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Disclination loop behavior near the nematic-isotropic transition
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We investigate the behavior of disclination loops in the vicinity of the first-order nematic-isotropic transition
in the Lebwohl-Lasher and related models. We find that two independent measures of the transition tempera-
ture, the free energy, and the distribution of disclination line segments, give essentially identical values. We
also calculate the distribution functionD(p) of disclination loops of perimeterp and fit it to a quasiexponential
form. Below the transition,D(p) falls off exponentially, while in the neighborhood of the transition, it decays
with a power-law exponent approximately equal to 2.5, consistent with a ‘‘blowout’’ of loops at the transition.
In a modified Lebwohl-Lasher model with a strongly first-order transition we are able to measure a jump in the
disclination line tension at the transition, which is too small to be measured in the Lebwohl-Lasher model. We
also measure the monopole charge of the disclination loops and find that in both the original and modified
Lebwohl-Lasher models, there are large loops that carry monopole charge, while smaller isolated loops do not.
Overall, the nature of the topological defects in both models is very similar.

DOI: 10.1103/PhysRevE.64.031710 PACS number~s!: 64.70.Md, 61.30.Jf
a
ic
b

s.

e
r
tl
or
e
or
te
el

ns
th

r
ha
a

e
r-
ri
s
e

eo

e
d

pic
ru
m

n

of
se

gi-
s.
en-
tive
inct,

er
ge,
s in
r
ine
in

of
free
t

e
t
the

the

als
ile
berg
ert

atic
n

es
u-
I. INTRODUCTION

In many physical systems, particularly two-dimension
ones with continuous order parameter symmetry, topolog
defects can play an essential role at the phase transition
tween the ordered~or quasiordered! and disordered phase
Using simple physical arguments Kosterlitz and Thouless@1#
pointed out that phase transitions in two-dimensional sup
fluid 4He, crystalline solids, andXY magnets would occu
via the unbinding of point topological defects. Subsequen
Kosterlitz @2# developed a renormalization-group theory f
the two-dimensionalXY model that provided quantitativ
predictions for this defect-mediated critical behavi
Renormalization-group theories for the defect-media
melting of crystalline solids in two dimensions were dev
oped by Nelson and Halperin@3# and Young@4#.

The theoretical picture for defect-mediated phase tra
tions in three dimensions is less clear. It is expected on
basis of the Villain representation@5# that the transition in the
three-dimensionalXY model is mediated by vortex loops@6#.
In this scenario, there is a finite length scale at low tempe
tures associated with the typical size of vortex loops t
disorder the system on smaller length scales. At the ph
transition, loops can exist on all length scales, i.e., ther
‘‘vortex-loop blowout’’ @7,8# and the system enters the diso
dered phase. Scaling and renormalization-group theo
have been developed@9# that provide quantitative prediction
for the critical behavior, though these theories are not as w
established as the corresponding Kosterlitz-Thouless th
in two dimensions. Monte Carlo simulations@10,11# have
yielded further support for this vortex loop picture of th
phase transition. In the three-dimensional Heisenberg mo
there is also numerical evidence@12# for a phase transition
mediated by point topological defects~monopoles!, though
this evidence has been questioned by other authors@13#.

The role of topological defects at the nematic-isotro
phase transition poses intriguing questions. The defect st
ture in nematics is particularly rich and while sharing so
similarities with the defect structures of theXY and Heisen-
berg models, there are significant differences due to the
1063-651X/2001/64~3!/031710~7!/$20.00 64 0317
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ture of the order-parameter space. The local directorn̂ of a
nematic liquid crystal is defined as the average direction
alignment of a group of molecules. However, unlike the ca

of ferromagnets, the directionsn̂ and 2n̂ are equivalent.
Thus, the order-parameter space for nematics isP2, the unit
sphere with antipodal points identified. The stable topolo
cal defects@14# include monopoles and disclination line
The monopoles are similar to the point defects of the Heis
berg model, though in the latter case, positive and nega
topological charges of the same absolute value are dist
whereas they are equivalent in the nematic@15#. While defect
lines in theXY model can have any integer value with eith
positive or negative sign, one value of topological char
11/2, characterizes the entire class of stable line defect
nematics@15,16#. All other half-integer valued lines, whethe
positive or negative, can be continuously deformed to a l
with charge11/2, and integer-valued lines can ‘‘escape
the third dimension’’@17#. As in theXY model, the disclina-
tion lines form closed loops or terminate on the surface
the sample because of the prohibitive energy cost of a
line end. However, whereas theXY model loops carry no ne
monopole charge, nematic disclination loopscan ~though all
need not! carry monopole charge@18#.

