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Stokes drag of spherical particles in a nematic environment at low Ericksen numbers
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As a first approach to the motion of particles in anisotropic liquids, we study the Stokes drag of spherical
particles in three different nematic environments: a uniform director field, the Saturn-ring configuration, and
the dipole configuration. Two independent friction coefficients for the respective motion parallel and perpen-
dicular to the overall symmetry axis exist. We determine these coefficients by solving the Ericksen-Leslie
equations for low Ericksen numbers, i.e., when the director field is not influenced by the flow of the liquid
crystal around the particle. We present streamline patterns and interpret them. Compared to the uniform
director field and the Saturn-ring configuration, the dipolar configuration lacks a mirror plane as a symmetry
element whose consequences we illustrate.
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I. INTRODUCTION

Particles in motion give rise to a wealth of interesti
physics. For example, a common way to measure viscos
of liquids is the falling-ball method, where the velocity of th
falling particle is determined by a balance of the gravi
tional, the buoyancy, and Stokes’s friction force. Partic
suspended in a fluid perform Brownian motion@1#. They are
random walkers whose diffusion constant obeys the fam
Stokes-Einstein relation@1#. A simple Langevin approach
predicts that the velocity autocorrelation function of rando
walkers decays exponentially@1#. However, it displays a
long-time tail due to the constant de- and acceleration of
particles @2–4#. Finally, particles moving relative to eac
other exchange shear waves, which leads to the so-ca
hydrodynamic interactions@1,5#.

As a first approach to the motion of particles in anis
tropic liquids, we study the Stokes drag of particles s
pended in a nematic liquid crystal. In such liquids, rodli
organic molecules align, on average, along a common di
tion indicated by a unit vectorn called director. Stimulated
by recent experiments on inverted nematic emulsions@6,7#,
there is a growing interest in suspensions of particles i
nematic environment@8–15#. A number of articles have ad
dressed the director configuration around a single parti
They are reviewed in Ref.@16#. For rigid perpendicular an
choring of the molecules at the particle’s surface and unifo
director field at infinity, two configurations are found:~1!
Together with a hyperbolic point defect in the director fie
the particle forms a ‘‘rigid’’ dipole@see Fig. 1~1! and Refs.
@6,11,12,17,18##. ~2! In the Saturn-ring configuration, a
21/2 disclination ring encircles the particle at its equa
@see Fig. 1~2! and Refs. @9–12,17,18## If the anchoring
strength of the director at the particle’s surface is lower
the disclination ring moves to the surface, and the surfa
ring configuration occurs@10,12,17,18#. In the case of very
weak anchoring, the particle is just floating in a unifor
director field@see Fig. 1~3!#. All three configurations are ob
served in reality@6,7,19–21#.

Early experiments in nematic liquid crystals measured
temperature and pressure dependence of an effective vis
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ity heff in the Stokes drag@22,23#. Cladiset al. @22# argued
thatheff is close to the Mie¸sowicz shear viscosityhb , i.e., to
the case where the nematic fluid is flowing parallel to t
director@24–27#. Nearly 20 years later, Poulinet al.used the
Stokes drag to verify the dipolar force between two dropl
defect pairs in inverted nematic emulsions@28#. Böttger
et al. observed the Brownian motion of particles above t
nematic-isotropic phase transition@29#. Measuring the diffu-
sion constant with the help of dynamic light scattering, th
could show that, close to the phase transition, the effec
viscosity in the Stokes drag increases due to surface-indu
nematic order close to the particle.

A theoretical treatment of the Stokes drag has to deal w
the dynamic equations of a nematic liquid crystal, i.e.,
Ericksen-Leslie equations, which couple the director fie
and the fluid velocity. Due to their complexity, only few
examples with an analytical solution exist, e.g., the flow b
tween two parallel plates, which defines the differe
Miȩsowicz viscosities@30#, the Couette flow@31,32#, the
Poiseuille flow @33#, which was first measured by Clad
et al. @22#, or the back flow@34#. Besides the exploration o
new effects, resulting from the coupling between the veloc
and director field, solutions to the Ericksen-Leslie equatio
are also of technological interest since they are necessar

