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Disclination loop behavior near the nematic-isotropic transition
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We investigate the behavior of disclination loops in the vicinity of the first-order nematic-isotropic transition
in the Lebwohl-Lasher and related models. We find that two independent measures of the transition tempera-
ture, the free energy, and the distribution of disclination line segments, give essentially identical values. We
also calculate the distribution functid(p) of disclination loops of perimetgrand fit it to a quasiexponential
form. Below the transitionD (p) falls off exponentially, while in the neighborhood of the transition, it decays
with a power-law exponent approximately equal to 2.5, consistent with a “blowout” of loops at the transition.
In a modified Lebwohl-Lasher model with a strongly first-order transition we are able to measure a jump in the
disclination line tension at the transition, which is too small to be measured in the Lebwohl-Lasher model. We
also measure the monopole charge of the disclination loops and find that in both the original and modified
Lebwohl-Lasher models, there are large loops that carry monopole charge, while smaller isolated loops do not.
Overall, the nature of the topological defects in both models is very similar.
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] . 'NTRODUCT'O'\_' . . ture of the order-parameter space. The local direntof a
In many physical systems, particularly two-dimensionalpematic liquid crystal is defined as the average direction of

ones with continuous order parameter symmetry, topologicaljignment of a group of molecules. However, unlike the case
defects can play an essential role at the phase transition be;

tween the orderedor quasiorderedand disordered phases. Of ferromagnets, the directions and —n are e_quwaler)t.
Using simple physical arguments Kosterlitz and Thoulé$s Thus, the_ order?paramet(.ar space fqr nematidg,isthe unit )
pointed out that phase transitions in two-dimensional superSPhere with antipodal points identified. The stable topologi-
fluid “He, crystalline solids, an&Y magnets would occur cal defects[14] mcluqle.monopoles'and disclination Imgs.
via the unbinding of point topological defects. Subsequently,] "€ monopoles are similar to the point defects of the Heisen-
Kosterlitz [2] developed a renormalization-group theory for berg model, though in the latter case, positive and negative
the two-dimensionalXyY model that provided quantitative topological charges of the same absolute value are distinct,
predictions for this defect-mediated critical behavior. Whereas they are equivalent in the nemgtis]. While defect
Renormalization-group theories for the defect-mediatedines in theXY model can have any integer value with either
melting of crystalline solids in two dimensions were devel-positive or negative sign, one value of topological charge,
oped by Nelson and Halper(3] and Young[4]. +1/2, characterizes the entire class of stable line defects in
The theoretical picture for defect-mediated phase transinematicd15,16. All other half-integer valued lines, whether
tions in three dimensions is less clear. It is expected on thpositive or negative, can be continuously deformed to a line
basis of the Villain representati¢b] that the transition in the with charge+1/2, and integer-valued lines can “escape in
three-dimensionaXY model is mediated by vortex loop§].  the third dimension17]. As in theXY model, the disclina-
In this scenario, there is a finite length scale at low temperation lines form closed loops or terminate on the surface of
tures associated with the typical size of vortex loops thathe sample because of the prohibitive energy cost of a free
disorder the system on smaller length scales. At the phadme end. However, whereas tiY model loops carry no net
transition, loops can exist on all length scales, i.e., there isnonopole charge, nematic disclination loayas (though all
“vortex-loop blowout” [7,8] and the system enters the disor- need nok carry monopole charggl8].
dered phase. Scaling and renormalization-group theories Not only is the classification of defects different in the
have been developg@] that provide quantitative predictions nematic compared with th&Y and Heisenberg models, but
for the critical behavior, though these theories are not as webilso the nature of the phase transition, first order in the
established as the corresponding Kosterlitz-Thouless theofprmer case and continuous in the latter. Lamnegral. [19]
in two dimensions. Monte Carlo simulatioi$0,11] have  have argued that disclination lines are responsible for the
yielded further support for this vortex loop picture of the first-order nature of the nematic-isotropidll) transition.
phase transition. In the three-dimensional Heisenberg modeThey developed and studied a lattice model of liquid crystals
there is also numerical eviden¢&2] for a phase transition that allows for the suppression of the line defects while
mediated by point topological defectmonopoleg though  maintaining the presence of monopoles as in the Heisenberg
this evidence has been questioned by other auftidis model. As the defect lines are made more costly, Lammert
The role of topological defects at the nematic-isotropicet al. found that the transition between the ordered nematic
phase transition poses intriguing questions. The defect strughase(characterized by a nonzero disclination line tengsion
ture in nematics is particularly rich and while sharing someand the isotropic phas@haracterized by zero line tensjon
similarities with the defect structures of tier and Heisen- becomes more weakly first order. At sufficiently large values
berg models, there are significant differences due to the nasf the core energy, the transition splits into a pair of continu-
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ous transitions, and a new phase appears with no long-ranggstem becomes trapped in one of the local minima corre-
nematic order but nonzero disclination line tension. In thesponding to either the ordered or disordered phases. This
extreme limit where the disclination lines are completelydifficulty can be overcome by using a cluster algorithm that
suppressed, their model reduces to the Heisenberg modsl most efficient in the critical region and the system samples
with the expected continuous phase transition. both local minima effectively. The first such algorithm for
In this paper, we report on a numerical study of topologi-nematic liquid crystals was introduced by Kunz and Zum-
cal defect behavior near the NI transition in the Lebwohl-bach[28] to study the two-dimensional LL model. Their al-
Lasher(LL) lattice model[20] of liquid crystals that exhibits gorithm is a modification of the Wolff algorithnh29] for
a weakly first-order phase transitioa weak first-order tran- ferromagnetic systems, and greatly reduces critical slowing
sition is characteristic of real experimental systems as)well down. In an earlier publicatiofn30], we used the Kunz-
We also consider the defect behavior in a modified LL modeZumbach algorithm to carry out a finite-size scaling analysis
that exhibits a strongly first-order transition. We find that twoof the NI transition in the three-dimensional LL model with
independent measures of the NI transition temperature, orgystems sizes up to YWising the Ferrenberg-Swendsen re-
the free energy and the other the distribution of disclinationweighting techniqug31].
line segments, give almost identical values. By measuring Here we use the cluster algorithm to study the behavior of
the distribution of disclination loops as a function of their disclination lines and monopoles in the critical region. Fol-
perimeter, we find evidence for the “blowout” of disclination lowing Ref.[19], we introduce a disclination line segment
loops at the transition, similar to the three-dimensiodal  counting operator,
model. The disclination line tension in the modified LL
model drops discontinuously to zero at the transition; in the 1
case of the LL model, the transition is too weakly first order ~ Dijxi= 5[1_59"{(“ ~op)(aj- g oy o)) (or- o0},
to detect a similar discontinuity. We also measure the mono- 2
pole charge of the loops and find in both the LL model and
its modification that large loops and small loops adjacent tquhich is unity if a disclination line segment pierces the lat-
large loops have nonzero monopole charge, while small isotice square defined by the four rotoss, o, o, andoy.
lated loops do not. There appear to be no significant differThis method of locating disclination segments is mathemati-
ences between the two models in the nature of the topologially equivalent to the method of Zapotocky al. [32]. A

