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Dynamics of dissipative ordered fluids
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A variational principle is proposed that allows to derive the equations of motion for a fluid with a general
microstructure described by a tensorial order parameter. The only constitutive ingredients are the densities of
the free energy and the dissipation, both subject to appropriate invariance requirements. As an illustration, it is
shown how the hydrodynamic theory for uniaxial nematic liquid crystals can be derived within this setting.
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[. INTRODUCTION positing by analogy the evolution equations, we arrive at
them from a variational principle, which, when applied to
Many soft materials can be modeled as fluids with a ten-mass-point dynamics, gives the classical Lagrange-Rayleigh
sorial order parameter. The clearest example of these is peequations. For continua, this theory leads to the evolution
haps a nematic liquid crystal, whose biaxial states, whicrequations along with the appropriate boundary conditions.
preferably occur around defects or under shear, are described This principle is posited in Sec. II. In Sec. Ill, we apply it
by a second-rank alignment tenseee, e.g1], Chap. 2 and to a class of continua with dissipative microstructure: this
[2]). When the nematic is uniaxial with constant scalar orderclass is chosen so as to encompass nematic liquid crystals,
parameter, it can be described bygigector, and its dynamics among many other materials. We arrive at a set of general
has long been understood in terms of balances of linear andynamical equations, and we show how these can subsume
angular momenta, also including the microstructure of théhe balance equations for linear and angular momenta. One
local material elemenf3—5]. Moreover, the dynamics of advantage of our method is that it introduces only few con-
uniaxial nematics with variable scalar order was treated irstitutive laws: both elastic and viscous stresses, for example,
depth by Ericksefi6]. However, a rational systematic theory are obtained from the elastic and dissipated energies.
to arrive at the evolution equations for more general dissipa- For simplicity, here we generally consider unconstrained
tive microstructures is still missing. Presumably, this is soorder tensors; special constraints can be treated with the aid
because simply balancing linear and angular momenta do@¥ appropriate Lagrange multipliers. They are needed in the
not suffice to predict the evolution of the system when thecase illustrated in Sec. IV, where we show, as an example,
microstructure fails to be vectorial. how the well-known balance equations of nematodynamics
Various avenues have already been taken to arrive at pagan be retraced within the theory presented here. A generali-
ticular equations for the full second-rank alignment tensorzation of our method to fluids with arbitrary order parameters
Using methods of nonequilibrium thermodynamics, Hessn differentiable manifolds is described [i21].
[2,7] proposed a theory, which was later generalized by Hess
and Pardowitz to include spatial variatiof8] (see also
[9,10] for the homogeneous case diid,12 for a discussion Il. VARIATIONAL PRINCIPLE

of the foundations of this approactA further extension of ) , o
this model was considered §13,14. In a different vein, We aim at extending to a class of dissipative ordered me-

starting from a Fokker-Planck equation for the orientationadi@ the method originally put forward by Rayleigh to de-
distribution function proposed by Hegs5], several authors Scribe dissipative discrete systef@€]. The essence of Ray-
used closure approximations to obtain evolution equationi€/dn's approach is to balance all generalized forces in

for the second-rank alignment ten§a6—17. More recently, Lagrange equations, including inertia, against frictional
plastic flow has been studigd8] by using a fourth-rank forces that derive from a dissipation function and are linear

tensor to describe the order. which calls once more for 41 the generalized velocities. We first illustrate this basic bal-
general theory of ordered qui,ds. ance taking a holonomic dynamical system as a paradigm

For uniaxial nematics, one way to arrive at the equation@nd then further confining attention to systems subject to
of motion without positing balance equations was poimeoconservatlve actlye for.ces. In general, a \{arlat|onal p.rmc[ple
out by Vertoger{19]. His development is based on an anal-2/lows one to arrive directly at the equations of motion in-
ogy with classical Lagrange mechanics with Rayleigh dissicluding Fhe appropriate d|5$|pat|ye terms. Th|s prmmple will
pation. While this analogy is sufficient to derive the viscousP€ applied in Sec. Ill to a variety of dissipative ordered
stress, it gives neither the elastic stress nor the couple streggf'ds'
and no information is gained regarding proper boundary con-
ditions at free surfaces. Furthermore, the equations of motion
for the flow and the director are treated in somewhat differ-
ent ways, see alg@0], p. 145. Essentially, our development rests on two assumptions:

