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Stokes drag of spherical particles in a nematic environment at low Ericksen numbers
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As a first approach to the motion of particles in anisotropic liquids, we study the Stokes drag of spherical
particles in three different nematic environments: a uniform director field, the Saturn-ring configuration, and
the dipole configuration. Two independent friction coefficients for the respective motion parallel and perpen-
dicular to the overall symmetry axis exist. We determine these coefficients by solving the Ericksen-Leslie
equations for low Ericksen numbers, i.e., when the director field is not influenced by the flow of the liquid
crystal around the particle. We present streamline patterns and interpret them. Compared to the uniform
director field and the Saturn-ring configuration, the dipolar configuration lacks a mirror plane as a symmetry
element whose consequences we illustrate.
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. INTRODUCTION ity me¢ in the Stokes draf22,23. Cladiset al. [22] argued
that 7. is close to the Mjsowicz shear viscosityy,, i.e., to
Particles in motion give rise to a wealth of interesting the case where the nematic fluid is flowing parallel to the
physics. For example, a common way to measure viscositiedirector[24—27. Nearly 20 years later, Poulet al. used the
of liquids is the falling-ball method, where the velocity of the Stokes drag to verify the dipolar force between two droplet-
falling particle is determined by a balance of the gravita-defect pairs in inverted nematic emulsiof8]. Bottger
tional, the buoyancy, and Stokes'’s friction force. Particleset al. observed the Brownian motion of particles above the
suspended in a fluid perform Brownian motid. They are  nematic-isotropic phase transitip®9]. Measuring the diffu-
random walkers whose diffusion constant obeys the famousion constant with the help of dynamic light scattering, they
Stokes-Einstein relatiofil]. A simple Langevin approach could show that, close to the phase transition, the effective
predicts that the velocity autocorrelation function of randomviscosity in the Stokes drag increases due to surface-induced
walkers decays exponentiallyl]. However, it displays a nematic order close to the particle.
long-time tail due to the constant de- and acceleration of the A theoretical treatment of the Stokes drag has to deal with
particles[2—4]. Finally, particles moving relative to each the dynamic equations of a nematic liquid crystal, i.e., the
other exchange shear waves, which leads to the so-calldgricksen-Leslie equations, which couple the director field
hydrodynamic interactiongl,5]. and the fluid velocity. Due to their complexity, only few
As a first approach to the motion of particles in aniso-examples with an analytical solution exist, e.g., the flow be-
tropic liquids, we study the Stokes drag of particles susiween two parallel plates, which defines the different
pended in a nematic liquid crystal. In such liquids, rodlike Miesowicz viscositieg 30], the Couette flow{31,32, the
organic molecules align, on average, along a common dired?oiseuille flow[33], which was first measured by Cladis
tion indicated by a unit vecton called director. Stimulated et al.[22], or the back flow[34]. Besides the exploration of
by recent experiments on inverted nematic emulsi@hg|, new effects, resulting from the coupling between the velocity
there is a growing interest in suspensions of particles in @and director field, solutions to the Ericksen-Leslie equations
nematic environmeni8—-15. A number of articles have ad- are also of technological interest since they are necessary for
dressed the director configuration around a single particle.
They are reviewed in Refl16]. For rigid perpendicular an- @ &) EY
choring of the molecules at the particle’s surface and uniform
director field at infinity, two configurations are foungt)
Together with a hyperbolic point defect in the director field,
the particle forms a “rigid” dipole[see Fig. 11) and Refs. .
[6,11,12,17,18. (2) In the Saturn-ring configuration, a
—1/2 disclination ring encircles the particle at its equator
[see Fig. 12) and Refs.[9-12,17,18] If the anchoring
strength of the director at the particle’s surface is lowered,
the disclination ring moves to the surface, and the surface-
ring configuration occur$§10,12,17,18 In the case of very
weak anchoring, the particle is just floating in a uniform  FiG. 1. Three possible director configurations for a spherical
director field[see Fig. 13)]. All three configurations are ob- particle in a nematic environment with a uniform director field at
served in realityf6,7,19-21. infinity. The molecules are radially anchored at the surface of the
Early experiments in nematic liquid crystals measured thearticle. In configuration(3) a very weak surface anchoring is
temperature and pressure dependence of an effective viscassumed.

