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Phase diagram of force-induced DNA unzipping in exactly solvable models
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The mechanical separation of a double helical DNA structure induced by forces pulling apart the two DNA
strands(“unzipping”) has been the subject of recent experiments. Analytical results are obtained within
various models of interacting pairs of directed walks in the (1,1,1) direction on the hypercubic lattice, and
the phase diagram in the force-temperature plane is studied for a variety of cases. The scaling behavior is
determined at both the unzipping and melting transitions. We confirm the existence of a cold denaturation
transition recently observed in numerical simulations: for a finite range of forces, the system is unzipped by
decreasingthe temperature. The existence of this transition is rigorously established for generic lattice and
continuum space models.
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I. INTRODUCTION =3 [recently both simulations and exact results showed that
the melting transition becomes first order, when considering
In recent years, micromanipulation and nanomanipulationmmutually self-avoiding walk§SAW's) [17,18]]. The hetero-
of single biological macromolecules have become feasiblgeneous case was also studied with similar techni¢isls
due to a dramatic improvement of experimental techniquesvery recently, Monte Carlo simulations of interacting pairs
By using devices such as optical tweezgr®], soft micro-  of self avoiding walks on a cubic lattice and bead-and-string
needleg 3], and atomic force microscop@4], it is now pos-  chains in the continuum space determined the whole phase
sible to access physical and mechanical properties of fund4liagram in the force-temperature plane, revealing the exis-
mental biological objects, namely, proteins, nucleic acidsfénce of a re-entrant zipping-unzipping transition by decreas-
and molecular motors, on the scale of individual moleculesind the temperature for a finite range of for¢és).
Special effort has been devoted to the measurement of force- In this paper, we obtain exact analytical results for a class
elongation characteristics of double stranded DNA molecule8§f Simple lattice models of interacting pairs of homogeneous
(dsDNA), determining its response to external forces ancfirected self-avoiding walks. We extend the model intro-
torques in the absence of enzymes. Thechanical unzip- duced in Ref[19]in D=1+ 1 to the generic dimension case
ping of dsDNA structure by a force pulling the end of one of D=d+1, and analyze both the scaling behavior of the first
the two strands, the end of the other strand being anchored f&§der unzipping transition and the multicritical scaling laws
some physical support, was studied by Bockelmann and cdit the melting transition in the force-temperature plane. We
workers [5,6], who measured the average force along thealso consider different versions of the model, depending on
opening of the two strands. Mechanical forces are in facthether the crossing of the two walks is allowed or not, or is
exerted on the DNA molecule by different enzymes duringSimply penalized by an entropy cost. In all cases, we find that
the process of DNA rep”cation or transcriptibﬁS]. On the the critical pulllng forcancreaseswith temperature at IOW,
other hand, the double helical structure of dsDNA may behus implying the existence of eold unzipping transition
disrupted “in vitro” by changingpH, solvent conditions [19]- This seemingly paradoxical property is due to the com-
and/or temperaturf9]. This transition is known amelting ~ Petition between the energy gained by increasing the open
denaturation and it has long been studied by theoreticalPOrtion of DNA and the entropy lost with the full stretching
physicists 10—12. Only recently, DNA mechanical denatur- Of the separated strands. Cold unzipping will be exactly
ation has been the subject of theoretical studies. Most gproved for both ideal and self-avoiding chains in the lattice,
these studies considered a simple extension of the Polan@nd for a discrete chain with a constant distance between
Sheraga moddl11], in which the two DNA strands are ho- consecutive beads in the contlnL_Jum. space. We also discuss
mogeneous ideal polymer chains interacting with each othefhe role of denaturedubblesforming in the dsDNA open-
introducing a constant force pulling apart the two strands by"d. as opposed to the end opening of the strands induced by
acting on one extremity of both strands. By using a mappinghe pulling force. By comparing the phase diagram of the
into a quantum-mechanical problem, it was shdua—16  different models considered, we point out that the approxi-
that the opening of the two strands occurs only if the pullingMation of neglecting bubbles and considering only Y-shaped
force is increased to a critical value. The unzipping transitiorfonfigurations shares many of the features of a mean-field
turns out to be a first order phase transition, whereas th&/P€ approximation, with an upper critical dimensidg=4.

melting transition is second order, in the ideal casedin  Our paper is organized as follows. In Sec. Il we introduce
the models of directed walks on the lattice in any dimension

D, and compute their thermodynamical properties, deriving
*Also at The Abdus Salam International Center for Theoreticalthe phase diagram in the force-temperature plane. In Sec. llI
Physics, Strada Costiera 11, 34100 Trieste, Italy. we analyze the scaling laws at both the thermal melting and
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mechanical unzipping transitions, and we highlight the feaEq. (2), dsSDNA undergoes a phase transition between a low
tures that are physically more interesting in our exact resulttemperature double stranded phase and a high temperature
(namely, the existence of a reentrant cold unzipping transidenaturated state only f@>3 (d>2): whenD=2 and 3,
tion, our main result, and the role of forbidding the mutualdsDNA remains double stranded at all temperatures.
crossing of the two strangsin Sec. IV A we discuss the However, we note that in Eq2) the two strands are al-
physical meaning of re-entrance in glattice) models, gen- lowed to cross each other, without any restriction. This
eralizing the proof of its occurrence to the more realistic casseems rather unphysical, since every real chain has a finite
of SAW’s. In Sec. IV B we also prove that a discrete chain in“hard core” distance. Thus one should also consider the case
the continuunmspaceundergoes cold unzipping, and then ar- in which crossing between different strands is forbid¢ien

gue why such an effect was not observed in previous calcweent studies of both homogeneoj23] and heterogeneous
lations[14—16, performed in the limit of a continuurchain [24] DNA melting transition have indeed considered the