Here we propose a general theory for dissipative fluiddirst, that the total mechanical power, excluding dissipation,
described by an order tensor of arbitrary rank. Rather thagan be written as the product of generalized forces by gen-

A. Basic balance
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eralized velocities, and second that these forces are balanced d aL Il
by frictional forces that possess a quadratic velocity poten- F=T+V= 2 ai, 7
tial. dt gg, da;

Consider a holonomic dynamical system describedrby
generalized coordinates , . . . .q,,. We denote byg andq
the vectors inR™ of the generalized coordinates and the gen-
eralized velocities. We assume that the total mechanical

with the Lagrange functiob =T—V, and so the generalized
forces conjugate to the velocitiesare here found to be

dJL dL

power W can be written as —
X= dt aq aq ®
m
sz'ngl Xidi , (1) The equations of motiofd) then read simply as

where X; are the generalized forces, including inertia. To d ‘9L oL ﬁ =0, (9)
help in identifying the generalized forces, we may suppose dt &q é’q aq
that X remains unchanged under time reversal, while .
changes its sign. ¢ d which is the standard text-book for(xuf., e.g.,[23], p. 231).

When in addition to the mechanical forcksthe system ~Clearly, the energy baland®) still holds with W=7.
is subject to dissipation, frictional generalized foréésre It should be noticed that, since is a positive-definite
also at work that satisfy the balance equation guadratic form ing andV is independent of], by Eq.(8) X

NIV @ is linear inq and

Here we make the constitutive assumption that the foltes detﬁ +0;
are linear in the velocitieg and that they can be derived q

from a positive-definite quadratic forfR according to . ) .
thusq can also be expressed in termsXgfq, andq as

R

-—. @3) 9=B(a,9)X+a(q,q) (10
q
(cf.[23], p. 40, whereB is an invertible matrix ilR™™ and
The velocity potentialR is called the Rayleightlissipation  dis a vector inR™.

function The equations of motion are then obtained by in-

serting Eq.(3) into Eq. (2) as C. Variational formulation
IR To generalize Eq(4) so as to encompass continua, one
X+ —=0. (4) can argue that the partial derivative of the dissipation func-
aq tion has to be replaced by a functional derivative. However,

) care has to be taken in appropriately identifying the general-
Taking the inner product of both sides of E@) with q ized forces in the bulk and on the boundary.
yields the balance of energy in the form We show here how the discrete cage can be derived
from an appropriate variational principle f&, where the
configuration remains unchanged, while both the velocties
and the acceleratiorgsare subject to judiciously constrained
variations. This principle can then directly be applied to con-
IR tinua and it indeed yields the recipe outlined in the preceding
—.q=2R. (6)  Paragraph.
aq For a given configuration we conceive a system of varia-

. S . . tions 8q of the actual velocity vectoq that leaves both the

of 2R. implies variationséq of q to be chosen accordingly: they

eventually result in linear combinations of the variatiaiug

cf. Eq.(10). The constraint on the power inpdt can then be
When all active forces are conservative the total mechanitreated in the standard way through a Lagrange multiplier, so

cal power)V can be written as the rate of change of the totakhatq may be arbitrarily perturbed.

mechanical energy. Let V=V(q) be the potential energy In the actual evolution of the system through a given con-

of the system and’=T(q,q) its kinetic energy, which is figuration,q is such thafR attains its minimum relative to all

assumed to be a positive-definite quadratic form in the vevirtual values it can achieve, once both the for¥eand their

locities g. A standard computation yields powerW arefrozenin their actual state. This is a principle of