dipole Saturn ring uniform
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determining the switching times of liquid-crystal displays. remark about this limit ends the theory part. In Sec. Il we
The hydrodynamic solution for the flow of a nematic lig- explain the numerical method. Section IV presents our re-
uid crystal around a particle at rest, which is equivalent tosults and their discussion, and we finish with a conclusion in
the problem of a moving particle, presents another challeng&ec. V.
to theorists. Diogd35] assumed the velocity field to be the
same as the one for an isotropic fluid and calculated the drag Il. THEORETICAL CONCEPTS
force for simple director configurations. He was interested in
the case where the viscous forces largely exceed the elastic
forces from director distortions, i.e., Ericksen numbers much The Stokes drag in an isotropic fluid follows from a solu-
larger than one, as we shall explain in the following sectiontion of the Navier-Stokes equations. Instead of considering a
Roman and Terentjev, concentrating on the opposite casejoving sphere, one solves the equivalent problem of the
obtained an analytical solution for the flow velocity in a flow around a sphere at rept9]. An incompressible fluid
spatially uniform director field, by an expansion in the an-(dive=0) and a stationary velocity field{/Jt=0) are as-
isotropy of the viscositie§36]. Heueret al. presented ana- sumed, so that the final set of equations reads
lytical and numerical solutions for both the velocity field and . .
the Stokes drag, again assuming a uniform director field divo=0 and —Vp'+divT’'=0. @
[37,38. They were first investigating a cylinder of infinite
length[39]. Ruhwandl and Terentjev allowed for a nonuni- In an isotropic fluid, the viscous stress ten3oris propor-
form but fixed director configuration, and they numerically tional to the symmetrized velocity gradiem;;=(V;v;
calculated the velocity field and Stokes drag of a cylindert V;vi)/2, T'=27A, where  denotes the usual shear vis-
[40] or a spherical particlp41]. The particle was surrounded cosity. We have subdivided the pressye py+p’ in a
by the Saturn-ring configuratidsee Fig. 12)], and the cyl-  Static (9y) and a hydrodynamicy(’) part. The static pressure
inder was accompanied by two disclination lines. Billeteronly depends on the constant mass dengignd, therefore,
and Pelcovits used molecular-dynamics simulations to detedoes not appear in the momentum-balance equation of the set
mine the Stokes drag of very small partic[d$]. They ob-  (1). The hydrodynamic contributiop’ is a function of the
served that the Saturn ring is strongly deformed due to th&elocity. It can be chosen zero at infinity. Furthermore, under
motion of the particles. Recently, Chono and Tsuji performedhe assumption of creeping flow, we have neglected the non-
a numerical solution of the Ericksen-Leslie equations aroundinear velocity term in the momentum-balance equation re-
a cylinder determining both the velocity and director field sulting from the convective part of the total time derivative
[42]. They could show that the director field strongly de-dv/dt=dv/dt+v-Vv. That means, the ratio of inertial
pends on the Ericksen number. However, for homeotropidﬁgvzla) and viscous gv/a?) forces, which defines thRey-
anchoring, their director fields did not exhibit any topologi- nolds numberRe=pwva/#, is much smaller than one. To
cal defects required by the boundary conditions. estimate the forces, all gradients are assumed to be of the
The Stokes drag of a particle surrounded by a disclinatiororder of the inverse particle radius ®, the characteristic
ring strongly depends on the presence of line defects. Thelength scale of our problem. Equatiofiy are solved ana-
exist a few studies, which determine both experimentallylytically for the nonslip condition at the surface of the par-
[43] and theoreticall{44—-44 the drag force of a moving ticle [v(r=a)=0], and for a uniform velocity .. at infinity.
disclination. In the multidomain cell, a novel liquid-crystal Once the velocity and pressure fields are known, the drag
display, the occurence of twist disclinations is forced byforceFgfollows from an integration of the total stress tensor
boundary conditionp47,48. It is expected that the motion of —pl+T' over the particle surface. An alternative method
these line defects strongly determines the switching time oflemands that the dissipated energy per unit time,
the display. J(T"-A)d®, should beFg., [50]. The final result is the
The experiments on inverted nematic emulsi¢f28]  famous Stokes formula for the drag force:
and the investigations by Ruhwandl and Teren{jé%] mo-
tivated us to perform Stokes drag calculations for a particle Fs=vyv,. with y=6wmna. 2
in a nematic environment, especially for the particle-defect
dipole[see Fig. {1)]. We concentrate on low Ericksen num- The symboly is called the friction coefficient. The Einstein-
bers, where the director field is not affected by the velocitystokes relation relates it to the diffusion consténtof a
field. We present streamline patterns, interpret them, calcUsrownian particle[51-53: D =kgT/(675a), wherekg is
late Stokes drags for motions parallel and perpendicular tghe Boltzmann constant arfilis temperature.
the overall symmetry axis, and compare the results to the we have also calculated the Stokes drag for a finite
Saturn-ring configuration and a uniform director field. Com-spherical region of radius=a/e with the particle at its cen-
pared to these systems, the dipole configuration lacks a miger. We followed the derivation for an infinite mediu9],