Not only is the classification of defects different in th
nematic compared with theXY and Heisenberg models, bu
also the nature of the phase transition, first order in
former case and continuous in the latter. Lammertet al. @19#
have argued that disclination lines are responsible for
first-order nature of the nematic-isotropic~NI! transition.
They developed and studied a lattice model of liquid cryst
that allows for the suppression of the line defects wh
maintaining the presence of monopoles as in the Heisen
model. As the defect lines are made more costly, Lamm
et al. found that the transition between the ordered nem
phase~characterized by a nonzero disclination line tensio!
and the isotropic phase~characterized by zero line tension!
becomes more weakly first order. At sufficiently large valu
of the core energy, the transition splits into a pair of contin
©2001 The American Physical Society10-1
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ous transitions, and a new phase appears with no long-ra
nematic order but nonzero disclination line tension. In
extreme limit where the disclination lines are complete
suppressed, their model reduces to the Heisenberg m
with the expected continuous phase transition.

In this paper, we report on a numerical study of topolo
cal defect behavior near the NI transition in the Lebwo
Lasher~LL ! lattice model@20# of liquid crystals that exhibits
a weakly first-order phase transition~a weak first-order tran-
sition is characteristic of real experimental systems as w!.
We also consider the defect behavior in a modified LL mo
that exhibits a strongly first-order transition. We find that tw
independent measures of the NI transition temperature,
the free energy and the other the distribution of disclinat
line segments, give almost identical values. By measu
the distribution of disclination loops as a function of the
perimeter, we find evidence for the ‘‘blowout’’ of disclinatio
loops at the transition, similar to the three-dimensionalXY
model. The disclination line tension in the modified L
model drops discontinuously to zero at the transition; in
case of the LL model, the transition is too weakly first ord
to detect a similar discontinuity. We also measure the mo
pole charge of the loops and find in both the LL model a
its modification that large loops and small loops adjacen
large loops have nonzero monopole charge, while small
lated loops do not. There appear to be no significant dif
ences between the two models in the nature of the topol
cal defects present.

In Sec. II we provide the details of our simulations a
results, followed in Sec. III by our conclusions.

II. SIMULATIONS AND RESULTS

We performed Monte Carlo simulations on the Lebwo
Lasher model, a lattice model of rotors with an orientatio
order-disorder transition. While it neglects the coupling b
tween the orientational and translational degrees of freed
present in a real nematic liquid crystal, it is generally b
lieved that this coupling does not play a significant role at
NI transition. With the absence of translational degrees
freedom, the LL model is particularly well suited for larg
scale simulations of the transition. The model is defined
the Hamiltonian

HLL52J(̂
i j &

P2~s i•s j !52J(̂
i j &

H 3

2
~s i•s j !

22
1

2J ,

~1!

where the sum is over all nearest-neighbors rotors situate
a cubic lattice. The long axes of the rotors are specified
the unit vectorss i , P2 is the second-order Legendre pol
nomial, andJ is a coupling parameter. The LL model ha
been intensively investigated using Monte Carlo techniq
since its introduction@21–27,35#. The most complete nu
merical analysis of the NI transition in the LL model usin
the conventional single spin-flip Metropolis algorithm w
carried out by Zhanget al. @26# on systems up to a size o
283. However, the single spin-flip algorithm is inefficient
the critical region and during the course of a simulation,
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system becomes trapped in one of the local minima co
sponding to either the ordered or disordered phases.
difficulty can be overcome by using a cluster algorithm th
is most efficient in the critical region and the system samp
both local minima effectively. The first such algorithm fo
nematic liquid crystals was introduced by Kunz and Zu
bach@28# to study the two-dimensional LL model. Their a
gorithm is a modification of the Wolff algorithm@29# for
ferromagnetic systems, and greatly reduces critical slow
down. In an earlier publication@30#, we used the Kunz-
Zumbach algorithm to carry out a finite-size scaling analy
of the NI transition in the three-dimensional LL model wi
systems sizes up to 703 using the Ferrenberg-Swendsen r
weighting technique@31#.