W+2R=0, 5

sinceR is a homogeneous function of degree two, for which

B. Conservative forces
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minimum restrained dissipatiomvhich in a similar form has independent of the observer. This requires the dissipation
also been used in irreversible thermodynani24,25. We  function to be invariant under all changes of frame, repre-
first require R to be stationary with respect to this special sented by Euclidean transformations acting on all position
class of variations. This leads to vectorsx as

.50=0 (11) =Q()x+b(1), (14)

(aR
ORANW=| — +AX
9 whereQ is an orthogonal tensor artwa vector, both arbi-
for all variationséq where is a Lagrange multiplier. Since trarily depending on time. The dissipation function will be
. . ’ ' automatically invariant, when it is built using onlydifferent
oq is arbitrary, Eq(11) amounts to tensors, i.e., those tensors that transform in the usual way
under the change of fran@&4), see, e.9.,28], Chap. 1. One

IR : )
AX+—=0. (12) example is theshearingtensor

& Vot (Vo)

The value of\ can be determined by taking the inner product ) . .

of both sides of Eq(12) with q and requiring the energy &S One€ finds thad™ =Q()DQ(t) . Apart fromD, we further
balance(5) to hold. This shows that =1, and the stationar- need an indifferent time derivative of the order tenSofhe

ity conditions forR in Eq. (12) just become the equations of simplest one is theorotational derivative 0. It describes
motion (4). These are indeed minimality conditions f&  how the order changes in a frame that is rotating with the
constrained to the linear subspace where Bo#nd )y are  body. In Cartesian components, it can be written as
prescribed, fofR, being a positive-definite quadratic form of

. n
, has there a minimizer as the unique stationary point. :
q q y p Z |]1 (15)
ll. DISSIPATIVE MICROSTRUCTURES
. . . . where
In this section we apply to ordered fluids the variational
principle stated in the preceding section. Our aim is to arrive W=1[Vo—(V0)T]

at the evolution equations for a class of dissipative micro-
structures by positing in each case the appropriate ener
and dissipation functionals, which in our development are
the only relevant constitutive quantities for these materials.
We consider a continuum that occupies the regibm
space with smooth bounda3, bearing an additional mi-
crostructure described by an order tensorHere the order
parameter space is the linear space ofndlfi-rank tensors.

9% the vorticity tensor and, for any given multi-indelx IJ
—( 1y oo odk1odslks 1y - - - olp) IS the same multi-index as
I, apart from havingj as kth-entry. In Eq.(15) the sum
clearly extends over all entries bf

A more general frame-indifferent rate ©fis the codefor-
mationaltime derivative

Though the theory we present can equally be developed by n
letting the order tensor vary on a differentiable manifold, the 0O :(")l + E aD, 0. (16)
gain in generality is little compared with the growth in the k=1 Wk

mathematical apparat{ig1]. On the other hand, as shown in

Sec. IV, constraints ofd can generally be treated by means Here the coefficients, are somehow constitutive: they de-

of appropriate Lagrange multipliefsee als426] and[27]).  termine to what extent the deformation of the fluid affects the

In our setting, the natural candidates for the generalized vemicrostructure. In general, whénenjoys symmetry proper-

locities are the mass velocity and the material time deriva- ties, these are also inherited by its rate, and special relations

tive among thea, could be required. Furthermore, when restric-

tions on some traces @f exist, additional terms will enter

O= j—tOJr(V@)v (13 Eq. (16) to make these restrictions preserved in time.

) A. Power input
of the order tensob. In Cartesian components, .
We write the total energy stored ifi as

. J
O|:EO|+O|’]‘UI', }_zf EdV
B

where a comma denotes differentiation with respect to a
space variable, the summation convention for repeated indwith
ces applies, andis a multi-index,| = (1, ... l,).
The dissipation function characterizes frictional processes F=p[3 lv’+ ¢+ o(p)+«(0, 0)+X(I))]+W(U V0),
that are intrinsic to the material and that should therefore be (17
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where p is the mass densityp is the potential energy per
unit mass of a body force= —V ¢, o is the potential energy