cal defects present. . . . disclination line segment can be considered as a bond on a
In Sec. Il we provide the details of our simulations andcpjc lattice dual to the original lattice of the rotors, and only
results, followed in Sec. lll by our conclusions. an even number of bonds meet at a dual lattice site. Connect-

ing the bonds to form disclination loops cannot be done in a
Il. SIMULATIONS AND RESULTS unigue way when four or six bonds meet at a site. To deal

) . with this ambiguous case we followed the approach of Ref.
We performed Monte Carlo simulations on the Lebwohl-111] ang chose a random pairing of the bonds. We thus traced
Lasher model, a lattice model of rotors with an orientationaky,q path of each disclination line through the system until the

order-disorder transition. While it neglects the coupling be-na1h crossed itself and formed a loop. The bonds of the loop
tween the orientational and translational degrees of freedofyere then eliminated from the dual lattice to avoid double

present in a_real nematic liquid crystal,'it |s generally be'counting when additional loops were traced.

lieved that this coupling does not play a significant role atthe \ne considered several measures of the nature of the dis-
NI transition. With the gbsenqe of translatiopal degrees OEIination segments and loops, including the number of seg-

freedom, the LL model is particularly well suited for large- ents in the nematic and isotropic phases at coexistence, the
scale simulations of the transition. The model is defined byistribution of loops as a function of their perimeter, and the

the Hamiltonian monopole charge of the loops.
3 1 We simulated a system of size %7@ith periodic bound-
_ N PR R ary condition$ for 5x 10° Monte Carlo step$MCS) where
Hu ‘J% Pali-oy) ‘J% {2(0' 7)) 2}’ one MCS corresponds to one cluster formation attempt and

