent’s weight vectoQ tends to a constant value and
the asymptotic value of the generalization error does not detherefore, the error term dominates the cost function in the

pend onC. asymptotic limita— . However, instead of the exponential
Similar results are obtained fdt=2, as is shown in convergence, the generalization error decays asymptotically
Fig. 4. to e;=H(J) like a Y2 The reason for this difference is

discussed in Sec. V.
C. Sandwich rule

Consider now rules of the forfR(z) =z(z— 8), where the D. The reversed wedge

polynomial defining the teacher’s output has two roots. The Teachers defined by third order polynomials li&z)
corresponding discriminating surfaces are two parallel hyper=z(z— 6§)(z+ 8) with §>0, correspond to the so called re-
planes, one containing the origin and the other at a distanogersed wedgg26] rules. Patterns, with wg-x, e (—>,
5I\N of it. The patterns lying between the hyperplanes be— 8§)U(0,8) belong to class-1, those outside thls subspace
long to class+1, the others to class 1. Thus, not only to class+1. The generalization properties of a perceptron
these are unrealizable rules, but the classification errors wilkarning a reversed wedge teacher have been addressed in
necessarily correspond to patterns at a large distance of th26], and within the on-line paradigm, using Hebb’s learning
student’s hyperplane. rule in[27].

Here aysp is an increasing function ob, starting at In this casep )y sp diverges both in the limits of vanishing
aysp=2 for §=0, which corresponds to the most difficult and infinite wedge width, for which the problem becomes

031907-7



SEBASTIAN RISAU-GUSMAN AND MIRTA B. GORDON PHYSICAL REVIEW E54 031907

Sandwich rule, 6=2

00T oct 094 i 1 [ o=20.25 | ) L
p(y) ket ; ke FIG. 6. Sandwich rule. Distri-
————— k=2 | bution of stabilities of the SMC

for two different training set sizes

«, obtained withC=2 in the cost
function. The vertical lines give
the position of the deltas, in the
casek=1. The deltas contain 32.4
and 4.6% of the training patterns,
for «=1.99 and «=20.25, re-

spectively.

750

500

separable, and has a minimumat= \/2In 2 [Ref. [26]]. At “overshoots,” in the sense th&(«) continues to grow be-
this value of 8 the patterns’ stability distribution along the yond the value that optimizes the generalization perfor-
teacher’s weightv, has zero mean. Thus, fé,, R=0 for ~ mance. Correspondinglgy(a) goes through a minimum at
every value ofe, and aysp=2, equal to the perceptron’s finite @ but, asR increases withy, it converges to a larger
capacity. value, e;=¢€4(R=1). The learning curves of Fig. 8 are an
The properties of the SMCs are deduced after insertion ogxample of this behavior. Notice that f@.8086< <6,
this value ofe;o corresponds to thiargestvalue of the stu-
dent’s generalization error. Moreover, for 0.67 448< 5,

Rt
the asymptotic behavior is even worse than a random guess,

V1-R?
(29)

Rt+ 6

JV1-R?

becausesy(R=1)>0.5.
At 6= 6, there is an abrupt change of the learning behav-

Rt-& )
ior, as beyond this wedge’s width the average teacher’s sta-

g(t;R,P)=2H( = +H

into the saddle point equations.

In contrast with the problems considered before, the genbility is negative, andR becomes a decreasing functionaaf
eralization error of a perceptron learning the reversed wedg€orrespondingly, the soft margin solution converges to the
rule is a monotonic function d® only if §5=0 or 6>, [Ref.  optimal generalizer in the limitt—oe. This corresponds to
[27]]. The different behaviors of, are represented in Fig. 7. R=—1, because for largé, most of the patterns lie inside

For the values ok investigatedR has two distinct behav- the reversed wedge, so that the student’s weight vector tends
iors as a function ofr, depending on the wedge’s width If to orientantiparallel with the teacher’s vectar,, in order to
8< 4., the teacher’s average stability is positive, @&(d)  classify correctly most of the examples. Learning curves for

is a monotonic continuous function growing from 0 to its 6=2> &, obtained with exponerk=1 for the slacks expo-
asymptotic valuet 1. In this range of small wedges, the soft nent in the cost function are represented in Fig. 9.
As for the sandwich rule, the generalization error decays,

margin learning algorithm does not converge to the minimal
independently o€, asa~ *?to the corresponding asymptotic

value of the generalization error in the limit of infinite as
is the case in the other tasks considered before. In fact it 04
. T T T T
m-----0C=0.00001 ------ C=co