Eventually, we discuss some related mod@lsth generic =1 case with forbidden crossihg.et us focus for the mo-
SAW’s), and give some additional technical details in thement on theD=2 case, with no pulling force, where the
Appendixes. effect of forbidding crossing is most dramatic. Here the di-
rection (142,1//2) can be identified as “time,” and its nor-
IIl. EXACT SOLUTION OF THE LATTICE MODELS mal (1A/2,— 1/y2) as “space” ). The model with crossing

(w.c) implies no restriction on the relative distance
whereas the one without crossifg.o.c) implies thatx can-
not change sign, e.gx=0. The model w.o.c. is equivalent to
We consider a simple class of models in asurface adsorption models previously considg@). While
D=(d+1)-dimensional hypercubic lattic&®. The two the thermal melting of the two strands w.c. takes place at
strands of a homogeneous DNA molecule wWittbase pairs T.=<, in the model w.o.cT.= €/log(4/3), as can be de-
are mimicked by two SAW'’s, directed along the, (1.,1)  duced from Ref[20]. To elucidate this point further, we have
direction. The two chains have one end in common, while atackled an intermediate model, where we do not forbid cross-
the other end a forcg is pulling in the (1-1,0,...,0) ing but we make it disadvantageous, by assigning a \¢ost
direction. The walks gain a binding energye (¢>0) every >0 each time the strands pass through one another. With
time bases with the same monomer indexsame projection calculations similar to those reported below, we find that
upon (1,...,1))interact, i.e.wrong base pairings forbid- ~ melting takes place at the critical temperat(ae a function
den. of V):
The canonical partition function for twdl-step directed

A. Introduction of the models and their behavior
for thermal melting

-1
H H 9, H eV
self avoiding walk§DSAW’s) is To(V)= e log| — 3
3e'+1
Zn(B.9) = X, Be)exp g X), 1
n(A-9) ;EEzD P(X, Be)exp(fg-X) @ As expected, asV—», Eq. (3) yields T.— e/log(4/3),

R whereasT .~ ¢/V asV—0.
where py(X, Be) is the canonical partition function of two To implement the noncrossing constraint in the model in a
directed interacting strands whose last base pairs are at relgeneric dimension, we require that, if the DSAW'’s join, one

tive distancex. The following recursion relation holds for coming from directionéi and the other from directionéj
DN(i,Be)i (with i #j), when they divide again, they cannot both pro-
ceed along their previous direction; i.e., we forbid that the
first walk goes along directioéi and the second one along
éj . This excludes one configuration out bfD —1) at the
splitting point(the remainingD possibilities would lead to a

D
pN+1(>Z,Be)=ijZ:l Pn(X—€+ej,Be)

X{1+[exp(Be)— 1]y q}, (2)  zipping of the two strands As regards theD =3 thermal
. melting, again the model w.c. hds=; however, if cross-
wheree;, i=1,... D, are the canonical Euclidean versorsing is forbidden as described above, the critical temperature
of the D-dimensional space, andlis the Kronecker delta. s T,= ¢/log(9/8). This result was also found in a similar

These and similar equations have been intensively stuctalculation by Rubif25]. For D >3, models with and with-
ied, at§=5, within simple models of DNA thermal melting out crossing both undergo a denaturation transition at a finite,
[17,19, and, inD =2, within the context of random walk though different, critical temperature, so that the effect of
adsorption[20] and wetting problem$21]. Note that the forbidding crossing here is less importdtie critical tem-
choice of the (1. ..,1)direction, along which the walks are peratures are the same at the leading order ity the D
directed, is crucial in allowing us to write local recursion —« expansion, as expected
relations. It is thus no surprise that the model belongs to the

same Universality ClaSS Of random Walksjlﬁ: D-1 dimen- B. Behavior of the models at nonzero force
sions[22]. . _ .

It is well known (see Ref[17] for a recent reviey that, Let us now turn to models with a pulling forag in a
in the absence of a pulling force, within the model defined bygeneric dimensiol, with g=(g,—g,0, . .. ,0). We can find
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the asymptotic value of the canonical partition functj&y. counting as in Eq(6) (see Ref[25] for another example in
(1)] by locating[17,19,26 the singularity closest to the ori- which this prescription was used inka=3 example.
gin of its generating function: In order to simplify the presentation, from now on we
restrict our calculations on models w.o(detailed calcula-
- - - tions for this case and the outline of calculations for the
Z(Z"BG'BQ)ZNE:O 2N pu(x.BeexpBg-X),  (4) simpler models w.c. are deferred to Appendix Ahe initial
X conditions for such models are

which we will also refer to as the grand partition function.

We stress thapN(i,ﬂe) is a generic partition function: its R
detailed form will depend on whether or not we allow cross- Co(X):( 2 056
ing.

To proceed, it is useful to partition the DNA molecule in
ds helices(with the strands attached to each othand Whereéi0 andéjoare the directions forbidden as described in
bubbles sequences in which the two chains share just thesge | A.
first and last base pairs; we also single out the contribution of By performing a Fourier and a discrete Laplace transform
the unzipped end of the two DSAW's, i.e., the part from they, Eq. (7), and by using the relation betwedn, and cy,
last contact to the end. In this way, the grand partition SUMyiven above, we can derive an explicit expression for the

o

é.) — 836 e s ®
o o

(4) can be expressed as bubble generating functioB(z) [see Eq.A6)]. The singu-
larities of the second denominator of the grand partition
Z = exp(Se) function[Eq. (5)] are necessary to find the melting tempera-
_ (2) ture. We find that the equations locating these two singulari-
1-Dzexp Be) ties are
X S(z,89), 5 L
where we have defined a= g2 ©
B(2)= >, "oy, exp(— Be)— Dz,=B(2y). (10

0 The first singularityz, leads to typical random walk behavior
S(z,89)=1+ >, 2V [en_1(X)—cn_1(0) 85 5] in the absence of any interaction. The second singularity
N=1  x Z,(Be) is a function of the strength of the attractive interac-
><exp(,8§~>?) ©) tion between the two strands, thus determining the behavior
' in the native zipped phase. &t=0, the critical temperature
for thermal melting is obtained when the two singularities