(1) update of the spins comprising the cluster. Every 200 MCS,
we measured the total number of disclination line segments
where the sum is over all nearest-neighbors rotors situated an the system and stored our data in a histogram. The loga-
a cubic lattice. The long axes of the rotors are specified byithm of this histogram is shown in Fig. 1 at the temperature
the unit vectorss;, P, is the second-order Legendre poly- T=1.1226 (temperatures measured in units okg)/ where
nomial, andJ is a coupling parameter. The LL model has the two wells have equal depth. The right-hand well corre-
been intensively investigated using Monte Carlo techniquesponds to the isotropic phagghich we confirm by monitor-
since its introductio21-27,33. The most complete nu- ing the nematic order parametemnd the left-hand well with
merical analysis of the NI transition in the LL model using fewer disclination line segments corresponds to the nematic
the conventional single spin-flip Metropolis algorithm was phase. Varying the temperature by as little as 0.0001 yields
carried out by Zhangt al. [26] on systems up to a size of wells of unequal depths. In our earlier wgB0], we used
28%. However, the single spin-flip algorithm is inefficient in the cluster algorithm to compute a histogram of the free en-
the critical region and during the course of a simulation, theergy (as a function ofE=7,, /N, the energy per sije We
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FIG. 2. Log-log plot of the disclination loop distribution func-
FIG. 1. The logarithm of the distribution of disclination bond tion D(p) [Eq. (3)] in the Lebwohl-Lasher model, EqL) for sys-
density in the Lebwohl-Lasher model, Eg) for system size 7at tem size 78 at temperaturesT,=1.1226 (top curvd, T=1.120
the NI transition temperatufgy, = 1.1226. The density is defined as (middle curve, andT=1.10 (bottom curve.
the ratio of the number of disclination bonds to the total number of
lattice bonds (X 7C° in the present cageThe solid line is a guide

to the eye. we expecta=2.5 exactly, whereag>2.5 anda<2.5 for

repulsive and attractive loop interactions, respectiyaiy.

found a double-well structure for the free energy with equalJnfortunately, we cannot distinguish among these three pos-
well depths occurring at the temperatufe-1.1226, which ~ Sibilities in our data. o

we then identified ady,. Thus, the appearance of equal- _ While the relative depths of the wells appearing in the
well depths in the histogram for the density of disclination Nistogram Fig. 1 are sensitive to temperature variations as
line segments at theametemperaturéto within our numeri-  Small as 0.0001 abouty,, the distributionD(p) is less

cal accuracysuggests that disclinations play a crucial role atSensitive. A plot oD (p) atT=1.1225, e.g., would be quali-

the NI transition. tatively similar to the appearance Df(p) at Ty, the upper
To further assess the role played by disclination loops agurve in Fig. 2. However, deeper in the nematic phaseé at
the transition, we followed the approach used in R&f] to =1.120 (where the isotropic free energy well has disap-

study defect behavior at the three-dimensiot¥ltransition, ~PearedandT=1.10, the behavior d(p) is different. Here,
and calculated the perimeter distribution functidgp) (the ~ One can clearly see an exponential decay at large valugs of
average number of loops with perimetg). In Refs.[11]  and the data can be fit to the form given in E8). with line

D(p) was fit to the following form: tensions 0.003 and 0.026 &t=1.120 and 1.10, respectively
(these values were computed setting 2.5).
D(p)=Ap “exd — e(T)p/kgT], (3) The behavior oD (p) shown in Fig. 2 is consistent with a