ror plane whose consequences we illustrate. however, assuming’ =0 atr =a/e. The result is
The paper is organized as follows. In Sec. Il we discuss

the theoretical concepts. We start with a short review of the 1-36/2+ 63— £5/2
Stokes drag in an isotropic fluid, introduce the Ericksen- Fs=7y.0. With y,=6m7na elere —¢ ,
Leslie equations, and formulate the limit of low Ericksen ¢ ¢ (1-3e/2+&%/2)?
numbers, which reduces our problem considerably. A critical 3

A. Stokes drag in an isotropic fluid
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where we keep the notatian, for the velocity atr=ale. h/ = y1Ni+ y2A;n; . (12)
The correction term is a monotonously increasing function in
e on the interesting intervdl0,1]. Hence, the Stokes drag The coefficienty, is a true rotational viscosity for the direc-
increases when the particle is confined to a finite volume. Foror motion. As explained above, it contributes to the viscous
e=1/32, the correction is about 5%. torque even in the stationary case whenéwers 0. Onsager
relations requirey; = a3z— a, and y,= a,+ a3 [26,27).
B. Ericksen-Leslie equations

To calculate the Stokes drag in a nematic environment, we C. Stokes drag in a nematic environment

have to deal with the Ericksen-Leslie equations, which In this paper we do not attemp to solve the Ericksen-
couple the flow of the fluid to the director moti¢26,27. In Leslie equations in general. Instead, we will resort to an ap-
a completely linearized form, they are identical to the hydro-proximation already employed by Ruhwandl and Terentjev
dynamic equations derived by the Harvard grdég,55. [40,41. Analogous to the Reynolds number, we define the
Under the assumption of an incompressible fluid, stationarfricksen numbe(Er) [45] as the ratio of viscousv.,/a?)
director and velocity fields, and Rel, the Ericksen-Leslie and elastic K/a®) forces in the momentum balance of Eq.
equations take the form (5):

dive=0, (4) NV A
Er= K

(12)
—Vp+div(T°+T")=0, (5)
The elastic forces are due to distortions in the director field,
nx (h®—h")=0. (6) whereK stands for an average Frank elastic constant. In the
following, we assume E£1, i.e., the viscous forces are too
The divergence of the stress tensor is defined by THiv  weak to distort the director field, and we will always use the
=V,T;;. Due to elastic distortions in the director field, an static director field forw=0 in our calculations. The condi-

elastic stress tensdr® occurs, tion Er<1 constrains the velocity... Using typical values
o of our parameters, i.e.K=10°®dyn, »=0.1 P, anda
o__ b g =10 um, we find
TIJ annkV'n"' (7)
um
wheref, stands for the Frank free-energy den$$,27. In IS 100—S . (13

the one-constant approximation it reaﬂ§=K(Vin]—)2/2.
The uniaxial symmetry of the nematic liquid crystal allows Before we proceed, let us check for two cases if this con-
for additional terms proportional té in the viscous stress straint is fulfilled. First, via a phenomenological theory, one

tensor, can show that the particle-defect dipoles interact like electric
dipoles[6,11]. For inverted nematic emulsions, Pouéhal.
Ti’j:alninjnkn,Ak,+a2ani+agniNj+a4Aij+a5njnkAik invented a method to pull two water droplets api8].
When these droplets were released, they were approaching
+agninAj .- ®) each other, with the Stokes drag balancing the dipolar force.