In Eq. (6), by is the number of Rl-step bubbles, andy(x)  apove coincide; =z,). Unlike the models w.c., which have
the partition function of twd\-step DSAW'’s never touching T.=o in D=3, those w.o.c. have a finite critical tempera-

each other and having their last sites a'E a rrlutual distance ture in anyD=2 (see Appendix A for further details
and their initial sites at a relative distaneg—e;_ for some As regards the force-dependent third factor in ), it
ig#jo. By summing over all possibilities for initial condi- reads

tions [see Eq.(8) below], by=3r;, ;-1Cn-2(6—€)), SO i

that we need to find an explicit expression for thes. The S(z,89) =2Sing(2,89) +1—20(2,0). (12)
equations they obey are

D D A third new singularity, depending on the external force, and
CN+1(>Z)=”_E:1 CN(;_éijLéj)_cN((j)#ij:l Sid s fundamental in our calculations arises when computing
(7) b=
R ing(Z, = c(z, ex —iqg)-x ,
Note that, in Eq(7), O acts as a sink or absorbing state, i.e., Ssing(2.89) [~mmP(2)P ( q)zg H(Bg—1q)-x]
once the two walks join, they never leave. In this way(x) (12
with x#0 counts the number of pairs of walks that never
touch each othefand with the last monomers at a relative wherec(z,q) andc(z,0) are given in Eqs(A4) and (A5).
distancex), while cy(0) counts the number of remaining Note that in Eq(12) one can immediately compute the inte-
pairs of walks that at some point come into contact and thegrals ondqgs ...dqgp, by using the well known identity
remain stuck together. This last quantity plays the role of ar276(q) = Z,exp(—igx), so that one is left with the double
arbitrary constant and has to be subtracted from the finahtegral
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FIG. 1. Contour of integratiory in the complex plane used for
the evaluation of the integrals in E@L4).

™ dg; (7 dg;~
Jlﬂn-(27T) ,7(27T)C(qu11qz,0, ....0

X 2 exd(Bg—iq1)X;+(—Bg—id,)Xa].

X1,X2

13

We now give details of the evaluation of the inner integral

only, the outer one being equivalent. Definifdgq,q,)
E[C(Z!QZL!QZIOI

gral

J"T % exp(—iqiXq)
h(d;,92)

R 2T

Note thath is a periodic function ofg;. We extendq; to
complex numbers, and consider the contguas shown in
Fig. 1. By the residue theorem, one can write

fw dg; exp—iqqXy) fﬁgidy exp —imXxy+X1y)

_.2m  h(4y,q,) o 2m h(m+iy,qp)
B J’” % exp(—igX,— BgXy)
—z2m  h(q;—i89,q)

0 idy exp(imX,+X1Y)
+ —-————=2, ResH,qy), (14
j—ﬂgZW h(—7+iy,q,) qu .00, (19

where the sum runs over all polgg of

exp(—igiXq)

H=
h(d:,d2)

(at fixed g,) inside the contoury, and Resf,qg) is the

...,0]%, we aim at proving that the com-
plex translationq;—q;—i8g can be performed in the inte-
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residue ofH at qy. Note that due to the periodicity &f the
second and fourth terms in the previous equation cancel, and
thus the complex translation can be performed provided that
no pole of H can be found inside the contogr An equiva-

lent conclusion can be reached for the outer integrad gn

The condition of having no poles inside the contours of in-
tegration is satisfied as long as<z;(8g), where

1

(D—2)%+2+2 costi28g) +4(D — 2)cosk Bg)
(19

z3(B9) =

is found by solving h(—iﬂg,i,@g)oc(l—zf(—iﬁj))=0,
with f(q) defined in Eq.A2). In this case, we find consis-
tently thatz;(B9) is just the singularity in the resulting ex-
pressionS(z, Ag) =1+2[¢(z,—i Bg) —c(z,0)].

As z; is always smaller tham, (for g#0), the singularity
closest to the origin has to be determined betwegrcon-
trolled by the attractive energy, andz;, controlled by the
pulling forceg. If z,<z3;, the DNA molecule is zipped; oth-
erwise it is unzipped. The free energy per monofrand the
average distance between the two efipjected ontog
=[1,-1,0,....,0), (xq), are defined as

log >, pn(X,Be)expl Bg-X)

fE’\Illﬂ’]w—T N , (16)
= lim (g-X)= of N 1
<Xg>=N|EL<g'X>__% . ( 7)
These quantities read in the thermodynamic limit,
_ (Xg) _
f-TIOgZZ(ﬂf), W_ov g<gC(T16)1 (18)

f=Tlogz;(89);

% =2735(B9)[ 4 sinl(239) +4(D —2)sin(Bg)],

9>9c(T.€), (19

where the critical forceg.(T,e) is found by imposing
Z,(Be)=2z3(BQg), as given in Eqs(10) and(15). The above
equations show the existence of a first order transitiog at
=0.(T,e€), if g.(T,€)>0. The phase diagram for the models
w.c. can be found exactly in the same w@ge Appendix A
for some details on thjs It is interesting to note that the
singularity z;(B8g) does not depend on whether or not we
allow crossing, whereas, in the case w.c. is different from
the case w.o.c. This is enough to make the whole phase dia-
gram different for the two kinds of models, as will be dis-
cussed in Sec. Ill.