1.00 Sg ®---0C=02 — Copt
0.3} A.-.£C=2 E
' *..-.vC=100

0.75 co

&g
0.2
€

g 050

0.1 F ; :
&t i o
!/ R Reversed Wedge
0.25 i A §=0.3, k=1
0.0 “—"‘(‘""| N 1 N 1 " 1 7
0 5 10 15 20 25
(04 o
0.00 MSP
FIG. 8. Reversed wedge rule with=0.3. SMC’s learning

curves corresponding to an expon&ntl in the cost function. The

FIG. 7. Reversed wedge rule. Generalization error as a functiomptimal value of the generalization error algpt=0.178, but the

of the normalized overlaR between the teacher’s and the student's SMC converges asymptotically t9;°=0.235. Simulation results
correspond tdN=100.

weight vectors, for different wedge widths
031907-8
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8=2, k=1 -----C=100 [ k=1
---------- k=2
600 .
400 | .
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0 ———_I———_—"I 1 1 =
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04
FIG. 9. Reversed wedge rule with=2. Learning curves ob- ) ]
tained with different values of the hyperparame@emwith k=1 in FIG. 10. Linear rule. Optimal values of the hyperparameter
the cost function. Asymptoticallys; =0.0455. Copt-

obtain the best performances at finite all the learning
curves, including the optimal one, behave asymptotically in
exactly the same way, as shown in the corresponding sec-
tions.

The evolution ofC,,; with @ can be seen in Figs. 10 and
11. The behavior of the curves is qualitatively similar for the
shifted linear rule and the reversed wedge with sndatin
one hand, and for the sandwich rule and the reversed wedge
with large 6 on the other. The divergences®@f are related
to the presence of errors with unbounded slack valuesaFor
beyond the divergenc&,,=.

values, e;=1—2H(4) for <&, and e;=2H(4) for &
> d.. The same asymptotic behaviors gy andR, but with
different prefactors, were obtained by Inogeal. [27] for
the online Hebbian learning scenario.

The asymptotic value d tends to zero a8 tends tod; .
In the two limiting cases— and §—0, the task becomes
linearly separable and correspondin@ly— .

For the particular case af= 4., the only solution of the
saddle point equations R=0 for every value ofa. This
“no learning” regime is discussed in Sec. V.

IV. OPTIMIZATION OF THE HYPERPARAMETER V. DISCUSSION

_ The figures of the preceding section show that the behav- |, the preceding sections we presented the learning curves
ior of the generalization error of the SMC is not monotonic 5t 5 gpmC learning a variety of rules, characterized by an
with C. It can be seen that there is an optimal valug(@)  anisotropy axis parallel to the teacher’s veaigy. Some of

that allows to obtain the minimum generalization error forhe gptained results, and in particular the asymptotic behav-
eacha. Obviously,C,p, cannot be calculated using the train- jo iy the ¢ limit, can be generalized to other teacher
mg_examples alone, so that in the appllcatllons it can only bg|eg (proofs are detailed in the AppendixAs shown by
estimated. Several methods for doing this have been prqzeimann and Van den BroegR0], it is useful to character-
posed recentlf28,29. We have determined the statistical ;¢ the teacher rules by the average patterns’ stability of a

properties of the optimal SMC by findin@,,( «) for all the perceptron aligned with the teacher’s vector,
rules, thus providing reference curves against which results

obtained using the different estimators may be tested.

The optimal generalization curves for the different rules
considered in this paper are represented on the figures of the
preceding section. Notice that far< aysp, the MSP is not Where the second equality in E(30) stems from our as-
optimal for any value ofx, as it is obtained in the limi€  sumption(7) that the patterns’ distribution is a Gaussian.
—o. In the case of the realizable linear separation, the op- In the Appendix we show that in the limit— o, both for
timal generalization error of the SMC vanishes asymptotik=1 andk=2, R converges asymptotically either to 1 or to
cally as 0.48& ! for k=1, and as 0.449 ' for k=2. The  —1, that is, the student perceptron gets either completely
latter is very close to that of the Bayesian perceptron@ligned or completely antialigned with the teacher’s vector.
0.4422"1, but the curves are also very close for finite valuesFurthermore, for nonseparable rules; R*~1/a. In this
of a, as can be seen in Fig. 2. Notice that, everkferl, the  limit of R—*1 we find e;— ey =[Dz0(+2P(z)), irre-
asymptotic decay oé, for the SMC is faster than that of the spective of the teacher’s rule. The convergence law for this
MSP, which ise;~0.5005y L. This is an interesting result, asymptotic value depends on whether or not the polynomial
as it shows that, even when a hard margin solution existsP(z) defining the rule in Eq(8) has a rooz;=0. If O is not
learning with a soft margin machine allows to obtain bettera root of P(z), P(0)#0 and eg—e;°~exp{—s/(1—R2)]
classifiers. with & a constant, whereas if 0 is a root, then the decay

For the nonseparable cases, everCif,; allows one to follows the IaWeg—eg~\/ﬁ2.