Here we use the cluster algorithm to study the behavio
disclination lines and monopoles in the critical region. F
lowing Ref. @19#, we introduce a disclination line segme
counting operator,

Di jkl [
1

2
@12sgn$~s i•s j !~s j•sk!~sk•s l !~s l•s i !%#,

~2!

which is unity if a disclination line segment pierces the la
tice square defined by the four rotorss i , s j , sk , ands l .
This method of locating disclination segments is mathem
cally equivalent to the method of Zapotockyet al. @32#. A
disclination line segment can be considered as a bond o
cubic lattice dual to the original lattice of the rotors, and on
an even number of bonds meet at a dual lattice site. Conn
ing the bonds to form disclination loops cannot be done i
unique way when four or six bonds meet at a site. To d
with this ambiguous case we followed the approach of R
@11# and chose a random pairing of the bonds. We thus tra
the path of each disclination line through the system until
path crossed itself and formed a loop. The bonds of the l
were then eliminated from the dual lattice to avoid doub
counting when additional loops were traced.

We considered several measures of the nature of the
clination segments and loops, including the number of s
ments in the nematic and isotropic phases at coexistence
distribution of loops as a function of their perimeter, and t
monopole charge of the loops.

We simulated a system of size 703 ~with periodic bound-
ary conditions! for 53106 Monte Carlo steps~MCS! where
one MCS corresponds to one cluster formation attempt
update of the spins comprising the cluster. Every 200 MC
we measured the total number of disclination line segme
in the system and stored our data in a histogram. The lo
rithm of this histogram is shown in Fig. 1 at the temperatu
T51.1226~temperatures measured in units of J/kB) where
the two wells have equal depth. The right-hand well cor
sponds to the isotropic phase~which we confirm by monitor-
ing the nematic order parameter! and the left-hand well with
fewer disclination line segments corresponds to the nem
phase. Varying the temperature by as little as 0.0001 yie
wells of unequal depths. In our earlier work@30#, we used
the cluster algorithm to compute a histogram of the free
ergy ~as a function ofE5HLL /N, the energy per site!. We
0-2
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DISCLINATION LOOP BEHAVIOR NEAR THE . . . PHYSICAL REVIEW E 64 031710
found a double-well structure for the free energy with eq
well depths occurring at the temperatureT51.1226, which
we then identified asTNI . Thus, the appearance of equa
well depths in the histogram for the density of disclinati
line segments at thesametemperature~to within our numeri-
cal accuracy! suggests that disclinations play a crucial role
the NI transition.

To further assess the role played by disclination loops
the transition, we followed the approach used in Ref.@11# to
study defect behavior at the three-dimensionalXY transition,
and calculated the perimeter distribution functionD(p) ~the
average number of loops with perimeterp). In Refs. @11#
D(p) was fit to the following form:

D~p!5Ap2a exp@2e~T!p/kBT#, ~3!

wheree(T) is the effective vortex line tension which is non
zero at low temperatures. Thus, in the low-temperat
ordered-phase vortex loops with largep are exponentially
suppressed, and the length scaleL0 governing the typical
perimeter size of the vortex loops is given byL0
5kBT/e(T). At the critical temperatureTc of theXY model,
e(T) vanishes continuously and the distributionD(p) has a
power-law form. Consequently there will be a finite pro
ability of having vortex loops that traverse the entire syst
and destroy the long-range order.

We computedD(p) at the NI transition temperatureTNI
51.1226 ~identified by the two methods described abov!
and at two slightly lower temperatures. The results are sho
in Fig. 2. We simulated the system for 53106 MCS and
computedD(p) every 200 MCS to make sure that the su
cessive configurations for bonds distribution are comple
updated. Fitting our data to the form Eq.~2! yields a
52.5060.05. For noninteracting loops~i.e., random walks!

FIG. 1. The logarithm of the distribution of disclination bon
density in the Lebwohl-Lasher model, Eq.~1! for system size 703 at
the NI transition temperatureTNI51.1226. The density is defined a
the ratio of the number of disclination bonds to the total numbe
lattice bonds (33703 in the present case!. The solid line is a guide
to the eye.
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we expecta52.5 exactly, whereasa.2.5 anda,2.5 for
repulsive and attractive loop interactions, respectively@33#.
Unfortunately, we cannot distinguish among these three p
sibilities in our data.

While the relative depths of the wells appearing in t
histogram Fig. 1 are sensitive to temperature variations
small as 0.0001 aboutTNI , the distributionD(p) is less
sensitive. A plot ofD(p) at T51.1225, e.g., would be quali
tatively similar to the appearance ofD(p) at TNI , the upper
curve in Fig. 2. However, deeper in the nematic phase aT
51.120 ~where the isotropic free energy well has disa
peared! andT51.10, the behavior ofD(p) is different. Here,
one can clearly see an exponential decay at large valuesp
and the data can be fit to the form given in Eq.~3! with line
tensions 0.003 and 0.026 atT51.120 and 1.10, respectivel
~these values were computed settinga52.5).