Here we stress that the main interest in using directed
walks is that they are a subclass of SAW'’s in the same di-
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mension. However, qualitatively similar results can also be . SCALING LAWS FOR THERMAL MELTING

obtained with simple random walKRW's) [28], but in this AND UNZIPPING

case it would not be physically meaningful to forbid crossing

as done above. Experimentally, however, it should not be Let us focus, for concreteness, on the result for the model
hard to set up an experiment closely related to the calculatiom D=2 w.0.c., in order to analyze the scaling laws of the
we have performed, by stretching the ds molecule in onesystem. The phase diagram, as also found also in [R8],
given direction before applying the external force. explicitly reads(see Fig. 2

1

1
2 1-exp— fe)—[1—exp— Be)]

-
9.(T,e)= > cosh 't -1/ (20)

The model exhibits a first-order “unzipping” transition if we ~ The exact expressions fgn) and(x,) can be found by
move at a fixed value o <e/log(4/3), as shown in Eq. inverse Laplace transforms of the quantitié&z, 8g,Be),
(18). As shown in Fig. 2, lim_,9.(T,€) = €/2, andg.(T,e) [alo(Be)]Z(z,89,B¢) and [d/d(B9)]Z(z,B9,Be). How-
attains its maximum atT=Ty=0.9¢, where g.(Ty) ever, if we only need scaling relations in the thermodynamic
=0.68>€/2. The transition is second order @&=0; as in  limit, we can use the discrete Tauberian theor@ee Ref.

Ref.[17], we find that, close to the melting point, [27] and Appendix B, which relates the critical behavior of
a series to the asymptotic behavior of its coefficients. By
d using this method, we find, in the vicinity of the unzipping
(n)=———logZy~ 7 f(7N%), (21)  mechanical transition,
d(Be)
¢
where (n) is the mean number of native contacts, with (ny~ hy[N 1(A17+A27)], (23)
=(T-T.)/T., and ¢,=1/2 for the crossover exponent at ArytAqT
thermal melting in théd =2 case. The scaling functidi{x) $
behaves as usual, ()~ — ha —N"2(Ayy+Ae7)] (24)
9 Al’y+ A2’T ’

f(x)—0 as x— +o,
where A;(T.,9.),Ax(T¢,g9.) are determined in such a way

f(x)~x for [x|<1, (22 thatdge(T,e)/dT=—(A/A1)(gc/T), ¥=(9-0d)/Ge, 7
=(T-T.)/T,, and¢,= ¢,=1 for the two crossover expo-
nents, consistently with the fact that the unzipping transition
is first order{the explicit forms ofA;(T;,9.) andA,(T.,dc)
are worked out in Appendix BNote thatA;>0, wherea#\,
is negative in the re-entrant part of the transition curve. The
scaling functionsh; (x) behave in a similar way té(x),
and thus we obtain tha)~N?: and (x4)~N?2 are both
extensive at the transition point. The physical interpretation
is that a macroscopic portion of the chain is still in the
double stranded state, but the rest of the chain is unzipped;
these are just the two phases coexisting at the first order
transition. This result will be used later to justify the use of
Y-shaped configurations.

It is instructive to compare this phase diagram with that of

f(x)~—|x|Y% for x— —o0,

such that(n)~N¢t at the transition.

1

09 F

08

07 |

0.6

05 F

9o(TH

04

03 f T the sameD =2 case when we allow crossing. The transition
azf 1 line (plotted in Fig. 2, obtained fronz,=z; (see Appendix
o1 b 1 A) is
D A 9o(T,e)=Ttanh [ 1—exp — Be)]
.
FIG. 2. Phase diagram for the two-dimensional models of :E+ilog[2—exp(—ﬁe)]. (25)
DSAW's (e=1 in the figure. The solid curve refers to the model 2 2B

with crossing, the long-dashed curve to the model without crossing, o .
and the dashed curve to the model which considers only Y-shapeBoth models behave similarly ned@r=0; they yield a tran-
configurations. sition to thecold denaturatedstate described in Ref19].

031901-5



D. MARENDUZZO, A. TROVATO, AND A. MARITAN PHYSICAL REVIEW E 64 031901

1 T T T T T T T T a)
0.9 b
08 [ A

9.(M

b)

FIG. 3. Phase diagrams D=3 and 4 dimensions for models ) ]
with and without crossingg=1 in the figure. It can be seen that FIG. 4. (a) An example of a Y-shaped configuration for the DNA

the difference between the four-dimensional models is negligible. [fnolecule: in this approximation bubbles are neglecteA com-

D=3 (model without crossing T.=8.4%. Solid line: modelD pletely stretched configuration for directed walks, which is domi-

=3 with crossing. Long-dashed line: mod2k 3 without crossing.  nant forT—0.

Dashed line: modeD =4 with crossing. Dotted line: modé& =4

without crossing. that the effect of forbidding crossing is irrelevant in the
renormalization group sense, but has a dramatic effect on the

When we move at a constant forgesuch thatg,(0)<g  form of the critical line.

<Max{[g.(T,€)], at low enough temperatures, the molecule Let us now discuss the results that we have obtained in

is unzipped, and it zips by increasifig This feature of the higher dimensiongthe critical lines for three- and four-

phase diagrams seems paradoxical at first sight, since orimensional models are shown in Figl. £ommon to all

would expect the critical force to decrease monotonically agnodels is the cold unzipping transition found in tbe=2

the temperature is increased. The physical explanation of thisase. Moreover, the scaling laws at the unzipping transition

result will be given below. In the model w.c., moreovgg, do not depend on dimensionality in the crossover exponents.

always increases, approachingas T—«, and the two On the other hand, the thermal melting has dimensionality-

strands remain zipped for every temperature where. In  dependent critical exponentsee Refs.[11,17). Conse-

the model w.o.c., instead, the two strands again unzip byuently, the behavior of the critical linge.(T, €) near the end

further increasing the temperature. As regards scaling, on thgoint T=T, also depends oD. As T— T, the result that we

other hand, the two models are identical, so that we can sdind in generic dimension is

elT—€lT(D), D=24

a
g‘:q’f) - ex‘{_ feT—eT D)) O3 26

[e/lT—elT(D)]¥¥log e/ T—€lT(D)]} Y2, D=5
[e/lT—elT(D)]Y2 D>5,

where a is a constant, and .=« when D=2 and 3 for approximation is valid at low, and yields the exact result in
models w.c. the limit T— 0. Since the configurations of the unzipped part

are weighted by expf((i-i), in this limit only the completely
stretched configuration will contribute to the free energy for
the unzipped part of th¥. In the limit of low temperature,
A. Reentrance in lattice models the free energy is then