<7>=f d79(7)=f Dz zsgi P(2)], (30)

031907-9



SEBASTIAN RISAU-GUSMAN AND MIRTA B. GORDON PHYSICAL REVIEW E54 031907

T T T T T T T T T v T T T T T T T T T T
Copt Shifted linear rule, §=0.3 Reversed Wedge, 8=0.3
—— k=1 ket |
--------- k=2
0 [ 1 1 . 1 N 1 . ] 0,0 . 1 N 1 N 1 1 N
0 5 10 15 20 25 0 5 10 15 20 25
o o
T T T T T T M T T T T T T T T
Copt Sandwich rule, §=2 Reversed Wedge, §=2
— k=1 — k=1
or o0 k== 1 *°p 1 k=2 .
51 E 51 E
Y S 4 o} .
1 " 1 " 1 n 1 i 1 " 1 n 1 2 1 2 1 L 1 i
0 5 10 15 20 25 0 5 10 15 20 25
o 104

FIG. 11. Optimal values of the hyperparamey,, for unrealizable rules.

Thus, for the unrealizable rules that have 0 as one of the The presence or the absence of a met0 induces dif-
roots of P, the generalization error decays to the asymptotiderent asymptotic behaviors because if 0 is a root, then a
value aSeg—egfva*l’z. A similar result has been obtained student perceptron aligned with the teacher [R{s=1 and
by Amari et al. [31] within the annealed approximation for can perfectly separate the patterns closest to the hyperplane.
the case of a deterministic machine learning a noisy teachen that case, any small misalignment modifies the classifica-
(which is unrealizable and by other authors for Hebbian tion induced by the student, thus strongly modifying the er-
learning of unrealizable tas27,4]. The same power law ror term in the cost function. On the other hand, if 0 is not a
has been obtained by Meir and Fontariéiiifor a realizable root, the student’s hyperplane is immersed in a sea of pat-
problem learned with inconsistent algorithms, within the ap-terns of the same class. Small tilts of the hyperplane do not
proximation of replica symmetry, which is probably not valid change significantly the classification nor the slacks term in
for large values ofr. Indeed, the soft margin algorithm with the cost.
finite C is also inconsistent when the rule is the linear sepa- It is interesting to notice that the figures of the learning
ration considered in Sec. Ill A, and in that case we obtain aurves as well as those @f,,; show an analogy between the
different power law decay. behavior for the SMCs with bounded slacks, like in the case

In the case of a linearly separable rule, the SMC W@y,  of the shifted linear rule and that of the reversed wedge when
has e;~1/a, like the MSP, which corresponds 1G=. 0< 6., and between those with unbounded slacks, as is the
However, at fixed finite values & the decay is slower, like case with the sandwich rule and the reversed wedge when
~1/a?"®. The same exponent has been obtained for a perce>8.. For this last type of rulesC,p; diverges beyond
tron learning a separable rule using noisy examples with onsome finitea.

step of replica symmetry breakirfd.8]. Within the replica Consider now the smaklk limit. It can be shown thaR
symmetric approximation to the same problem the exponernt(y) \Ja/\27 and so, eg~1/2—<y>2\/5/27-r. Thus, irre-
is 1/2 instead of 2/32]. spective of the rule considered, when the fraction of training