By measuring the velocity as a function of droplet separa-
tion, the dipole interaction was verified. In these experiments
the velocities of the particles were always smaller than
10 um/s. Second, in a falling-ball experiment, the velocity

The coefficientsy; are called Leslie viscosities. For different
geometries, their combinations result in the threeddigicz
shear viscositie§24—27. In addition, a second dynamic

variable v of the falling particle is determined by a balance of the
an gravitational, the buoyancy, and Stokes’s friction force, i.e.,
— 3 H
N=—r+v-Vn—curloxn/2, (9  6mnesav=(4m/3)a’(¢ —en)g, and we obtain
2(0—eggpa‘*g _ _ um
appears. It describes the rate of change odlative to a fluid V=3 TV ! —10 1—5 . (14)
eff

vortex. Note that in the stationary casén(dt=0) the con-
vective derivativev - Vn is still present. It contributes when- 1o arrive at the estimate, we choosgs=0.1 P anda
ever the fluid flows through a nonuniform, static director— 10 ,m. We takep=1 g/cn? as the mass density of the

pattern as given, e.g., by the Saturn-ring and dipole configusarticle ande — 04=0.01 g/cni as its difference to the sur-
ration. Another famous example for this process is the Helyoynding fluid[1].

frich permeation for a static director heli56]. _ After we have shown that Ef1 is a reasonable assump-
The /dynamlc equat|o(16) balances elastich?) and vis- tion, we proceed as follows. We first calculate the static di-
cous ') torques on the director, rector field around a sphere from the balance of the elastic

¢ ‘ torquesnx h®=0[see Eqs(6) and(10)]. It corresponds to a
ho=v. My ﬂ (10) minimization of the Frank free energy under the contraint
b having any? that n is a unit vector. Forv =0, the static director field
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defines a static pressung, via the momentum balance, Ericksen numbersn~ Er[40]. This adds a correctiodT® to
—Vpo+divT®=0 [see Egs(5) and (7)]. With the help of  the elastic stress tensdP in the momentum balance equa-
nxh°=0, one shows that div=—Vf, [27]. Hence, the tion that does not just renormalize the pressure. In the case of
static pressure is knowpy=const- f,,. Forv#0, we again  a spatially uniform director field, the correctiafi® is by a
divide the total pressure into its static and hydrodynamicactor Er smaller than the viscous forces, and it can be ne-
part,p=po+p’. Then the velocity field is determined from glected. However, for a nonuniform director field, it is of the
the same set of equations as in the isotropic ¢ase Egs. same order as the viscous term, and, strictly speaking, should
(1)], provided that we employ the viscous stress tefflSaof  be taken into account. However by performing numerical
a nematic liquid crystal. In the case of an inhomogeneousalculations of the Stokes drag for arbitrary Ericksen num-
director field, both the different M@wicz shear viscosities bers Er, we can show that the procedure, outlined here, is
and the rotational viscosity,, discussed above, contribute indeed valid for Ex-0 [57]. We add two remarks that may
to the Stokes drag. help to clarify the problem. First, far away from the sphere,
In general, the friction forc& s does not point along..,  6n has to decay at least linearly in the 1Then one shows
and the friction coefficient is now a tensgr In the follow-  that 5T is negligible against the viscous forces at least in the
ing, all our configurations are rotationally symmetric aboutfar field. Second, when calculating the isotropic Stokes drag,
the z axis, and the Stokes drag assumes the form the nonlinear termv - Vv in the Navier-Stokes equations is
i usually omitted for R&1. However, whereas the friction
Fs=yo.. with y=y,1+(yj~v.)e®e. (19  and the pressure force for the Stokes problem decayras 1/
the nonlinear term is proportional tor?/ exceeding the first
two terms in the far field. Nevertheless, performing extensive
calculations, Oseen could prove that the correction of the
eréonlinear term to the Stokes drag is of the order of[ R&.

The symbol® means dyadic product areg] is a unit vector

along thez direction. There only exist two independent com-
ponentsy andy, for a respective flow, parallel or perpen-
dicular to the symmetry axis. In these two cases, the Stok
drag is parallel tw.. . Otherwise, a component perpendicular

to v.,, called lift force, results[41]. In analogy with the Ill. NUMERICAL METHOD
isotropic fluid, we introduce effective viscositiegy and 7y The numerical investigation is performed on a grid that is
via defined by modified spherical coordinates. Since the region
_ I - . outside the spherical particle is, in the extreme case, infi-
V=67 7er@d  and y, =67 7. (16)  nitely extended, we employ a reduced radial coordirgate

=alr. It maps the surface of the sphere<a) on é=1 and
r=o0 on ¢=0. The velocity and director fields are expressed
in the local spherical coordinate basgs ,e,,e,} attached to