IV. PHYSICAL EXPLANATION OF REENTRANCE

To obtain some physical insight into our analytical results, F(m,N)~—(N—m)(e+T logu)—2gm, (27)
we compute the free energy of a Y-shaped molecule of DNA
with a force pulling at the extremitiesee Fig. 4 In this  wheremis the number of monomers in the unzipped phirt,
way, we neglect all the configurations witlubbles Such an s the total number of bases, apds the connective constant
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of a single walk. Note that Eq.(27) [with g N1

=g(1,0,...,0)] isalso valid in the case of two self-avoiding Z\(Be,p9)= Z Z§-m(B€)Zn(BY), (29
walks, since the connective constant of SAW's constrained to m=0

avoid the fully stretched unzipped part, is the same as for z _ dz dz -
ordinary SAW's[27,29 (for a more detailed discussion on where ) N-m(B€)=[rad%; ...d XN—m—15(|X1|
SAW’s we refer to Appendix € By minimizing with respect  —1) - - - 8([Xn—m-1/ = 1)exd(N-m)Be] is the

to m, we find the critical forcey.(T,e), such that Eq(27)is ~ Partition function of the zipped portion of the strands,
minimum form=0 wheng<g.(T,e€), and form=N when and n(B9)=[rad%; ... d%,n8(lya|—1) .. .8(Yoml
9>0c(T,e€): —1)exp(Bg-=2My,) is that of the unzipped end. Chain dis-
creteness is crucial in ensuring the validity of EQ9) for
B—, since when one bubble has formed, the length of the

stretched portion of the chain can be at mds,z@l’lﬁi

This is indeed what we have found in our calculations, and=2(m—1)(g/|g|). The integrals in Eq(29) can be per-

confirms that reentrance is a robust feature of lattice modeld2rmed in any dimensions, and the evaluationZgf,(/39)
not depending on dimensionality or self-avoidance. In othefhvolves the mOdIerd- Bessel function of the first kind of
words, Eq.(28) means that, at lowT, it is more difficult to ~ order @—2)/2. In particular,
open a dsDNA helix ag is increased, because the energy
gain obtained through the unzipping is more than compen-
sated for by the entropy loss, since there is only one possible

. . Tm L
completely stretched conflgu'ratlon vergus . p035|b|llt|¢s and there is a power law correction with respect to the lattice
for the double stranded portion of the chaime will see in .

) . result. We find that

Sec. IV B that the entropy loss in the continuum space ex-
hibits a power law correction For high enoughr, on the g N-1
other hand, other configurations will also contribute to the 7z (ge,Bg) ~ >, QN ™ lexd (N-m)e]Z4.(B9),
open portion, increasing its entropy, and the energy gain will m=0
eventually favor the unzipped state, except thdd 2 w.c., ) . o
where the presence of bubble enhances the entropy of thghere{lq is the surface area of the unit spheredidimen-

T-01
(T, e) ~ E(E+T logu). (28

l[-}%oc
Z5..(B9) ~ (27! Bg)™ Vexp2mpg),

native portion at anyT, as explained below. sions. From this, the critical force is easily found,

We have also calculated the phase diagram obtained by
considering only the/ configuration: this amounts to putting 0% d-1_ T T [ s @2 19
the generating function for bubbl®(z)=0 in Eq. (5). As  9c(T.€) ~ 5= ——Tlog_—7log 27 == L
expected, théy approximation gives the exact behavi@q. (30)

(28)] in the limit T— 0, whereas it becomes more and more
wrong asT is increasedsee Fig. 2, where we plot the two- where I' is the Euler gamma function. The critical line
dimensional case explicitty given by g.(T,e) 9c(T,€) increases at low, and re-entrance is also present in
=(T/2)cosh {exp(Be)—1]. For the critical line near the the continuum, even enhanced with respect to the lattice
melting point, this approximation yieldg.(T,e)~(T, case. The leading terlogT in Eq. (30) [due to the power
—T)Y? for all D, which from Eq.(26) is correct only forD law correction inZ5.,(8g)] is indeed not present in the

>5 (d>4). This is because such an approach neglectss1 case, when one correctly recovers E2p) for a lattice
bubbles, which are expected to be more and more relevant asndom walk withu=2.

d decreasegfor d>d.=4, once the two walks have split ~ We finally wish to discuss the relation of the present treat-
away, they basically never meet agaand T increases. In  ment with previous worf13-16 done on the unzipping of
this view, it is clear that the puzzling behavior found in the homo-DNA in the limit of a continuum chain. The ds mol-
D=2 model with crossing, wherg. increases for alll, is  ecule with the pulling force was described by means of an
due to the growing presence of bubbles: before DNA can beffective Hamiltonian, which, apart from an irrelevant center
unzipped, we have to disentangle all the bubbles that aref mass term, reads
forming, which is harder and harder @as-.

N [Tdfary® . dr
B. Reentrance in the continuum H_fo n b2 ldn V) =g- ol (31)

We now prove that discrete chains in continuum space
also undergo a cold denaturation fbr0. Let us consider wherer is the relative separation between the stramdis
two N-monomer chains iR with no constraint on the di- the effective Kuhn length of single-stranded DNA, ani a
rectedness, with a foragpulling at the extremities, and with realistic short range attractive potential, namel§ function
a constant unitary distance between consecutive monomer@{ & potential well[the two cases should be equivalent ac-
As B—=, bubbles can be neglected and only Y-shaped coneording to the standard quantum theory as lond @sV(r)
figurations contribute to the partition sum. The partitionis the samg The system described by E(B1) is equiva-
function for aY configuration then reads: lently represented by a quantum system with a non-
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square well potential is due to the unboundedness of the
potential “felt” by the “free particles” as soon ag#0. As
T—0, fluctuations are not important, and the particles stay
close to the minimum of such potential, which-isc for a
force that is small but finite. This is enough to unzip the
strandg 30].