FIG. 1. Three possible director configurations for a spheri
particle in a nematic environment with a uniform director field
infinity. The molecules are radially anchored at the surface of
particle. In configuration~3! a very weak surface anchoring i
assumed.
©2001 The American Physical Society11-1
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determining the switching times of liquid-crystal displays
The hydrodynamic solution for the flow of a nematic li

uid crystal around a particle at rest, which is equivalent
the problem of a moving particle, presents another challe
to theorists. Diogo@35# assumed the velocity field to be th
same as the one for an isotropic fluid and calculated the d
force for simple director configurations. He was interested
the case where the viscous forces largely exceed the el
forces from director distortions, i.e., Ericksen numbers mu
larger than one, as we shall explain in the following secti
Roman and Terentjev, concentrating on the opposite c
obtained an analytical solution for the flow velocity in
spatially uniform director field, by an expansion in the a
isotropy of the viscosities@36#. Heueret al. presented ana
lytical and numerical solutions for both the velocity field a
the Stokes drag, again assuming a uniform director fi
@37,38#. They were first investigating a cylinder of infinit
length @39#. Ruhwandl and Terentjev allowed for a nonun
form but fixed director configuration, and they numerica
calculated the velocity field and Stokes drag of a cylind
@40# or a spherical particle@41#. The particle was surrounde
by the Saturn-ring configuration@see Fig. 1~2!#, and the cyl-
inder was accompanied by two disclination lines. Bille
and Pelcovits used molecular-dynamics simulations to de
mine the Stokes drag of very small particles@15#. They ob-
served that the Saturn ring is strongly deformed due to
motion of the particles. Recently, Chono and Tsuji perform
a numerical solution of the Ericksen-Leslie equations aro
a cylinder determining both the velocity and director fie
@42#. They could show that the director field strongly d
pends on the Ericksen number. However, for homeotro
anchoring, their director fields did not exhibit any topolog
cal defects required by the boundary conditions.

The Stokes drag of a particle surrounded by a disclina
ring strongly depends on the presence of line defects. Th
exist a few studies, which determine both experimenta
@43# and theoretically@44–46# the drag force of a moving
disclination. In the multidomain cell, a novel liquid-cryst
display, the occurence of twist disclinations is forced
boundary conditions@47,48#. It is expected that the motion o
these line defects strongly determines the switching time
the display.

The experiments on inverted nematic emulsions@6,28#
and the investigations by Ruhwandl and Terentjev@41# mo-
tivated us to perform Stokes drag calculations for a part
in a nematic environment, especially for the particle-def
dipole @see Fig. 1~1!#. We concentrate on low Ericksen num
bers, where the director field is not affected by the veloc
field. We present streamline patterns, interpret them, ca
late Stokes drags for motions parallel and perpendicula
the overall symmetry axis, and compare the results to
Saturn-ring configuration and a uniform director field. Co
pared to these systems, the dipole configuration lacks a
ror plane whose consequences we illustrate.

The paper is organized as follows. In Sec. II we disc
the theoretical concepts. We start with a short review of
Stokes drag in an isotropic fluid, introduce the Erickse
Leslie equations, and formulate the limit of low Erickse
numbers, which reduces our problem considerably. A crit
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remark about this limit ends the theory part. In Sec. III w
explain the numerical method. Section IV presents our
sults and their discussion, and we finish with a conclusion
Sec. V.

II. THEORETICAL CONCEPTS

A. Stokes drag in an isotropic fluid

The Stokes drag in an isotropic fluid follows from a sol
tion of the Navier-Stokes equations. Instead of considerin
moving sphere, one solves the equivalent problem of
flow around a sphere at rest@49#. An incompressible fluid
(div v50) and a stationary velocity field (]v/]t50) are as-
sumed, so that the final set of equations reads

div v50 and 2“p81div T850. ~1!

In an isotropic fluid, the viscous stress tensorT8 is propor-
tional to the symmetrized velocity gradientAi j 5(¹ iv j
1¹ jv i)/2, T852hA, whereh denotes the usual shear vi
cosity. We have subdivided the pressurep5p01p8 in a
static (p0) and a hydrodynamic (p8) part. The static pressur
only depends on the constant mass density% and, therefore,
does not appear in the momentum-balance equation of th
~1!. The hydrodynamic contributionp8 is a function of the
velocity. It can be chosen zero at infinity. Furthermore, un
the assumption of creeping flow, we have neglected the n
linear velocity term in the momentum-balance equation
sulting from the convective part of the total time derivati
dv/dt5]v/]t1v•“v. That means, the ratio of inertia
(%v2/a) and viscous (hv/a2) forces, which defines theRey-
nolds numberRe5%va/h, is much smaller than one. T
estimate the forces, all gradients are assumed to be of
order of the inverse particle radiusa21, the characteristic
length scale of our problem. Equations~1! are solved ana-
lytically for the nonslip condition at the surface of the pa
ticle @v(r 5a)50#, and for a uniform velocityv` at infinity.
Once the velocity and pressure fields are known, the d
forceFS follows from an integration of the total stress tens
2p11T8 over the particle surface. An alternative meth
demands that the dissipated energy per unit tim
*(T8•A)d3r , should beFSv` @50#. The final result is the
famous Stokes formula for the drag force:

FS5g v` with g56pha. ~2!