The behavior ofD(p) shown in Fig. 2 is consistent with a
‘‘blowout’’ of disclination loops at the NI transition, similar
to the behavior found in the three-dimensionalXY model
@11#. However, as indicated in the previous paragraph,D(p)
provides a less sensitive measure of the transition temp
ture compared to the histogram of the disclination line s
ments. The source of this drawback is the appearance o
bump at large perimeters inD(p) in the neighborhood ofTNI
which is a finite-size effect, arising from the nonzero pro
ability of forming loops that wrap completely around th
lattice due to the periodic boundary conditions. At hig
enough temperatures~in particular, near the transition an
above! there will be a sufficient number of disclination lin
segments present to form such loops. The value ofa for
these loops is predicted to be unity for noninteracting loo
in three dimensions@34#. The crossover inD(p) from infi-
nite system behavior~with a.2.5) to the finite system be
havior is expected to occur at a critical perimeterpc(L)
'1.5L2/p for a system of sizeL @34#. Our results are in very
good agreement with this scenario as shown in Fig. 2. T

f

FIG. 2. Log-log plot of the disclination loop distribution func
tion D(p) @Eq. ~3!# in the Lebwohl-Lasher model, Eq.~1! for sys-
tem size 703 at temperatures:Tc51.1226 ~top curve!, T51.120
~middle curve!, andT51.10 ~bottom curve!.
0-3
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N. V. PRIEZJEV AND ROBERT A. PELCOVITS PHYSICAL REVIEW E64 031710
truncation ofD(p) at very large perimeters occurs becau
there are not enough disclination line segments~since we
eliminated the previously marked ones! to construct loops
with arbitrarily large perimeters. The deviation from the e
pecteda52.5 behavior for smallp is due to the presence o
the underlying lattice structure of the LL model.

We attempted to measure the jump in the effective l
tensione at TNI in the LL model which is expected to occu
because of the first-order nature of the NI transition, in c
trast to the continuous vanishing ofe observed in theXY
model@11#. Naively, one should computeD(p) for tempera-
tures in the vicinity ofTNI and extract the line tensione(T)
using Eq.~3! to fit the data. However, in practice, this pro
cedure is very difficult to carry out because the NI transit
is weakly first order in the LL model and the jump ine must
be determined from the behavior of loops with very lar
perimeters. But loops with large perimeters wrap around
lattice as we described in the previous paragraph and
appear in the ‘‘bump’’ region of Fig. 2 that cannot be fit wi
Eq. ~3!.

Another possibility would be to set the temperature to
value close toTNI , calculate the nematic order paramet
and then computeD(p) separately in the isotropic and nem
atic phases. In principle, the difference between the two
tributions should give the jump ine at the given temperature
However, again due to the very weak first-order nature of
transition we found that each of these distributions w
qualitatively similar to the critical distribution shown in Fig
2. Thus, at least for the systems sizes we have been ab
study~less than or equal to 703), we have found it impossible
to accurately measure the expected jump in the disclina
line tension in the LL model.

To check our supposition that the disclination line tens
should have a discontinuous jump at the first-order NI tr
sition, we considered a modified LL model, including
fourth-order Legendre polynomialP4, which has been
shown to make the NI transition more strongly first ord
@26,35#. The modified Hamiltonian is given by

H852J(̂
i j &

P2~s i•s j !2J8(̂
i j &

P4~s i•s j !. ~4!

This modified LL model was studied in Ref.@26# for a sys-
tem of size 243 with J8/J50.1. We checked that the cluste
algorithm produces free energy plots similar to those
tained in the latter reference where the single flip Mo
Carlo algorithm was used.

We were able to measure the jump in the line tension
a system of size 503 with J8/J50.3 as shown in Fig. 3
finding a jump of approximately 0.0024 at the transition te
peratureT51.2475. Here, we calculatedD(p) separately in
the isotropic and nematic phases, with a production run
107 MCS. We have been unable to carry out a finite-s
scaling analysis of the jump because one has to choose
ratio J8/J large enough so thatD(p) exhibits behavior con-
sistent with the form of Eq.~3! at largep in nematic phase; in
particular with no ‘‘bump’’ as in Fig. 2. However, this choic
of J8/J makes the transition more strongly first order a
large systems can hardly overcome the resulting large f
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energy barrier. We also measured a histogram of the den
of disclination line segments for the modified model a
found behavior similar to that found in the LL model~see
Fig. 1!, namely equal well depths for this quantity at th
sametemperature where the free energy also exhibits t
wells of equal depth.