As Zhou observed in Refl16], one can improve this
model by placing a hard core either inside the potential well
or at a finite distance from th& (this is analogous in spirit to
introducing the crossing constraint in our lattice mogels
Once again, one finds that fémearT., which is now finite,
both potentials predict

o 1 2 s+ s s 7 s s ToT,
9c(T,e) ~ (Tc—T)
FIG. 5. Critical force ind=1, found with quantum mapping.
The solid line is the result with a symmetric square well, the dashedys in the lattice moddksee Eq(26)], whereas for lowT the
line the result with & function. The parameters are chosen so thats shows no re-entrance and the potential well displayé’%\
the integral of the potentials over space is the same. behavior. We note, once again, that the low temperature be-

- o i ) i havior of such “quantum” models is an artifact, when con-
Hermitian Hamiltonian. One finds4,19 that there is a first  gjgered as polymer chain models, due to the “soft” enforcing

order unzipping transition when the force reaches the criticapf the chain constraint. In this respect, discrete chain models

value in the continuum space are more realistic, either with con-
stant bond length or with harmonic springs between consecu-

4eo(T)Td tive beads. In the first case we have indeed prdsee Eq.
g(T, €)=\ — Tz (32)  (30)] the existence of cold mechanical denaturation. In the

second case it was shown to occur by means of numerical

simulations[19].
where €o(T) is the ground state energy of the quantum
Hamiltonian obtained from Eq(31) when §=6. In the
guantum-mechanical system, fa<g.(T,e) the ground
state is a bound state, while fgi>g.(T,e) the spectrum of To conclude, we have studied simple models for DNA
Eq. (31 is continuous. mechanical unzipping induced by a pulling force. By using

Let us focus on thel=1 case, corresponding to our two- analytical techniques, the relevance of forbidding the cross-

dimensional models without crossing constraints. It is welling of the two strands and the role played by bubble forma-
known that, alg=0, both a symmetric square well andsa tion in the denaturation process were discussed throughout
function always have at least one bound state, meaning thtte whole force-temperature plane. The scaling properties of
DNA remains ds at all'. In Fig. 5 we show the critical force the system along the transition line were also determined.
for the two potential$obtained simply from Eq32)]. It can ~ The existence of @old mechanical denaturatiofor a finite
be seen from the figure that, at high both potentials satu- range of forces at low enough temperatures was proved ex-
rate toward the same limit, as in our calculation for theactly in a general case for both lattice and continuum space
model w.c. This is expected since thgotential case can be models. The fundamental role of chain discreteness was em-
recovered from our equatiof2) in the limit of both con- phasized in comparison with related models studied by
tinuum space and timé¢see Fig. 4 At low T, however, means of quantum mapping techniques. Even if we neglected
9.(T,e)~(T/A)Y? for a square well of width\, and is con- many important effects, such as base pairs heterogeneity, in-
stant for thes potential, so that re-entrance is present only intrinsic helicity, wrong base pairing, and different stacking
the former case, but with a behavior different from thatenergy for the natured and denatured states, it would be in-
found in the lattice. This already signals that the low tem-teresting to experimentally test this prediction stemming
perature behavior of the solution obtained through the quarfrom such a simple model. Furthermore, on the basis of pre-
tum mapping is rather unphysical. This is due to the fact thatiminary results(analytical and numericaive anticipate that
in the limit of a continuum chain the chain constraint is even in the presence guenchedandomness in the contact
modeled in a “soft” way, by using a harmonic potential be- potential our models display a re-entrant transition, so in this
tween consecutive beads along the chain. This interaction gense it is really a “universal” feature.
usually assumed to be entrodias in Eq.(31)], and thus
effectively vanishes at=0. In this limit Eq.(31) describes
a set ofN “free” particles moving in an effective potential
determined by andg. Consequently, the quantum mapping  We would like to thank F. Seno and S. M. Bhattacharjee
is expected to describe the system well except in the lowfor illuminating discussions. D.M. also acknowledges INFM
temperature limit. Indeed, the re-entrance found for theunding. This work was supported by a MURST grant.
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APPENDIX A: COMPUTATION OF B(z) IN MODELS
OF DSAW'S WITHOUT CROSSING AND OF
THE PHASE DIAGRAM FOR MODELS WITH CROSSING

We here first work out the details to obtain an explicit
expression foiB(z), defined in Eq.(6). Starting from Eqgs.

(7), we can perform Fourier and discrete Laplace transform€

to obtain

o

(z,a)= 2 VY explig-x)cn(X)

N=0

=————[Cco(a)—zf(q)c(z,0)], Al
L org @ 2h(@c0l (A
where we have made the following definitions:
D
fo@=2_2  coda—qp. f(@=D+fo(0),
(A2)

c(zi)zéo Ney(x),  Co(q)=2 explig-X)co(X).
" (A3)

Using ¢(z,0)=f_ ..ol d°q/(2m)P]c(z,q), Eq. (AL) is

easily solved since, by permuting variables inside the result-
ing integrals, it is possible to see that they do not depend on Z(z, B¢, 89) =

the particular step which we forbid. We obtain

<o 1 Co(d)—zWi(2)[A(D)fo(q) ~Co(q)]
) 1+2Wi(2) !
(A4)
0)=A(D Wl—(z) A5
C(Z! )_ ( )1+ZW1(Z)’ ( )

where A(D)=1-[1/D(D—1)] is the reduction factor due

to the crossing constraint. As a result, usirgy(z)
=2230,.-16(z,6—€)), we obtain
B(z)=A(D ZWa(2) A6
(2)=A( )m, (A6)
where
d®q  fo(q)
W, (2) = -
[-mm°(2m)° 1—2f(q)
d®°q  f3(q
W,(2)= q o(a) (A7)

(-maP(2m)P 1—zf(q)

The singularityz, = 1/D?, leading to the usual random walk

behavior, comes in when evaluating the above integrals; their

denominator becomes negatives-0 for z>z;.