“blowout” of disclination loops at the NI transition, similar
wheree(T) is the effective vortex line tension which is non- to the behavior found in the three-dimension@ model
zero at low temperatures. Thus, in the low-temperaturg¢ll]. However, as indicated in the previous paragrdp{p)
ordered-phase vortex loops with largeare exponentially provides a less sensitive measure of the transition tempera-
suppressed, and the length scéalg governing the typical ture compared to the histogram of the disclination line seg-
perimeter size of the vortex loops is given bly, ments. The source of this drawback is the appearance of the
=KkgT/e(T). At the critical temperatur@&, of the XY model,  bump at large perimeters D(p) in the neighborhood of
€(T) vanishes continuously and the distributibrfp) has a  which is a finite-size effect, arising from the nonzero prob-
power-law form. Consequently there will be a finite prob- ability of forming loops that wrap completely around the
ability of having vortex loops that traverse the entire systemlattice due to the periodic boundary conditions. At high
and destroy the long-range order. enough temperatureén particular, near the transition and

We computedD (p) at the NI transition temperatufBy, above there will be a sufficient number of disclination line
=1.1226 (identified by the two methods described above segments present to form such loops. The valuer dbr
and at two slightly lower temperatures. The results are showthese loops is predicted to be unity for noninteracting loops
in Fig. 2. We simulated the system for<8.0° MCS and in three dimension§34]. The crossover ifD(p) from infi-
computedD (p) every 200 MCS to make sure that the suc-nite system behaviojwith «=2.5) to the finite system be-
cessive configurations for bonds distribution are completeljhavior is expected to occur at a critical perimefgi(L)
updated. Fitting our data to the form E) yields « ~1.5.%/ 7 for a system of siz& [34]. Our results are in very
=2.50+0.05. For noninteracting loops.e., random walks  good agreement with this scenario as shown in Fig. 2. The
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there are not enough disclination line segme(siace we
eliminated the previously marked one® construct loops
with arbitrarily large perimeters. The deviation from the ex-
pecteda= 2.5 behavior for smalp is due to the presence of
the underlying lattice structure of the LL model.

We attempted to measure the jump in the effective line
tensione at Ty, in the LL model which is expected to occur £ ,,,
because of the first-order nature of the NI transition, in con-=
trast to the continuous vanishing efobserved in theXY
model[11]. Naively, one should compute(p) for tempera-
tures in the vicinity ofTy, and extract the line tensio#(T) 50
using Eq.(3) to fit the data. However, in practice, this pro-
cedure is very difficult to carry out because the NI transition
is weakly first order in the LL model and the jump émmust
be determined from the behavior of loops with very large %9, 20 20 60 8.0 100
perimeters. But loops with large perimeters wrap around the Inp
lattice as we described in the previous paragraph and thus

appear in the “bump? region of Fig. 2 that cannot be fit with tion D(p) for the modified Lebwohl-Lasher model, B¢), at its NI

Eq. (3). i - o
Another possibility would be to set the temperature to atransmon temperatur@=1.2475. The system size is 5@nd the

. ratio of the couplings ig'/J=0.3. The top curvéwhich has been
value close taTy,, calculate the nematl_c orde_r p"’“"’jmeter’displaced for the sake of clarjtyand the bottom curve correspond
and then Comp”@(P) separatgly in the isotropic and nemf to the isotropic and nematic wells of the free energy, respectively.
atic phases. In principle, the difference between the two diSthe jump in the disclination line tension is found to be 0.0024, and

tributions should give the jump ia at the given temperature. he straight portion of the isotropic data can be fit with a power law
However, again due to the very weak first-order nature of thes 2,50+ 0.01[see Eq(3)].