It is sufficient to determine the velocity and pressure
fields for two particular geometries with,, , either parallel
or perpendicular to the axis. Then, the friction coefficients h i 0.
are calculated with the help of the dissipated energy per unffach space POIE, 6, ¢}

time [27,35,41,5Q0 n(r)=n,e+nye,, (19

FHS/LUOO:J'(T’-A-Fh’-N)dgr. (17) v(r):vrer+vge0+v¢e¢_ (20)

It turns out that the alternative method via an integration ofThe director field is restricted to a plane containing the rota-
the stress tensor at the surface of the particle is numericallfonal axis @ axis) of the director configurations in Fig. 1.
less reliable. Note that the velocity and pressure fields for akVe parametrized the director components with the help of
arbitrary angle between.. and e, follow from superposi- the tilt angle ® with respect toe : n,=cos® and n,
tions of the solutions for the two selected geometries. This is=sin®. The director field was determined by minimizing the
due to the linearity of our equations in the velocity field ~ Frank free energy in the one-constant approximation numeri-
It is clear that the Brownian motion in an environment cally using the standard Newton-Gauss-Seidel method. The
with a rotational symmetry axis is governed again by twodetailed procedure is described in Rgf2].
independent diffusion constants. The generalized Stokes- To obtain the friction coefficienty;, an effective two-
Einstein formula of the diffusion tens®@ takes the form dimensional problem has to be solved due to the rotational
symmetry of the director configurations about thaxis. As
kgT for the director field, we seb,=0. In the case ofy,
D=D,1+(Dj-D,)e®e,, DH/L:M' (18) (v.Le), all three vector comp¢onents of the velocity field
have to be taken into account.
With our choice of modified spherical coordinates, the
momentum balance of Eggl) with the viscous stress tensor
At the end, we add some critical remarks about our apof a nematidsee Eq(8)] becomes very complex in both the
proach, which employs the static director field for=0.  two- and three-dimensional cases. We, therefore, used the
From the balance equation of the elastic and viscous torquesgebraic progranMAPLE to calculate it. As input, the sym-
[see Egs(6), (10), and(11)], one derives that the changa metrized gradient of the velocity field\j, the rate of change
of the director due to the velocity is of the order of the of the director (), and the divergence of the viscous stress

D. A critical remark
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tensor in spherical coordinates are needed, which we formu- TABLE I. Boundary values for the two-dimensional problem.

lated with the help of standard methods from differentialThe velocity at{= e is normalized to 1. Numbers are due to bound-

geometry. Since some of the formulas are hard to find irry conditions. The symbol sym means “required by symmetry.”

literature, we give the end results in the Appendix. The abbreviations linex and quadex stand, respectively, for “by
The two equations in Eq(1) are treated by different nu- linear” or “quadratic extrapolation.”

merical techniques. Given an initial velocity field, the mo-

mentum balance, including the inertial te@a/dt, can be £== £=1 =0 o=m

viewed as a relaxation equation towards the stationary veloc- cosé 0 quadex quadex

ity field, which we aim to determine. The Newton-Gauss- —sing 0 sym—0 sym—0

Seidel met_hoc[58] provides an effective tool to implement D' 0 linex quadex quadex

this relaxation. Employing the discretized version of the mo-

mentum balance equation, the velocity at the grid point

relaxes according to region of reduced radiuga=1/e =32. Foré=¢=1/32, our
[—Vp +divT’], programs reproduced the isotropic Stokes drag, calculated

I

o) =v2%r)— (21  from Eq.(3), with an error smaller than 1%.

[(—Vp' +divT)]/dvi(r)

Note that the denominator can be viewed as the inverse of a IV. RESULTS AND DISCUSSION
variable time step for the fictitious temporal dynamicsvof

A relaxation equation for the pressure involving @liv0 A. Streamline patterns

is motivated by the method of artificial compressibilig]. In Fig. 2 we compare the streamline patterns around a
Let us consider the complete mass-balance equation. Fepherical particle for an isotropic liqui@tight part, shaded
small variations of the density, we obtain light gray) and a spatially uniform director field parallel to
v., (left pard. A uniform n can be achieved by weak surface
ap o . ) ap anchoring and application of a magnetic field with a mag-
i ngVv with  c=~/—=~ (22)  netic coherence length smaller than the particle radius. In the