In the cases where 0 is not a root B(z), like for the  examples is small, the SMC generalizes better than by ran-
shifted linear rule, the decay is exponentiad,— eg dom guessing. This is not necessarily the case for larger val-
~exp(—ea). ues ofa. The power law found foR in this limit is common
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to many learning algorithms of the perceptron, the M3  cluded in the class of functions we have analyzed.
and Hebb’s rule among them. We showed that the prefactors of the different asymptotic
If we putR=0 in the equations, and solve far, the only ~ behaviors are proportional to the average stability of the
possible solution whefry)#0 is@=0. Thus,R#0 foralla«  teacher’s rulefy). When this vanishes, the SMC with cost
and has the sign dfy) unless it has discontinuous changesfunction (5) cannot learn, and the overlap between the stu-
of sign. Notice that, given the asymptotic behaviors justdent and the teacher directionsRs-=0. We considered two
mentioned, ifR is discontinuous it can only have an even exponents for the error term in the cost functiém; 1 and
number of changes of sign. A similar result has already beek=2. It would be interesting to study the properties of SMCs
obtained in a broader franj80]. From the behavior oRin  trained using exponents>2 in the cost function, as we
the smalla limit, it can be seen that the problem gets very expect that these should detect the difference of the odd mo-
difficult to learn for rules with({y) close to 0. In fact, in the ments of the patterns’ distribution in the directions parallel
very special case dfy)=0, R=0 is a solution of the saddle and orthogonal tav,,.
point equations for every value @f. If this is the only so- Another interesting question is whether the hierarchical
lution, the machine cannot learn at all, as is the case for thiearning of hard margin SVMs exists also with SMCs. To
reversed wedge rule wheh= . This behavior is similar to  tackle this question, pattern distributions with two different
the one of retarded learning, found in problems of unsuperanisotropies have to be considered.
vised learning with quadratic cost functiof80]. In that
case, it has been shown that learning is still possible, pro- ACKNOWLEDGMENTS
vided that the cost function is capable of extracting the in-
formation about the anisotropy of the distribution of stabili- 0
ties, contained in its higher order momef3&]. Notice that
this is not the case for the cost functions for the SMCs con
sidered in this paper.
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The properties of the recently proposed support vectorateful to the Max Planck Institute fuikomplexer Systeme
machines have been previously studi&] in two situations in presden, where the final corrections to this work were
of interest, namely, for the cases where the student has eithébmpleted in the framework of the seminar. “Statistical Me-

the same structure as the teacher, or it is more complex thathanics of Information Processing in Cooperative Systems”
it. In both situations the rule to be learned is realizable, angparch 2003.

interesting properties of hard margin SVMs, like the exis-
tence of hierarchical generalization, could be analyzed APPENDIX
within the replica symmetry hypothesis. i i
In the present paper we addressed the situation where the The saddle point equations for the cagesl andk=2
task is more complex than the learning machine. In this casg’®

the cost function for the SVMs is modified. It allows one to 2 .

obtain a soft margin classifier that results from a trade-off, 1-R?-x=al1(xC.VQRK), (AL)
controlled by a single paramet€;, between increasing the R=— al,(xC,\Q,R;k), (A2)
margin and minimizing the number of training errors. As the

cost function is quadratic and the domain of solutions is 1-R%= al4(xC, \/6,R;k), (A3)

convex, we obtain the typical learning curves for a variety of

unrealizable tasks using the replica symmetry hypothesis. Weith, for the casek=1,

considered problems characterized by a single symmetry- _

breaking directionw,, along which the patterns have alter- 1,(xC,Q,R:1)= f(xc_l)/stDtt

nating positive or negative class label. We have shown that B ~1Q

the convergence of the corresponding learning curves to the

asymptotic value follows either a power law or an exponen- 0 txC

tial, depending on the position of the singularities of the f B C_Dt—g(t;R,P), (A4)

; xc-Hha - \Q

teacher’s rule.

_ Even if the student is w_eII adapted to the task’s complex- xc-1o 1 ( 1 )Z&g(t;R,P)

ity, the SMC may generalize better than the error-free hard IZ(XC'Q’R;l):f Dt=

margin SVM, provided the hyperparamet€rin the cost -1NQ 2

function is correctly tuned. It can even attain almost Baye-

sian performance. I J'°° Dtﬁ
We have studied the case of a rule given by a function xc-1)ra - \Q

P(z), which has a finite number of zeroes. It would be inter-

esting to study the case of a function with an infinite number « I9(t;R,P)

of zeroes, as, for exempl®(z) =sin(1k), which is not in- R

1
t+—> g(t;R,P)

VQ

VQ

JR

2—xC

2

t+

(A5)
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L KCORD) J(xc_l)/@ oL ? CRP) 12(xC,Q,R;2)
3 X ] l ; = +— g ; I
-1/Q \/6 —2xC z ( . e 34
= T7(Z:
- XC2 1+2XC':1 : \/2
+f ot Grp) (86) ' i
(xC-1)/\Q ” 1
X _R24 45
and, for the cas&=2, { f(_l/\a_ZiR)/Vm ot (t LR \/6+ZIR
1,(xC,Q,R;2 —jm Dt 2xCt t+ ! t;R,P + ) (A13)
1(XC,Q,R;2)= ot axe ﬁ g(tR,P), (zi=—12) .
(A7)
5 Let us suppose th& tends to a constant different from 1
. o xC 1\ 99(t;R,P) and—1 asa tends to infinity. It can be seen that in that case
12(xC,Q.R;2)= 71/@Dt1+ 2xC + \/_—Q JR 11, 12, andl3 must vanish at theamerate. If we consider