The symbolg is called the friction coefficient. The Einstein
Stokes relation relates it to the diffusion constantD of a
Brownian particle@51–53#: D5kBT/(6pha), wherekB is
the Boltzmann constant andT is temperature.

We have also calculated the Stokes drag for a fin
spherical region of radiusr 5a/« with the particle at its cen-
ter. We followed the derivation for an infinite medium@49#,
however, assumingp850 at r 5a/«. The result is

FS5g«v` with g«56pha
123«/21«32«5/2

~123«/21«3/2!2
,

~3!
1-2
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STOKES DRAG OF SPHERICAL PARTICLES IN A . . . PHYSICAL REVIEW E64 031711
where we keep the notationv` for the velocity atr 5a/«.
The correction term is a monotonously increasing function
« on the interesting interval@0,1#. Hence, the Stokes dra
increases when the particle is confined to a finite volume.
«51/32, the correction is about 5%.

B. Ericksen-Leslie equations

To calculate the Stokes drag in a nematic environment,
have to deal with the Ericksen-Leslie equations, wh
couple the flow of the fluid to the director motion@26,27#. In
a completely linearized form, they are identical to the hyd
dynamic equations derived by the Harvard group@54,55#.
Under the assumption of an incompressible fluid, station
director and velocity fields, and Re!1, the Ericksen-Leslie
equations take the form

div v50, ~4!

2“p1div~T01T8!50, ~5!

n3~h02h8!50. ~6!

The divergence of the stress tensor is defined by (divT) i
5¹ jTi j . Due to elastic distortions in the director field, a
elastic stress tensorT0 occurs,

Ti j
0 52

] f b

]¹ jnk
¹ ink , ~7!

wheref b stands for the Frank free-energy density@26,27#. In
the one-constant approximation it readsf b5K(¹ inj )

2/2.
The uniaxial symmetry of the nematic liquid crystal allow
for additional terms proportional toA in the viscous stress
tensor,

Ti j8 5a1ninjnknlAkl1a2njNi1a3niNj1a4Ai j 1a5njnkAik

1a6ninkAjk . ~8!

The coefficientsa i are called Leslie viscosities. For differen
geometries, their combinations result in the three Mie¸sowicz
shear viscosities@24–27#. In addition, a second dynami
variable

N5
]n

]t
1v•“n2curlv3n/2, ~9!

appears. It describes the rate of change ofn relative to a fluid
vortex. Note that in the stationary case (]n/]t50) the con-
vective derivativev•“n is still present. It contributes when
ever the fluid flows through a nonuniform, static direct
pattern as given, e.g., by the Saturn-ring and dipole confi
ration. Another famous example for this process is the H
frich permeation for a static director helix@56#.

The dynamic equation~6! balances elastic (h0) and vis-
cous (h8) torques on the director,

hi
05¹ j

] f b

]¹ jni
2

] f b

]ni
, ~10!
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The coefficientg1 is a true rotational viscosity for the direc
tor motion. As explained above, it contributes to the visco
torque even in the stationary case whenever“nÞ0. Onsager
relations requireg15a32a2 andg25a21a3 @26,27#.

C. Stokes drag in a nematic environment

In this paper we do not attemp to solve the Erickse
Leslie equations in general. Instead, we will resort to an
proximation already employed by Ruhwandl and Terent
@40,41#. Analogous to the Reynolds number, we define
Ericksen number~Er! @45# as the ratio of viscous (hv` /a2)
and elastic (K/a3) forces in the momentum balance of E
~5!:

Er5
hv`a

K
. ~12!

The elastic forces are due to distortions in the director fie
whereK stands for an average Frank elastic constant. In
following, we assume Er!1, i.e., the viscous forces are to
weak to distort the director field, and we will always use t
static director field forv50 in our calculations. The condi
tion Er!1 constrains the velocityv` . Using typical values
of our parameters, i.e.,K51026 dyn, h50.1 P, anda
510 mm, we find

v`!100
mm

s
. ~13!