As we discussed in Sec. I, topological defects in nema
include not only disclination loops but monopoles as we
and furthermore, the disclination loops can potentially ca
monopole charge. To locate monopoles, we used the
scription introduced by Berg and Lu¨scher@36# for the two-
dimensional Heisenberg model that was subsequently
tended by Lau and Dasgupta@12# to three dimensions. Eac
of the six faces of a lattice cube is divided into two equ
area triangles by the face diagonal. The rotorss1 , s2, and
s3 at the three corners of each of the triangles are mappe
points on the order-parameter sphere, forming spherical
angles. The area of each of the twelve spherical triang
formed by this mapping is then computed, with a sign giv
by sgn@s1•(s23s3)#. The rotors on each triangle are num
bered so that the circuit 1→2→3→1 corresponds to a coun
terclockwise rotation along the outward normal to the s
face of the triangle. In performing this mapping, we ha
assigned heads to the rotors such that the distance bet
the heads on the order-parameter sphere is minimized,
we use the ‘‘geodesic rule’’@37–39# to effectively minimize
the energy. For lattice cubes that are not pierced by discl
tion lines ~and it is these cubes that we examine for mon
pole charge!, the heads of all eight rotors at the corners o
cube can be simultaneously chosen to obey the geodesic
without frustration. Thus, the angle between any pair of
tors at the corners of any of the twelve triangles will be

FIG. 3. Log-log plot of the disclination loop distribution func
tion D(p) for the modified Lebwohl-Lasher model, Eq.~4!, at its NI
transition temperatureT51.2475. The system size is 503 and the
ratio of the couplings isJ8/J50.3. The top curve~which has been
displaced for the sake of clarity! and the bottom curve correspon
to the isotropic and nematic wells of the free energy, respectiv
The jump in the disclination line tension is found to be 0.0024, a
the straight portion of the isotropic data can be fit with a power l
of 2.5060.01 @see Eq.~3!#.
0-4
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DISCLINATION LOOP BEHAVIOR NEAR THE . . . PHYSICAL REVIEW E 64 031710
greater than 90°. Finally, the monopole charge enclosed
the cube is given by the sum of the twelve signed areas of
spherical triangles, divided by 4p.

Using this algorithm, we examined all lattice cubes th
are not pierced by disclination lines and foundno mono-
poles, neither in the original LL model, Eq.~1!, nor the
modified model, Eq.~4!. We searched for monopoles in th
neighborhood ofTNI , deep in the nematic phase and at ve
high temperatures; in all cases, no monopoles were loca
This null result is not surprising given the topological arg
ments advanced by Hindmarsh@40# which yield a very low
probability ~of order 1028, compared with 1/8 for the
Heisenberg model! for the appearance of point monopoles
a nematic.

One way to measure the monopole charge of a discl
tion loop would be to apply the above algorithm to the s
face of a group of lattice cubes that completely enclos
disclination loop. We have carried out this procedure for i
lated loops of perimeterp54; none of these loops wer
found to carry monopole charge. It is difficult to carry o
this procedure for larger loops, especially when two or m
loops are entangled. In particular, when loops are entang
it is impossible to impose the geodesic rule simultaneou
on all pairs of rotors. If we surround one loop complete
with a set of lattice cubes, frustration will arise where t
second loop pierces one of these lattice cubes. Instead
measured the local rotation vectorV of the four rotors sur-
rounding each of the segments that form a disclination lo
and then summed these vectors along the entire length o
loop. If this sum is nearly zero, then the loop carries a n
zero monopole charge, because the set of rotors surroun
the entire loop will cover essentially the entire orde
parameter sphere@42,43#. A simple example of this topology
occurs in the case of a pure wedge loop whereV is every-
where tangent to the loop@41#, and summing this vecto
around the loop yields zero identically; a simple example
a loop with zero monopole charge is a twist loop whereV is
everywhere perpendicular to the plane of the loop. We m
sured the local rotation vectorV of the four rotors
s1 ,s2 ,s3 ,s4 that lie at the corners of a lattice squa
pierced by a disclination line, by summing the vector cro
product of each neighboring pair of rotors@44#:

V5~s13s2!1~s23s3!1~s33s4!1@s43~2s1!#.
~5!