Here we also give a brief outline of the calculation nec-
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DSAW's when crossing is allowed. These models are simpler
to solve than the corresponding models w.o.c., since it is not
necessary to partition the molecule of DNA as done in the
text in Eq. (5), which allows us to write a more explicit
formula for the grand partition function. Indeed we can sim-
ly start from recursion relation®), and, after Fourier and
aplace transform, find the expression

_ 1 1

C1-2zf(q) 1-[1—exp(—Be)Wy(2)’
(A8)

p(2,9,B€)

for the quantityp(z,q, Be), defined as

P(z,q,8e)= > ZVX exp(ig-X)pn(x,Be)  (A9)

N=0

with py(X,Be) defined as in Eq(1) and

J[—’TT,W]D

The final form of the grand partition function, for DSAW's
w.c. in the presence of a pulling force, is

dPq 1
Wo= q .

(2m)° 1-zf(q)

(A10)

1

1
1-2/z,(Bg) 1-[1—exp(— Be)Wo(2)’
(A11)

with z3(Bg) defined as in Eq(15). Alternatively, one can
proceed exactly as in Sec. I, but with initial conditions

D

>

i#pj=1

Co(X) = i -é (A12)

The only resulting difference would be to ha#¢D)=1 in
Eqgs.(A4) and (A6); after a bit of algebra, one can convince
oneself that the partition function found by recollecting the
different factors in Eq(5) is the same as that found in Eq.
(A11). In doing this, one needs to compute the relations be-
tween the integral8Vy(z), W,(z), andW,(z), which may be
done as, e.g., in Ref25]. For example, the bubble generat-
ing function for both kind of models could also be simply
expressed as

B(z)=A(D)[1—Dz—1MWy(2z)]. (A13)
Changing the dimension dependent facta(D) from
A(D)=1, when crossing is allowed, t&(D)=1—-[1/D(D
—1)], when crossing is forbidden, is enough for the melting
transition temperature to become finite 9 3.

APPENDIX B: TAUBERIAN THEOREM
AND ITS APPLICATIONS

The discrete Tauberian theorgsee Ref[27]) states that

essary to find the phase diagram for the models of Sec. Il afhe relations
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p 1 vanishes, as the critical line is approacHéthat is, y=(g
L . (B1) —0c)/9:.<1 andr=(T—T.)/T.<1]. In this limit the order
1-2/z parameters obey

i NZHZ*_ 1
C(2)= CnZ ~
@ o N 1-z2/7*

and 9Zn13(Be)N— exp( — Be)
— ~ , B9
e == Ary+A,T (89
CNn ~ e L(N) (B2
(Z*)NF( ) 7w/ N— /
p <Xg>5_a Nzﬁéﬂg) _TozlaBg) (810

are equivalent, provided that>0, {c\} is a positive mono- Z3(B9c)

tonic sequence, andis “slowly varying” in the sense speci- The coefficients; (T, ,g.) andA,(T.,g.) determine the

fied in Ref.[27]. normal direction in the[log(T),log(g)] plane, and are re-

We apply this theorem here first to find the scaling laws Ofported below:

the unzipping transition to give an example of how the rela-

tions reported in Sec. lll can be recovered. When approach- 9B(z3(BcYe))
. L. . B 3 cgc 2
ing the critical line atg=g, from the unzipped phase, the ~ Ai(Tc.0c)=Belc| D+ ———|73(89c)
smallest singularity iz3(89g), as defined in Eq(15). The
leading behavior, ag—z; , is X[4 sinh2B.9.) +4(D—2)sinh(B:gc) 1,
z2-275 1 1 (Bll)
Z(Z,ﬂ€,ﬁg) -~ _ _ _ _ ' JB(z
expi~ Be) = D25~ B(zs) 1-2/7, AolTe, 90 = — Bege| D+ s Pee) 2 5 g
(B3) dZ3
ﬂZ(Z Be Bg)z—q; 1 1 ><[4 Sinr(zlgcgc)+4(D_2)Sink(,3cgc)]
aB9)  exp(—Pe)~Dz3-B(z3) (1-2/z,)? * Boe X~ fce). (B12)
92319 Bg) As expected, it may be easily checked that, whatever direc-
—_, (B4)  tion we choose to approach the critical curve, physical quan-
z3(B9) tities such as EqB9) only depend on the projection of this
_ direction on the normal to the critical line. To show this, one
9Z(z,Be,B9)" % exp(— Be) 1 first needs to observe that criticality is achieved through the
P ~ _ _ _ 21—2/7." vanishing of the denominator in EB9), and then to apply
(Be) [exp(—Be)~Dz5—B(z3)] (355) the implicit function theorem to this denominator.

Recently, some authofd3,14] suggested, as an alterna-
where we have neglected inessential factors wherg. . tive order parameter for the unzipping transition, the number
Consequently, the application of the Tauberian theoreni" of monomers from the last contact to the end_. By using the
yields same tools as before, we can find some quantities of interest

such as the probability distribution of havimg monomers
N oo 1 “liberated” (in the equations below, we suppos&m<N).
~ -N In general,
Zn(BeBY) ~ G e Dzy-Blzg 2 @ B9
S
IZn(Be,BY)N N N % e P 513
APg) exp—fBe Dz, B(zo) (m= ’ (519
% Pw
_n92319(BY) 87
® zy(B9) whereW are pairs of directed walkg,y is their Boltzmann
weight, andn,, , is the number of “liberated” monomers of
IZn(Be, BN exp(— Be) N the configuration. The possible enforcing of the crossing
~ z constraint does not affect the following equations, simply
d — Be)—Dza— 273
(Be) [exp(—Be) ~Dz3—B(z3)] 89 shifting the critical melting temperatufE, .