Before we proceed, let us check for two cases if this c
straint is fulfilled. First, via a phenomenological theory, o
can show that the particle-defect dipoles interact like elec
dipoles@6,11#. For inverted nematic emulsions, Poulinet al.
invented a method to pull two water droplets apart@28#.
When these droplets were released, they were approac
each other, with the Stokes drag balancing the dipolar fo
By measuring the velocity as a function of droplet sepa
tion, the dipole interaction was verified. In these experime
the velocities of the particles were always smaller th
10 mm/s. Second, in a falling-ball experiment, the veloc
v of the falling particle is determined by a balance of t
gravitational, the buoyancy, and Stokes’s friction force, i.
6pheffav5(4p/3)a3(%2%fl)g, and we obtain

v5
2

9

~%2%fl!a2g

heff
→1021

mm

s
. ~14!

To arrive at the estimate, we chooseheff50.1 P anda
510 mm. We take%51 g/cm3 as the mass density of th
particle and%2%fl50.01 g/cm3 as its difference to the sur
rounding fluid@1#.

After we have shown that Er!1 is a reasonable assump
tion, we proceed as follows. We first calculate the static
rector field around a sphere from the balance of the ela
torques,n3h050 @see Eqs.~6! and~10!#. It corresponds to a
minimization of the Frank free energy under the contra
that n is a unit vector. Forv50, the static director field
1-3
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HOLGER STARK AND DIETER VENTZKI PHYSICAL REVIEW E64 031711
defines a static pressurep0 via the momentum balance
2“p01div T050 @see Eqs.~5! and ~7!#. With the help of
n3h050, one shows that divT052“ f b @27#. Hence, the
static pressure is known,p05const2 f b . ForvÞ0, we again
divide the total pressure into its static and hydrodynam
part, p5p01p8. Then the velocity field is determined from
the same set of equations as in the isotropic case@see Eqs.
~1!#, provided that we employ the viscous stress tensorT8 of
a nematic liquid crystal. In the case of an inhomogene
director field, both the different Mie¸sowicz shear viscositie
and the rotational viscosityg1, discussed above, contribu
to the Stokes drag.

In general, the friction forceFS does not point alongv` ,
and the friction coefficient is now a tensorg. In the follow-
ing, all our configurations are rotationally symmetric abo
the z axis, and the Stokes drag assumes the form

FS5gv` with g5g'11~g i2g'!ez^ ez . ~15!

The symbol^ means dyadic product andez is a unit vector
along thez direction. There only exist two independent com
ponentsg i andg' for a respective flow, parallel or perpen
dicular to the symmetry axis. In these two cases, the Sto
drag is parallel tov` . Otherwise, a component perpendicu
to v` , called lift force, results @41#. In analogy with the
isotropic fluid, we introduce effective viscositiesheff

i andheff
'

via

g i56pheff
i a and g'56pheff

' a. ~16!

It is sufficient to determine the velocity and pressu
fields for two particular geometries withv` , either parallel
or perpendicular to thez axis. Then, the friction coefficient
are calculated with the help of the dissipated energy per
time @27,35,41,50#:

FS
i /'v`5E ~T8•A1h8•N!d3r . ~17!

It turns out that the alternative method via an integration
the stress tensor at the surface of the particle is numeric
less reliable. Note that the velocity and pressure fields fo
arbitrary angle betweenv` and ez follow from superposi-
tions of the solutions for the two selected geometries. Thi
due to the linearity of our equations in the velocity fieldv.

It is clear that the Brownian motion in an environme
with a rotational symmetry axis is governed again by t
independent diffusion constants. The generalized Sto
Einstein formula of the diffusion tensorD takes the form

D5D'11~D i2D'!ez^ ez , D i /'5
kBT

g i /'
. ~18!

D. A critical remark

At the end, we add some critical remarks about our
proach, which employs the static director field forv50.
From the balance equation of the elastic and viscous torq
@see Eqs.~6!, ~10!, and~11!#, one derives that the changedn
of the director due to the velocityv is of the order of the
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Ericksen number:dn;Er @40#. This adds a correctiondT0 to
the elastic stress tensorT0 in the momentum balance equa
tion that does not just renormalize the pressure. In the cas
a spatially uniform director field, the correctiondT0 is by a
factor Er smaller than the viscous forces, and it can be
glected. However, for a nonuniform director field, it is of th
same order as the viscous term, and, strictly speaking, sh
be taken into account. However by performing numeri
calculations of the Stokes drag for arbitrary Ericksen nu
bers Er, we can show that the procedure, outlined here
indeed valid for Er→0 @57#. We add two remarks that ma
help to clarify the problem. First, far away from the sphe
dn has to decay at least linearly in the 1/r . Then one shows
thatdT0 is negligible against the viscous forces at least in
far field. Second, when calculating the isotropic Stokes dr
the nonlinear termv•“v in the Navier-Stokes equations
usually omitted for Re!1. However, whereas the friction
and the pressure force for the Stokes problem decay asr 3,
the nonlinear term is proportional to 1/r 2, exceeding the first
two terms in the far field. Nevertheless, performing extens
calculations, Oseen could prove that the correction of
nonlinear term to the Stokes drag is of the order of Re@49#.