transition we found that each of these distributions was
qualitatively similar to the critical distribution shown in Fig. energy barrier. We also measured a histogram of the density
2. Thus, at least for the systems sizes we have been able ¢ disclination line segments for the modified model and
study(less than or equal to 7} we have found it impossible found behavior similar to that found in the LL mod@ee
to accurately measure the expected jump in the disclinatiorig. 1), namely equal well depths for this quantity at the
line tension in the LL model. sametemperature where the free energy also exhibits two
To check our supposition that the disclination line tensionwells of equal depth.
should have a discontinuous jump at the first-order NI tran-  As we discussed in Sec. |, topological defects in nematics
sition, we considered a modified LL model, including ainclude not only disclination loops but monopoles as well,
fourth-order Legendre polynomiaP,, which has been and furthermore, the disclination loops can potentially carry
shown to make the NI transition more strongly first ordermonopole charge. To locate monopoles, we used the pre-
[26,35. The modified Hamiltonian is given by scription introduced by Berg and kaoher[36] for the two-
dimensional Heisenberg model that was subsequently ex-
tended by Lau and Dasgugth2] to three dimensions. Each
of the six faces of a lattice cube is divided into two equal
area triangles by the face diagonal. The rotets o5, and
This modified LL model was studied in R¢R6] for a sys- o5 at the three corners of each of the triangles are mapped to
tem of size 24 with J’/J=0.1. We checked that the cluster points on the order-parameter sphere, forming spherical tri-
algorithm produces free energy plots similar to those obangles. The area of each of the twelve spherical triangles
tained in the latter reference where the single flip Monteformed by this mapping is then computed, with a sign given
Carlo algorithm was used. by sgrio;- (02X a3)]. The rotors on each triangle are num-
We were able to measure the jump in the line tension folbered so that the circuit-%2—3— 1 corresponds to a coun-
a system of size 50with J'/J=0.3 as shown in Fig. 3, terclockwise rotation along the outward normal to the sur-
finding a jump of approximately 0.0024 at the transition tem-face of the triangle. In performing this mapping, we have
peratureT =1.2475. Here, we calculatdol(p) separately in  assigned heads to the rotors such that the distance between
the isotropic and nematic phases, with a production run othe heads on the order-parameter sphere is minimized, i.e.,
10" MCS. We have been unable to carry out a finite-sizewe use the “geodesic rulg’37—39 to effectively minimize
scaling analysis of the jump because one has to choose thiee energy. For lattice cubes that are not pierced by disclina-
ratio J'/J large enough so thd(p) exhibits behavior con- tion lines(and it is these cubes that we examine for mono-
sistent with the form of Eq(3) at largep in nematic phase; in  pole chargg the heads of all eight rotors at the corners of a
particular with no “bump” as in Fig. 2. However, this choice cube can be simultaneously chosen to obey the geodesic rule
of J'/J makes the transition more strongly first order andwithout frustration. Thus, the angle between any pair of ro-
large systems can hardly overcome the resulting large fregers at the corners of any of the twelve triangles will be no

truncation ofD(p) at very large perimeters occurs because 200 \ ' ' '

15.0 -

FIG. 3. Log-log plot of the disclination loop distribution func-
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greater than 90°. Finally, the monopole charge enclosed byo® .
the cube is given by the sum of the twelve signed areas of the
spherical triangles, divided by

Using this algorithm, we examined all lattice cubes that
are not pierced by disclination lines and found mono- 10° | .
poles, neither in the original LL model, Edl), nor the
modified model, Eq(4). We searched for monopoles in the
neighborhood off,, deep in the nematic phase and at very
high temperatures; in all cases, no monopoles were locatecio* 1
This null result is not surprising given the topological argu-
ments advanced by Hindmarf#0] which yield a very low
probability (of order 108, compared with 1/8 for the
Heisenberg modgfor the appearance of point monopoles in 10° .
a nematic.

One way to measure the monopole charge of a disclina:
tion loop would be to apply the above algorithm to the sur-
face of a group of lattice cubes that completely enclose aio’ 5 5 5 8
disclination loop. We have carried out this procedure for iso- ' = Qlp ' '
lated loops of perimetep=4; none of these loops were
found to carry monopole charge. It is difficult to carry out  FIG. 4. The distribution of2 Q|/p, the magnitude of the vector
this procedure for larger loops, especially when two or moresum of the rotation vectof), Eq. (5), along each disclination loop
loops are entangled. In particular, when loops are entangledivided by its perimetep, in the LL model of size 5bat Ty, . The
it is impossible to impose the geodesic rule simultaneouslyoP curve includes loops of all perimeters, the middle curve in-
on all pairs of rotors. If we surround one loop completely cludes loops op=4 only, while the bottom curve includes only
with a set of lattice cubes, frustration will arise where the!00PS with p>100. The rightmost peak appearing in the middle
second loop pierces one of these lattice cubes. Instead, V?élrve corresponds to isolated loops. Note that for a perfect wedge

measured the local rotation vect® of the four rotors sur- ine segment piercing a square face of a lattice dlilee, a rotor
rounding each of the segments that form a disclination loo configuration of the formr= (Cos¢/2,sin¢/2), where¢ is the azi-
9 9 Pruthal angle of the lattice sitg|> Q]| is given by 2/2~2.8.