In writing this definition ofV, we have chosen the heads
the rotors so that the neighboring pairss1 ,s2 ; s2 ,s3, and
s3 ,s4 satisfy the ‘‘geodesic rule’’ on the order-paramet
sphere. The remaining pairs4 ,s1 will not satisfy this rule
because of the presence of the disclination line segment;
we reflects1 in the last term in Eq.~5!, so that the vector
products always involve pairs of rotors that satisfy the g
desic rule. To assign a unique sense to the circuit 1→2→3
→4→1, we arbitrarily assign a direction along the length
the disclination loop, and traverse the circuit in a count
clockwise sense along this direction. We note that the refl
tion of s1 in the last term of Eq.~5! guarantees thatV is
independent of which of the four rotors is labeled one.
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Our results for the vector sum ofV along each disclina-
tion loop are shown in Fig. 4 for the LL model at its N
transition temperatureTNI51.122 79 for a system of size
503. We use a smaller system size because the computa
of this vector sum must be done using scalar code, whe
the cluster algorithm used above can be vectorized@30#.
Similar results were obtained for the modified LL model. W
note that all of the large loops with perimetersp*100 are
characterized by net rotation vectors that are nearly z
suggesting that they carry nonzero monopole charge. We
pect on energetic grounds that this charge will be unity rat
than higher values. We have checked this supposition fo
random sampling of loops finding that the rotation vecto
cover a great circle on the order-parameter sphere just o
Our data indicates that small isolated loops do not ca
monopole charge. Rather the monopole charge is carried
large loops~with perimeters greater than 100! and small
loops that touch larger ones.

III. CONCLUSIONS

In this paper, we have studied the properties of topolo
cal defects in two lattice models of the NI transition: th
original Lebwohl-Lasher model~which exhibits a weakly
first-order transition! and a modified model with a mor
strongly first-order transition. We have found evidence
the role played by disclination loops at the NI transition
both models. Namely, a histogram of disclination line se
ments collected over the course of the MC simulation sho
a double-well structure, and the wells are of equal depth

FIG. 4. The distribution ofuSVu/p, the magnitude of the vecto
sum of the rotation vectorV, Eq. ~5!, along each disclination loop
divided by its perimeterp, in the LL model of size 503 at TNI . The
top curve includes loops of all perimeters, the middle curve
cludes loops ofp54 only, while the bottom curve includes onl
loops with p.100. The rightmost peak appearing in the midd
curve corresponds to isolated loops. Note that for a perfect we
line segment piercing a square face of a lattice cube@i.e., a rotor
configuration of the forms5(cosf/2,sinf/2), wheref is the azi-
muthal angle of the lattice site#, uSVu is given by 2A2'2.8.
0-5
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the sametemperature where the free energy exhibits sim
structure. We also find that the distributionD(p) of disclina-
tion loops as a function of their perimeter exhibits power-l
behavior at this temperature, consistent with the ‘‘blowou
of loops at the transition. However,D(p) is a less sensitive
measure of the transition temperature compared with the
clination segment histogram, due to finite-size effects.

We have also searched for point monopoles in these m
els and measured the monopole charge of the disclina
loops. We found no point monopoles, a result that may
reasonable on the basis of topological arguments@40#. How-
ever, we did find that nearly all of the large disclination loo
carry monopole charge, while small isolated loops do not.
particular interest is the result that the two models we st
ied, one with a weakly first-order transition and the oth
with a strongly first-order transition, showed no qualitati
differences in their defect characteristics, other than the m
surable jump in the disclination line tension in the lat
model. In light of the results of Ref.@19# we find the simi-
larities in the defect characteristics of the models we stud
somewhat surprising. In Ref.@19#, it was shown that sup
pressing disclination loops while leaving monopoles yield
more continuous NI transition. One might guess then t
moving in the opposite direction to a model like that given
y

lu
s
o

e
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Eq. ~4! which exhibits a strongly first-order transition on
would find fewer monopolelike entities than in the LL mod
with its weakly first-order transition. While neither mod
has point monopoles, both appear to have similar densitie
disclination loops with monopole charge, suggesting t
monopole charge may not influence the strength of the fi
order transition. We should also note that while our resu
suggest that disclination loops ‘‘blowout’’ at the NI transitio
in both models we considered, it is not clear from our stu
whether the transition is in fact defect driven, or rather th
some other mechanism drives the transition and the def
simply respond. Clearly, more work on this very intriguin
phase transition and the role played by topological defe
would be of considerable interest.
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