III. NUMERICAL METHOD

The numerical investigation is performed on a grid that
defined by modified spherical coordinates. Since the reg
outside the spherical particle is, in the extreme case, i
nitely extended, we employ a reduced radial coordinatj
5a/r . It maps the surface of the sphere (r 5a) on j51 and
r 5` on j50. The velocity and director fields are express
in the local spherical coordinate basis$er ,eu ,ef% attached to
each space point$j,u,f%:

n~r!5nrer1nu eu , ~19!

v~r!5vrer1vu eu1vfef . ~20!

The director field is restricted to a plane containing the ro
tional axis (z axis! of the director configurations in Fig. 1
We parametrized the director components with the help
the tilt angle Q with respect toer : nr5cosQ and nu
5sinQ. The director field was determined by minimizing th
Frank free energy in the one-constant approximation num
cally using the standard Newton-Gauss-Seidel method.
detailed procedure is described in Ref.@12#.

To obtain the friction coefficientg i , an effective two-
dimensional problem has to be solved due to the rotatio
symmetry of the director configurations about thez axis. As
for the director field, we setvf50. In the case ofg'

(v`'ez), all three vector components of the velocity fie
have to be taken into account.

With our choice of modified spherical coordinates, t
momentum balance of Eqs.~1! with the viscous stress tenso
of a nematic@see Eq.~8!# becomes very complex in both th
two- and three-dimensional cases. We, therefore, used
algebraic programMAPLE to calculate it. As input, the sym
metrized gradient of the velocity field (A), the rate of change
of the director (N), and the divergence of the viscous stre
1-4
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STOKES DRAG OF SPHERICAL PARTICLES IN A . . . PHYSICAL REVIEW E64 031711
tensor in spherical coordinates are needed, which we for
lated with the help of standard methods from different
geometry. Since some of the formulas are hard to find
literature, we give the end results in the Appendix.

The two equations in Eq.~1! are treated by different nu
merical techniques. Given an initial velocity field, the m
mentum balance, including the inertial term]v/]t, can be
viewed as a relaxation equation towards the stationary ve
ity field, which we aim to determine. The Newton-Gaus
Seidel method@58# provides an effective tool to implemen
this relaxation. Employing the discretized version of the m
mentum balance equation, the velocity at the grid poinr
relaxes according to

v i
new~r!5v i

old~r!2
@2“p81div T8# i

@]~2“p81div T!# i /]v i~r!
. ~21!

Note that the denominator can be viewed as the inverse
variable time step for the fictitious temporal dynamics ofv.

A relaxation equation for the pressure involving divv50
is motivated by the method of artificial compressibility@59#.
Let us consider the complete mass-balance equation.
small variations of the density, we obtain

]p

]t
52

%

c2
div v with c5A]p

]%
. ~22!

The quantityc denotes the sound velocity for constant te
perature, andc2/% is the isothermal compressibility. In dis
cretized form we have

pnew5pold2
%

c2
Dt div v. ~23!

Note that the reduced fictitious time step%Dt/c2 cannot be
chosen according to the Newton-Gauss-Seidel method s
divv does not contain the pressurep. Instead, it should be a
large as possible to speed up the calculations. In Ref.@58#
upper bounds are given beyond which the numerical sch
becomes unstable.

As already mentioned, to obtain the friction coefficie
g i , an effective two-dimensional problem has to be solv
due to the rotational symmetry of the director configuratio
about thez axis. The integration area is defined by 0<u
<p and «<j<1, where we allow a finite extent of th
region around the sphere. We assume the conventional
slip boundary condition at the particle’s surface and, in
duced units,v`5ez at j5«. In Table I all the boundary
values are summarized. In the three-dimensional case ofg' ,
we choose the velocity far away from the sphere asv`

5ex . Then the velocity field possesses at least two mir
planes; thexz and theyz plane. As a result, the necessa
three-dimensional calculations can be reduced to one q
rant of the real space (0<f<p/2). The boundary values ar
described in Table II.