isotropic fluid the bent stream lines occupy more space
around the particle, whereas for a uniform director configu-
ration they seem to follow the vertical director field lines as
much as possible. This can be understood from a minimum
principle. It is known that a shear flow along the director
possesses the smallest of the three possiblsdtiez shear
phew=pold_ gAt divo. (23)  Viscositied 26,27, calledr, . Hence, in such a geometry, the
2 smallest amount of energy is dissipated. Indeed, for a uni-
form director field, one can derive the momentum balance
Note that the reduced fictitious time stgp\t/c? cannot be  from a minimization of the dissipation function stated on the
chosen according to the Newton-Gauss-Seidel method sing#yht-hand side of Eq(17) [39]. A term —2p dive has to be
dive does not contain the pressyelnstead, it should be as added because of the incompressibility of the fluid. It turns
large as possible to speed up the calculations. In F&&l.  out that the Lagrange multiplier 2p is determined by the
upper bounds are given beyond which the numerical schemgressurep.
becomes unstable. In the case of the topological dipole parallel#o, we
As already mentioned, to obtain the friction coefficient observe a clear asymmetry in the streamlines as illustrated in
|, an effective two-dimensional problem has to be solvedrig. 3. The dot indicates the position of the point defect. It
due to the rotational symmetry of the director configurationshreaks the mirror symmetry of the streamline pattern, which
about thez axis. The integration area is defined by=@ exists, e.g., in an isotropic liquid relative to a plane perpen-
<7 and e<{<1, where we allow a finite extent of the dicular to the vertical axis. In the far field of the velocity, the
region around the sphere. We assume the conventional nogplay deformation in the dipolar director configuration is
slip boundary condition at the particle’s surface and, in reclearly recognizable. Since we use the linearized momentum
duced units,p.=e€, at é&=¢. In Table | all the boundary balance inv, the velocity field is the same no matter if the
values are summarized. In the three-dimensional case of fluid flows upward or downward. The streamline pattern of
we choose the velocity far away from the spherevas the Saturn ringsee Fig. 4right, shaded light gray exhibits
=eg,. Then the velocity field possesses at least two mirroithe mirror symmetry, and the position of the ring disclination
planes; thexz and theyz plane. As a result, the necessary is visible by a dip in the streamline close to the equator of the
three-dimensional calculations can be reduced to one quadphere.
rant of the real space @¢=< 7/2). The boundary values are If v., is perpendicular to the dipole axis, the missing mir-
described in Table II. ror plane of the dipole configuration is even more pro-
It turned out that the three-dimensional version of ournounced in the streamline pattern. It is illustrated in Fig. 5,
programs is not completely stable for an infinitely extendedwhere the point defect is indicated by a dip in the streamline.
integration volume. We therefore solved E@b). in a finite  Although the pattern resembles the one of the Magnus effect

The quantityc denotes the sound velocity for constant tem-
perature, ana?/ ¢ is the isothermal compressibility. In dis-
cretized form we have
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TABLE Il. Boundary values for the three-dimensional problem. The velocity=a¢ is normalized to 1.
Numbers are due to boundary conditions. The symbol sym means “required by symmetry.” The abbrevia-
tions linex and quadex stand, respectively, for by “linear” or “quadratic extrapolation.” Onzthgis (0
=0,7), we determine , by quadratic extrapolation. Then, is fixed since, by symmetry, the velocity has to
point along thex axis.

éE=e é=1 0=0 0= ¢=0 ¢=ml2
Uy sinfcosq¢ 0 sym—0 sym—0 quadex sym-0
Uy cosfcosg¢ 0 quadex quadex quadex synd
Uy —sing 0 sym sym sym-0 quadex
p’ 0 linex sym—0 sym—0 quadex 0

[49], symmetry dictates thétg|v.. . Alift force, perpendicu- Recalling our note in Sec. Il B following E@9), a contribu-

lar to v.,, does not exist. However, we find a nonzero vis-tion from the rotational viscosity; arises, which does not
cous torque acting on the particle whose direction for a fluigeXist in a uniform director field. In all three cases, we find
flow from left to right is indicated in Fig. 5. Symmetry al- 77ex €ither close to or larger tham, . The Migsowicz viscos-
lows such a torquéM since the cross product of a dipole ity 7, determines a shear flow with the uniform director field
momentp, which can be assigned to the dipolar configura-perpendicular to the velocity gradient. So it is obvious that
tion (see Refs[6,11]), andv., gives an axial or pseudovector 7y iS not the only determining quantity oﬂLﬁ as argued by
MopXw.,. In the Saturn-ring configuration, a nonzero di- Cladis et al. [22]. For v.. perpendicular to the symmetry
pole moment does not exist by symmetry. Therefore, a nonaxis, nfﬁ assumes a value between and 7. This obser-

zero torque cannot occur. vation is understandable since the Bbevicz viscosity 7,
determines a shear flow with the director perpendicular to the
B. Effective viscosities velocity, which is mainly the case in our second geometry.