At zero force andT<T,, in the native state,

The canonical partition functioizy can be expressed in
terms of previously defined quantities agy(Be,9)
=3 ;pn(X, Be)exp(Bg-X) [see Eqs(1) and (4)]. wherem*@=m~"2in d=1, [log(m)]~* in d=2, and con-

Note that at the critical line,(B8€)=2z5(89.), implying  stant ford>2. We recall thatz;=1/D?, with D=d+1. At
that the e-dependent denominator in the above equationgriticality,

P(m)<exd —mlog(z; /z,)Jm*@, (B14)
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P(m)ec(N—m) ¢t tma(@), (B15)

where in the first factor there are logarithmic corrections in
d=2 and 4 to the power-law behavior controlled by the

crossover thermal exponett [17]. Above T, we have

P(m)oc(N—m)Admed, (B16)

with B(d)=—]1-d/2|—1 if d#2, in d=2 mPfd
=1/[NlogXN)]. At force different from zero, in the zipped
phase, we obtain

P(m)xexd —mlog(z;3/z,)], (B17)
while, in the unzipped phase,
P(m)ocexd —(N—m)log(z,/z3) ] (B18)
if T<T., and
P(m)ocexd —(N—m)log(z,/z3)] (B19)

if T>T.. Just at criticality, the probability distribution is flat.

PHYSICAL REVIEW B4 031901

APPENDIX C: Y CONFIGURATIONS WITH SAW’S

In this appendix we extend the analysis of Sec. IVto aY
configuration where the two chains are generic SAW'’s and

not directed walks. Here we ta@= 0g(1,0,...,0).

Let us callcy(0,x) the number ofN-step SAW's ending
in X and starting in 0 and cy = S5cn(0,X)exp(Bg-X) (so
thatcy=cy g-g)- As a first step, we need to prove the exis-
tence of a connective constaat; for a single SAW in the

presence of a pulling force, i.ecN'§~,u5' for large N. The
existence of a connective constant then foll¢@g| from the
inequality

> en(0.x)expBg-X)=< 2, ¢y, (0,X1)Cy-n,(X1,X)

X X, X1

X exp(Bg-X1)exfd Bg- (X—X)],
(Cy

which implies the subadditivity afy [27]. From the connec-

For the Y-shaped configuration, at force different fromtive constants of RW’s and DSAW’s, we can establish the

zero, we obtain
P(m)xexd —(N—m)log(z,/z3)] inthe u.z. phase,
(B20)

P(m)xexd —mlog(z;/z,)] inthe z. phase,(B21)

P(m)x«const at criticality, (B22)

wherez, = exp(— Be)/u is the singularity controlling the free
energy per monomer in the Y-zipped phase, andD the

connective constant of a single directed walk. At zero force,

we obtain

P(m)xexd (—(N—m)log(z,/z;)Im*® denatured phase,

(B23)

P(m)eexf —m,log(z; /z,)Jm*®@ native phase,
(B24)
P(m)em®@ at criticality. (B25)

following bounds|recall that herej:g(l,o, ...,0)] for the
connective constant of a SAW thdimensions:

d—1+exp(Blg)<pmg=2(d—1)+2 coskip|g]).

Let us now introduce the canonical partition function. It
reads

N-1
Zy= 2 eXF(B(N_m)f)CN—m—LZ Chin(X1,X2)

m=0 X1 Xp

X exf Bg- (Xa—X1)], (C3

wherecém(il,iz) counts the SAW’s which do not cross the

first N—m attached monomers of thé andx, andx, are
the end points of the strands.

An upper bound is found if we allow the opened part of
the Y to cross the firsN—m zipped monomers:

Let us give the details in a simple case, to obtain, e.g.,

Egs.(B20), (B21) and(B22). One has

(B26)

whereZg® ., is the partition function of two l—m) mono-
mer chains with the end points in commghis is the origi-
nal Poland-Sheraga modelz/'®® is the partition of two
m-monomer chains with no base pair in contact, apdis
given by Eq.(1). We have, for Y at nonzero forc&€g>

=z, (N"m ziree—z;™ and
Zy~z;" native phase, (B27)
Zy~2z3N  above criticality. (B29)

N-1
zZpprer= > exlfﬂ(N_m)f)CmeflaZ Com(X1,X2)

m=0 X1, Xp

XexdBg- (Xa—X4)]. (C4)
The grand canonical partition function defined from Ecy)
displays singularities inz=z,= 1/,u§ and in z=z,
=1/u exp(Be), wherepu is the connective constant of a stan-
dard SAW ind-dimensional space, i.6u=ug—g.

To find a lower bound foZ,, we restrict theY configu-
rations to those with the joined part of the Y constrained to
lay in the half-spacéx|x-e;>0.€;-g/|g|=0} (the origin is
in the bifurcation point and the unzipped part forced to stay
in the other half-space,
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N-1 grand partition function singularities associatedZfpin Eq.
ZIowe=">" exp BIN—m)e)cle™ . > cl9(x,; x,) (C3) arez=z,,2, given above.
m=0 X1.Xa In summary, we have proved that a mechanical unzipping
- - - transition takes place whqm2~=,u exp(Be), similarly to the
Xexgd Bg- (Xo—X1)], (€9 directed walk case. We sugggest that a standard computation

' of ug (for instance, through exact enumerajimould give
where with c!®"(9") we have indicated the number of an accurate phase diagram for the “Y approximation” with
n-step SAW'’s constrained to stay in the lgifght) half space. SAW's. _ . _ .

As the connective constants can be rigorously proved to be The bounds in Eq(C2) immediately give two bounds

the same even for walks constrained in such a (gag Refs. Within which the transition lineg(T,e) lies. In the T—0
[27,29 for details, it is important here that walks limit, Eq. (28) follows, since both bounds give the same

. - > = asymptotic transition line. This should be the same also for
generated from a reflection through the hyperplérec- e, ge)rqerl?c SAW’s, since in th@—0 limit it is sufficient to

>0.,-9/|g|=0} leave the scalar produgt-x unchangell  consider onlyv-shaped configurations. This demonstrates the
the singularities of the grand partition function obtained fromexistence of cold unzipping at sufficiently low temperature
Eq. (C5) are thesameas those o y_,ZyPP¢ZN. Thus the  for the generic self-avoiding case.
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