It turned out that the three-dimensional version of o
programs is not completely stable for an infinitely extend
integration volume. We therefore solved Eqs.~1! in a finite
03171
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region of reduced radiusr /a51/«532. Forj5«51/32, our
programs reproduced the isotropic Stokes drag, calcula
from Eq. ~3!, with an error smaller than 1%.

IV. RESULTS AND DISCUSSION

A. Streamline patterns

In Fig. 2 we compare the streamline patterns aroun
spherical particle for an isotropic liquid~right part, shaded
light gray! and a spatially uniform director field parallel t
v` ~left part!. A uniform n can be achieved by weak surfac
anchoring and application of a magnetic field with a ma
netic coherence length smaller than the particle radius. In
isotropic fluid the bent stream lines occupy more spa
around the particle, whereas for a uniform director config
ration they seem to follow the vertical director field lines
much as possible. This can be understood from a minim
principle. It is known that a shear flow along the direct
possesses the smallest of the three possible Mie¸sowicz shear
viscosities@26,27#, calledhb . Hence, in such a geometry, th
smallest amount of energy is dissipated. Indeed, for a u
form director field, one can derive the momentum balan
from a minimization of the dissipation function stated on t
right-hand side of Eq.~17! @39#. A term 22p div v has to be
added because of the incompressibility of the fluid. It tur
out that the Lagrange multiplier22p is determined by the
pressurep.

In the case of the topological dipole parallel tov` , we
observe a clear asymmetry in the streamlines as illustrate
Fig. 3. The dot indicates the position of the point defect
breaks the mirror symmetry of the streamline pattern, wh
exists, e.g., in an isotropic liquid relative to a plane perp
dicular to the vertical axis. In the far field of the velocity, th
splay deformation in the dipolar director configuration
clearly recognizable. Since we use the linearized momen
balance inv, the velocity field is the same no matter if th
fluid flows upward or downward. The streamline pattern
the Saturn ring@see Fig. 4~right, shaded light gray!# exhibits
the mirror symmetry, and the position of the ring disclinati
is visible by a dip in the streamline close to the equator of
sphere.

If v` is perpendicular to the dipole axis, the missing m
ror plane of the dipole configuration is even more pr
nounced in the streamline pattern. It is illustrated in Fig.
where the point defect is indicated by a dip in the streamli
Although the pattern resembles the one of the Magnus ef

TABLE I. Boundary values for the two-dimensional problem
The velocity atj5« is normalized to 1. Numbers are due to boun
ary conditions. The symbol sym means ‘‘required by symmetr
The abbreviations linex and quadex stand, respectively, for
linear’’ or ‘‘quadratic extrapolation.’’

j5« j51 u50 u5p

v r cosu 0 quadex quadex
vu 2sinu 0 sym→0 sym→0
p8 0 linex quadex quadex
1-5
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TABLE II. Boundary values for the three-dimensional problem. The velocity atj5« is normalized to 1.
Numbers are due to boundary conditions. The symbol sym means ‘‘required by symmetry.’’ The abb
tions linex and quadex stand, respectively, for by ‘‘linear’’ or ‘‘quadratic extrapolation.’’ On thez axis (u
50,p), we determinevu by quadratic extrapolation. Thenvf is fixed since, by symmetry, the velocity has
point along thex axis.

j5« j51 u50 u5p f50 f5p/2

v r sinu cosf 0 sym→0 sym→0 quadex sym→0
vu cosu cosf 0 quadex quadex quadex sym→0
vf 2sinf 0 sym sym sym→0 quadex
p8 0 linex sym→0 sym→0 quadex 0
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a an
@49#, symmetry dictates thatFS
'iv` . A lift force, perpendicu-

lar to v` , does not exist. However, we find a nonzero v
cous torque acting on the particle whose direction for a fl
flow from left to right is indicated in Fig. 5. Symmetry a
lows such a torqueM since the cross product of a dipo
momentp, which can be assigned to the dipolar configu
tion ~see Refs.@6,11#!, andv` gives an axial or pseudovecto
M}p3v` . In the Saturn-ring configuration, a nonzero d
pole moment does not exist by symmetry. Therefore, a n
zero torque cannot occur.