The ratio néﬁ/nﬂﬁ for the uniform director field is the
largest since the extreme cases of a respective flow, parallel
perpendicular to the director field, is realized the best in
is configuration. Furthermore, both the dipole and the Sat-
urn ring exhibit nearly the same anisotropy, and we conclude
that they cannot be distinguished from each other in a

falling-ball experiment. The ratiog s/ n‘,‘sﬁ, which we deter-
mine for the Saturn ring and the uniform director field in the

i i : ieldal . ex-

by (é|ad|5bet 33&22]} gg;arunlfor?vd:fe?;ﬁr filﬁldr%ﬁ ex 1iqi case of the compound MBBA, agree well with the results of
ceedsmny, by 5970 Of BUY0, Fespectively. 1ne INCrease ongl g hwandl and Terentjev who fingt 7l unitorm= 1.69 and
nates in the streamlines bending around the particle. Thel/ I | —1.5[41]. H thev differ f the find
effective viscosityyl of the dipole and the Saturn ring are eff 7effl Saturri~ - , riowever, they difier from the find-

larger thanz, by an approximate factor of 2. In addition to ings of_ Billeter and Pelcovits in their molecular-dynamics
simulations[15].

the bent stream lines, there exist strong director distortions .

: . We have also performed calculations where we replaced
close to the particle that the fluid has to flow through, “OMihe numerically determined director fields by ansatz func-
stantly changing the local direction of the moving molecules.tions that are very close to the numerical figli, 17 In the

In Table Ill we summarize the effective viscosities of the
Stokes drag, defined in E(L6), for a uniform director field,
the dipole, and the Saturn-ring configuration. The values ar{-%r
calculated for the two compounds MBBA and 5CB. As a
reference, we include the three M@vicz viscosities. In the
case ofv,, parallel to the symmetry axis of the three con-
figurations, we might expect tha;{'eff is close ton, as argued

unifor i b . ' .
b i isotrap inglell isotrapi

I
/

© O

FIG. 2. Streamline pattern around a spherical particle for an FIG. 3. Streamline pattern around a spherical particle for an
isotropic liquid (right, shaded light grayand a uniform director isotropic liquid(right, shaded light grayand the topological dipole
field parallel tov., (left). parallel tov., (left).
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ipalell i —dipolet v —————

O — Q=

FIG. 4. Streamline pattern around a spherical particle for the FIG. 5. Streamline pattern around a spherical particle for the
Saturn ring(right, shaded light grayand the topological dipole topological dipole perpendicular ®, .
(left) with their respective symmetry axis paralleldg .