and then summed these vectors along the entire length of the
loop. If this sum is nearly zero, then the loop carries a non-
zero monopole charge, because the set of rotors surroundiqg
the entire loop will cover essentially the entire order-
parameter sphef@2,43. A simple example of this topology
occurs in the case of a pure wedge loop wherés every-
where tangent to the loop41], and summing this vector

Zr% li)ndvcir;ﬁ Izc;(?g qu(e)lr?s f)?éoclr?:rntewg”g;t\?vi;rrop;e sv)ﬁaéné le o Similar results were obtained for the modified LL model. We
P P g P note that all of the large loops with perimetgys 100 are

everywhere perpendicular to the plane of the loop. We mea- . .
. characterized by net rotation vectors that are nearly zero,
sured the local rotation vectof) of the four rotors

; . suggesting that they carry nonzero monopole charge. We ex-
01,02,03,04 that lie at the corners of a lattice square 99 9 y Y P 9

ierced by a disclination line. by summing the vector cros ect on energetic grounds that this charge will be unity rather
P y ; /ne, by g . han higher values. We have checked this supposition for a
product of each neighboring pair of rotdié4]:

random sampling of loops finding that the rotation vectors
cover a great circle on the order-parameter sphere just once.
Our data indicates that small isolated loops do not carry
monopole charge. Rather the monopole charge is carried by

large loops(with perimeters greater than 10@nd small
In writing this definition of(2, we have chosen the heads of Ioogps thaftéuch Igrger ones. J 10

the rotors so that the neighboring pairs,o»; o,,03, and
03,0, Satisfy the “geodesic rule” on the order-parameter
sphere. The remaining pair,,o; will not satisfy this rule
because of the presence of the disclination line segment; thus In this paper, we have studied the properties of topologi-
we reflecto; in the last term in Eq(5), so that the vector cal defects in two lattice models of the NI transition: the
products always involve pairs of rotors that satisfy the geooriginal Lebwohl-Lasher mode{which exhibits a weakly
desic rule. To assign a unique sense to the circuit2l-3  first-order transition and a modified model with a more
—4—1, we arbitrarily assign a direction along the length of strongly first-order transition. We have found evidence for
the disclination loop, and traverse the circuit in a counterthe role played by disclination loops at the NI transition in
clockwise sense along this direction. We note that the refledsoth models. Namely, a histogram of disclination line seg-
tion of o in the last term of Eq(5) guarantees thaf) is  ments collected over the course of the MC simulation shows
independent of which of the four rotors is labeled one. a double-well structure, and the wells are of equal depth at

Our results for the vector sum & along each disclina-

n loop are shown in Fig. 4 for the LL model at its NI
transition temperaturdy,=1.12279 for a system of size
50°. We use a smaller system size because the computation
of this vector sum must be done using scalar code, whereas
fthe cluster algorithm used above can be vectorigz@l.

Q:(Ul><02)+(02><03)+(03><04)+[U4X(_01)]-(5)

IIl. CONCLUSIONS
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the sametemperature where the free energy exhibits similarEq. (4) which exhibits a strongly first-order transition one
structure. We also find that the distributidr{p) of disclina-  would find fewer monopolelike entities than in the LL model
tion loops as a function of their perimeter exhibits power-lawwith its weakly first-order transition. While neither model
behavior at this temperature, consistent with the “blowout” has point monopoles, both appear to have similar densities of
of loops at the transition. Howeve,(p) is a less sensitive disclination loops with monopole charge, suggesting that
measure of the transition temperature Compared with the di?fnonopoie Charge may not influence the Sti’ength of the first-
clination segment histogram, due to finite-size effects. order transition. We should also note that while our results
We have also searched for point monopoles in these modsyggest that disclination loops “blowout” at the NI transition
els and measured the monopole charge of the disclinatiof hoth models we considered, it is not clear from our study
loops. We found no point monopoles, a result that may bgyhether the transition is in fact defect driven, or rather that
reasonable on the basis of topological argump# How-  some other mechanism drives the transition and the defects
ever, we did find that nearly all of the Iarge disclination |00pSSimp|y respond_ C|ear|y, more work on this very intriguing

carry monopole charge, while small isolated loops do not. Ophase transition and the role played by topological defects
particular interest is the result that the two models we studwould be of considerable interest.

ied, one with a weakly first-order transition and the other
with a strongly first-order transition, showed no qualitative
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surable jump in the disclination line tension in the latter
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