B. Effective viscosities

In Table III we summarize the effective viscosities of t
Stokes drag, defined in Eq.~16!, for a uniform director field,
the dipole, and the Saturn-ring configuration. The values
calculated for the two compounds MBBA and 5CB. As
reference, we include the three Mie¸sowicz viscosities. In the
case ofv` parallel to the symmetry axis of the three co
figurations, we might expect thatheff

i is close tohb as argued
by Cladiset al. @22#. For a uniform director field,heff

i ex-
ceedshb by 30% or 60%, respectively. The increase ori
nates in the streamlines bending around the particle.
effective viscosityheff

i of the dipole and the Saturn ring ar
larger thanhb by an approximate factor of 2. In addition t
the bent stream lines, there exist strong director distorti
close to the particle that the fluid has to flow through, co
stantly changing the local direction of the moving molecul

FIG. 2. Streamline pattern around a spherical particle for
isotropic liquid ~right, shaded light gray! and a uniform director
field parallel tov` ~left!.
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Recalling our note in Sec. II B following Eq.~9!, a contribu-
tion from the rotational viscosityg1 arises, which does no
exist in a uniform director field. In all three cases, we fi
heff

i either close to or larger thanha . The Miȩsowicz viscos-
ity ha determines a shear flow with the uniform director fie
perpendicular to the velocity gradient. So it is obvious th
hb is not the only determining quantity ofheff

i , as argued by
Cladis et al. @22#. For v` perpendicular to the symmetr
axis, h'

eff assumes a value betweenha and hc . This obser-
vation is understandable since the Mie¸sowicz viscosityhc
determines a shear flow with the director perpendicular to
velocity, which is mainly the case in our second geometr

The ratio heff
' /heff

i for the uniform director field is the
largest since the extreme cases of a respective flow, par
or perpendicular to the director field, is realized the bes
this configuration. Furthermore, both the dipole and the S
urn ring exhibit nearly the same anisotropy, and we conclu
that they cannot be distinguished from each other in
falling-ball experiment. The ratiosheff

' /heff
i , which we deter-

mine for the Saturn ring and the uniform director field in t
case of the compound MBBA, agree well with the results
Ruhwandl and Terentjev who findheff

' /heff
i uuniform51.69 and

heff
' /heff

i uSaturn51.5 @41#. However, they differ from the find-
ings of Billeter and Pelcovits in their molecular-dynami
simulations@15#.

We have also performed calculations where we repla
the numerically determined director fields by ansatz fu
tions that are very close to the numerical fields@11,12#. In the

n FIG. 3. Streamline pattern around a spherical particle for
isotropic liquid~right, shaded light gray! and the topological dipole
parallel tov` ~left!.
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STOKES DRAG OF SPHERICAL PARTICLES IN A . . . PHYSICAL REVIEW E64 031711
ansatz function of the dipolar configuration, we vary t
separationr d between the hedgehog and the center of
particle. Both the effective viscosities increase withr d since
the nonuniform director field with its strong distortions o
cupies more space. However, the ratioheff

' /heff
i basically re-

mains the same. For the Saturn ring,heff
i increases stronge

with the radiusr d than doesheff
' . This seems to be reason

able since a flow perpendicular to the plane of the Sat
ring experiences more resistance than a flow parallel to
plane. As a result,heff

' /heff
i decreases when the ring radiusr d

is enlarged.

V. CONCLUSIONS

We have studied the Stokes drag of a spherical particl
three different nematic environments: a uniform direc
field, the Saturn-ring, and the dipole configuration. We ha
presented streamline patterns of the velocity. In the unifo
director field, the streamlines follow as much as possible
director field lines, which we explained by minimization
the dissipated energy. The dipole lacks a mirror plane p
pendicular to its rotational axis. The consequences
clearly seen in the streamline patterns. Furthermore, forv`

perpendicular to the symmetry axis, a nonzero viscous tor
is possible that cannot appear in the two other configuratio
We have calculated effective viscosities for the two m
directions of the Stokes drag, and we have pointed out
role of the rotational viscosityg1 in the Ericksen-Leslie
equations. Interestingly, the ratioheff

' /heff
i is nearly the same

in the dipole and the Saturn-ring configuration so that th
cannot be distinguished by measuring the Stokes drag.