ansatz function of the dipolar configuration, we vary the We have started to perform a complete solution of the
separationry between the hedgehog and the center of theéEricksen-Leslie equations including a relaxation of the static
particle. Both the effective viscosities increase withsince  director field forv # 0. Such calculations help to gain insight
the nonuniform director field with its strong distortions oc- into several open problems. First, there was the question if
cupies more space. However, the razt;gf/n basically re- the corrections to the Stokes drag are of the order of Er.
mains the same. For the Saturn rm,gi,rf increases stronger Results for the two-dimensional problem with the relaxation
with the radiusr 4 than doesyss. This seems to be reason- of the director field included show that the Stokes drag of the
able since a flow perpendicular to the plane of the Saturlipolar configuration varies indeed linearly in Er for<€t.
ring experiences more resistance than a flow parallel to thEurthermore, it is highly nonlinear depending on being
plane. As a resultys,/ nl‘eff decreases when the ring radiys ~ €ither parallel or antiparallel to the topological dipole. De-
is enlarged. tails of these investigations will be published elsewh&@.
A second problem concerns the orientation of the dipole. For
V. CONCLUSIONS Er—0, the Stoke; drag of the topc_)logical dipole is'the same,
whether the flow is parallel or antiparallel to the dipole mo-
We have studied the Stokes drag of a spherical particle iment. This is also true for an object with a dipolar shape in
three different nematic environments: a uniform directoran isotropic fluid. If such an object is slightly turned away
field, the Saturn-ring, and the dipole configuration. We havefrom its orientation parallel t@.,, it will experience a vis-
presented streamline patterns of the velocity. In the uniforntous torque and either relax back or reverse its direction to
director field, the streamlines follow as much as possible théind its absolute stable orientation. The topological dipole
director field lines, which we explained by minimization of will not turn around since it experiences an elastic torque
the dissipated energy. The dipole lacks a mirror plane pertowards its initial direction that is fixed by the director field
pendicular to its rotational axis. The consequences arat infinity [11]. Nevertheless, a full solution of the Ericksen-
clearly seen in the streamline patterns. Furthermorepfor Leslie equations would show whether and how much the
perpendicular to the symmetry axis, a nonzero viscous torqueipole deviates from its preferred direction under the influ-
is possible that cannot appear in the two other configurationgnce of a velocity field. It would also clarify its orientation
We have calculated effective viscosities for the two mainwhenv., is perpendicular to the dipolar axis. At last, there is
directions of the Stokes drag, and we have pointed out théhe nonzero viscous torque in the three-dimensional geom-
role of the rotational viscosityy, |n the Ericksen-Leslie etry. We speculate that it is cancelled by elastic torques if a
equations. Interestingly, the ratméﬁ/ Mo 1S Nearly the same  full solution of the Ericksen-Leslie equations is performed.
in the dipole and the Saturn-ring configuration so that they The Stokes drag of particles in a nematic environment
cannot be distinguished by measuring the Stokes drag.  still presents a challenging problem to theorists. On the other

TABLE lll. Effective viscosities of the Stokes drag for the two compounds MBBA and 5CB and for three
different director configurations. As a reference, the thregsmigcz viscosities are included.

MBBA 5CB
=0.416 P,7,=0.283 P,5.=1.035 P =0.374 P,n,=0.229 P,5.=1.296 P
Unlform n Dipole Saturn ring Unlforrm Dipole Saturn ring
neﬁ [P] 0.371 0.503 0.485 0.375 0.525 0.494
75 [P 0.687 0.770 0.755 0.751 0.864 0.853
el T 1.85 1.53 1.56 2.00 1.64 1.72
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hand, clear measurements of, e.g., the anisotropy in Stokes®om which the cross product with the director fiefdis
friction force are missing. readily calculated. The convective term M contains the
gradient ofn which is analogous to EqA2). It is contracted
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APPENDIX 1 1
For our numerical treatment, the set of E@B. has to be - FTB o FTM" (A4)

formulated in spherical coordinates. For completeness, we
give the divergence of the velocity field:

1 aT 2 10T coté
i F?Ur ZUr 1 (91)0 cotd 1 (leT’) =T .+ or 4 — 4+ = 00+
=4 — —_—_— —_— 0 4 7 66
dve="r+=—+ gt Vet rgngle rf o a6 r
(A1) 1 9Ty, cotd
. . + — - (A5)
The formula for the viscous stress tensor of Eg). is also rsing d¢ ro ¢
valid in spherical coordinates with all components chosen
relative to the spherical coordinate basisjk,l=r,6,¢).
The symmetrized velocity gradie is derived from the 1 Ty 2 coto
gradient of the velocity field: (divT)=rTrgt — =+ T Tort ——(Tos T Tg0)
gradv
(100, 1 Tos (AB)
v, 13dv, vy 1 v, vy r 90 rsinéd do¢
a r de r rsing d¢ r
_| e 1wy v 1 e _ cot6U¢ _ Finally, the differential operators for our modified spheri-
o rdg r rsing d¢ r cal coordinates result from the substitution
Wy Ly L vy v cOB
ar r 96 rsing d¢ r r ¢ 5
(A2) r=1/¢ and E:_fza_g' (A7)
The dynamic variabl®& [see Eq(9)] involves the curl of the
velocity field:
In using the operators, one has to remember that the director
o= 1dv, cotd B 1 oJv, 1 v, configurations are axially symmetric about thexis, i.e.,
e iy T Y b &\ sine b they do not depend on the azimuthal angleand that the

azimuthal component is zern;=0. In the two-dimensional
vy vy - @+ vy 1dvp e (A3) calculation to determine, the same holds for the velocity
o[\ T r oroag)® field.
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