(A8) teachers with at least one positive root, i.enrealizable
teachers, it can be seen that the integrdBirithe second one

1\2 for the case&k=1) never vanishes. Thus3 must vanish as
+ _) g(;RP).  (x/Q)? for k=1 and asx? for k=2, if Q tends to a con-

\/_ stant or to infinity. But equation@\10) and(A12) show that

(A9) 11 andl2 cannot vanish at the same ratel 8sbecause the
first term on the right-hand side vanishesxagQ for k=1
and asx for k=2. If Q tends to 0 then I3 must vanish as
(x/\/Q)? for both cases. But theh2 cannot vanish at the
same rate, because equatigAd1) and (A13) show thatl 2
must vanish asC(y)/\/Q, unless(y)=0 (this case will be
analyzed beloyw Therefore R tends either to 1 or te- 1 for
all teachers with y)#0.

By putting R=0 in the equations one can easjlyotice
thatg(t;0,P)=1] see that if{ y)#0, it can only be a solu-
tion for «=0. On the other hand, fofy)=0, R=0 is a
solution foreveryvalue of «, i.e., learning is impossible for

(2xC)?
Dt ————
(1+2xC)?

|3(XC,Q,R;2)=F

1NQ

From Eq.(A9) it can be seen that, fde=2, x must vanish
in the infinite @ limit in order to makel 3 vanish. Notice that
the functiong(t;R,P) in Eq. (19 is always non-negative.
For the cas&=1 the analysis of Eq/A6) shows thak must
either vanish or tend to a positive constant wgttending to
infinity. This last case can be ruled out by noticing that it is
inconsistent with the vanishing 62 [notice that Eq(A5), as
well as Eq.(A8), can be solved analytically

To show thatiR can only tend to 1 or-1 in the infinitea
limit, it is useful to rewritel 1 andl2, which in the casé

=1lare this kind of teacher.
(XC—1)/\Q It is also possible to find the condition that makego to
Il(xC,Q,R;1)=f Dtg(t;R,P) each one of its limiting valuesl or —1). From what has
-Q been said before regarding it can be seen that it vanishes
+R 1,(xC,Q,R;2), (A10)  asx? and so, -R?~ax?. Using this, and equatiofAl) it
is evident that 1 must vanish faster thaa But, in the infi-
1,(XxC,Q,R:1) nite « limit, 11 is written, to first order, as
z e—z.
- + : —X
=2, (2, ' 2m Il<xc,Q,R;1>~TQ[sgrtR><v>
1)/ O-7zRI/VI-R2 1 _
x f“xc DRQ-aRINITRI ¢t T— R+ ——+2zR +f W gt +1p) L, (AL4)
(- 1NQ-zR)N1-R? JQ o
a Dt+(z~2) ] ()
— Zi<——1Zj), Y foo
~1)/\Q-zR]/V1-R2 [,(xC,Q,R;2)~—xj sgnR) —=— Dtg(t;=1,P
VQJixe-1)1Q-zRINVI-R 1(xC,Q,R;2) { gn( )\/5 —1Q 9( )
(A11)
-sgR) > 7(z")
where thez;, i=1, ... Z, are the zeros of the polynomial 9 |2 =10 T4
P(z) and 7(z")=sg (z;+z,1)/2] for k=2, ' .
1\e™
2xC (= X\ |z - —) —_— (A15)
11(xC,Q,R;2)= 1+2ch_1/\6Dt9(t,R,77) VQ/V2m
+R ,(xC,Q,R;2), (A12) Thus, the term within brackets must vanish. For &d.4)
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it is evident that this can only happenR—sgn(y)). The  (A3) and from the facshown abovkthat|3~x?, one gets

same can be shown for E¢A15), with a bit of algebra. The that 1-R*~ax?. But, using the fact thatl must decay

asymptotic value of) can be obtained by imposing the van- faster tharx, equationdA11) and (A13) impose thal 2~x.

ishing of the above-mentioned terms. This, together with Eq(A2), gives thatx~ 1/a. Therefore,
To see the rate of decay of-1R?, notice that, from Eq. 1—R%~1/a.
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