FIG. 4. Streamline pattern around a spherical particle for
Saturn ring~right, shaded light gray! and the topological dipole
~left! with their respective symmetry axis parallel tov` .
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We have started to perform a complete solution of
Ericksen-Leslie equations including a relaxation of the sta
director field forvÞ0. Such calculations help to gain insigh
into several open problems. First, there was the questio
the corrections to the Stokes drag are of the order of
Results for the two-dimensional problem with the relaxati
of the director field included show that the Stokes drag of
dipolar configuration varies indeed linearly in Er for Er,1.
Furthermore, it is highly nonlinear depending onv` being
either parallel or antiparallel to the topological dipole. D
tails of these investigations will be published elsewhere@57#.
A second problem concerns the orientation of the dipole.
Er→0, the Stokes drag of the topological dipole is the sam
whether the flow is parallel or antiparallel to the dipole m
ment. This is also true for an object with a dipolar shape
an isotropic fluid. If such an object is slightly turned awa
from its orientation parallel tov` , it will experience a vis-
cous torque and either relax back or reverse its direction
find its absolute stable orientation. The topological dipo
will not turn around since it experiences an elastic torq
towards its initial direction that is fixed by the director fie
at infinity @11#. Nevertheless, a full solution of the Erickse
Leslie equations would show whether and how much
dipole deviates from its preferred direction under the infl
ence of a velocity field. It would also clarify its orientatio
whenv` is perpendicular to the dipolar axis. At last, there
the nonzero viscous torque in the three-dimensional ge
etry. We speculate that it is cancelled by elastic torques
full solution of the Ericksen-Leslie equations is performed

The Stokes drag of particles in a nematic environm
still presents a challenging problem to theorists. On the ot

e FIG. 5. Streamline pattern around a spherical particle for
topological dipole perpendicular tov` .
hree
TABLE III. Effective viscosities of the Stokes drag for the two compounds MBBA and 5CB and for t
different director configurations. As a reference, the three Mie¸sowicz viscosities are included.

MBBA 5CB
ha50.416 P,hb50.283 P,hc51.035 P ha50.374 P,hb50.229 P,hc51.296 P
Uniform n Dipole Saturn ring Uniformn Dipole Saturn ring

heff
i @P# 0.371 0.503 0.485 0.375 0.525 0.494

heff
' @P# 0.687 0.770 0.755 0.751 0.864 0.853

heff
' /heff

i 1.85 1.53 1.56 2.00 1.64 1.72
1-7
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hand, clear measurements of, e.g., the anisotropy in Stok
friction force are missing.
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APPENDIX

For our numerical treatment, the set of Eqs.~1! has to be
formulated in spherical coordinates. For completeness,
give the divergence of the velocity field:

div v5
]v r

]r
1

2v r

r
1

1

r

]vu

]u
1

cotu

r
vu1

1

r sinu
vu .

~A1!

The formula for the viscous stress tensor of Eq.~8! is also
valid in spherical coordinates with all components chos
relative to the spherical coordinate basis (i , j ,k,l 5r ,u,f).
The symmetrized velocity gradientA is derived from the
gradient of the velocity field:

gradv

5S ]v r

]r

1

r

]v r

]u
2

vu

r

1

r sinu

]v r

]f
2

vf

r

]vu

]r

1

r

]vu

]u
1

v r

r

1

r sinu

]vu

]f
2

cotu

r
vf

]vf

]r

1

r

]vf

]u

1

r sinu

]vf

]f
1

v r

r
1

cotu

r
vu

D .

~A2!

The dynamic variableN @see Eq.~9!# involves the curl of the
velocity field:

curlv5S 1

r

]vf

]u
1

cotu

r
vf2

1

r sinu

]vu

]f Der1S 1

r sinu

]v r

]f

2
]vf

]r
2

vf

r Deu1S ]vu

]r
1

vu

r
2

1

r

]v r

]u Def , ~A3!
K,
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from which the cross product with the director fieldn is
readily calculated. The convective term inN contains the
gradient ofn which is analogous to Eq.~A2!. It is contracted
with v. The viscous stress tensor can now be formulated.
need its divergence that is a vector with the following co
ponents:

~div T8!r5
]Trr

]r
1

2

r
Trr 1

1

r

]Tru

]u
1

cotu

r
Tru1

1

r sinu

]Trf

]f

2
1

r
Tu u2

1

r
Tff , ~A4!

~div T8!u5
1

r
Tru1

]Tur

]r
1

2

r
Tur1

1

r

]Tuu

]u
1

cotu

r
Tuu

1
1

r sinu

]Tuf

]f
2

cotu

r
Tff , ~A5!

~div T8!f5
1

r
Trf1

]Tfr

]r
1

2

r
Tfr1

cotu

r
~Tuf1Tfu!

1
1

r

]Tfu

]u
1

1

r sinu

]Tff

]f
. ~A6!

Finally, the differential operators for our modified sphe
cal coordinates result from the substitution

r 51/j and
]

]r
52j2

]

]j
. ~A7!

In using the operators, one has to remember that the dire
configurations are axially symmetric about thez axis, i.e.,
they do not depend on the azimuthal anglef, and that the
azimuthal component is zero:nf50. In the two-dimensional
calculation to determineg i , the same holds for the velocit
field.
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