After some integrations by parts in E(.9), by use of

associated with the compressibility of the materialis the (V0) =V0O—(VO)Vu, (22
kinetic energy of the microstructure, taken to be a quadratic

form of 0, y is the potential energy for the external actionsthe total power input can be cast in the form

exerted on), andW is the elastic energy connected with the

microstructure W will in general be required to be frame- F+ Ws:f {X~v+X-O}dV+f {(XP+X®)-v
indifferent (see Sec. Il C beloy While the elastic energy B B

might in principle depend also on higher gradients of the .

order tensoi), to keep the following discussion simple, we +(XP+X%)- O}dA, (23

take into account only first gradients. The inclusion of higher b b ) . i
gradients is feasible within our setting, but it would alsowhereX, X, andX®, X® are the generalized internal forces in

. . b
require the introduction of higher order forces and momentéh€ body and on its .boundaryl,) respectively.and X° are
in the bulk and on the surfad@9]. The main features of our Nth-rank tensors, whil and X> are vectors in the three-
method are already evident with an energy density of thélimensional space. In particular,

form (17).
We write the balance of mass in the usual way, that is,

p+pdivo=0. (18

Then, by the transport theorem, the time ratefoik

&X+&W
P50 " 90

J'-“:f :p(b—f)-v+pM.«(>+
B

W VO0) +(W—p?c’)dive (dV 19
+oyo (VO +(W=p%a)dive dV, (19
whereo’ :=do/dp, and use has been made of the fact that

is a quadratic function of in arranging the microinertia per
unit mass in the form

M Ik\ Ik
o len) 90

(cf. (7) and see als§27], p. 19. At variance with the La-

grangian paradigm, her# fails to be the total power input
for the system; it must be supplemented with theface
powerWs3, which for a movable boundaw3 takes the gen-
eral form

(20

W5=f (XS v+ X5 O}dA, (22)
B

X=p(v—f)— V(W-p?c’)+div

IJW
VOO —) (24

oV O
xep| e X W gy W 25
X=p| M+55)+ 50 ~WVovn @9
and

XP=(W-p?c")r—| VOO w 26
=(W=p“og')v LO-g5¥ (26)
b JW )
R T @0

wherew is the outer unit normal té3 and
V“()@—(?W (0] —(9W 28
ST avo), Mo, ) 28

This term shows how, because of EB2), the elastic energy
contributes to the generalized foreconjugated tw. It will
become apparent in Sec. IlIC how E@8) can be inter-
preted as an elastic stress.

It should be noted that when the velocity fields subject
to a possibly differential constraint, bo¥ and X® may not
be uniquely determined by Ed23) and additional terms
may show up in Eqs(24) and(27), see Sec. IV.

The special constrained variation of the total power de-

S YS H i 1 . . . .
whereX®, X* are generalized external forces associated Withinoq in the preceding section here becomes

the velocitiesy and 0, respectively. WhileX® is a vector in
the ordinary spaceX® is annth-rank tensor. Often the sur-

face power derives from a surface potential, i.e., it can be

represented as

e

g w\/\F(x,@)dA,

whereWs is a scalar function of the position in spacend
the order tensob); clearly, in such a case

5(¢+WS)=f {x-5v+x-a(>}dv+f {(XP+X3)- Sv
B B
+(XP+X3)- SOLA. (29
B. Dissipation
In the present settingR is indeed a functional invariant

under all changes of fram@4):

R=f RdV.
B
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For any analytic dissipation functioR, this requirement generalized force exerted by the boundary. A similar conclu-

amounts to demand th& be the sum of invariant homoge- sion applies to Eq(35hb) and the generalized forc&®, when

neous terms. Thus we can assume & a function bilin- O is prescribed o 3.

ear in0) andD: Finally, it should be noticed that in arriving at Eq84)
and(35), we have set equal to unity the Lagrange multiplier

R= R(\O,@,D). playing here the role oh in Sec. Il. That this is indeed
justified follows from Euler’s theorem on homogeneous
The variation of the dissipation function here takes thefunctions, by which
form

R O R D=2R 36
v, @0 5 Utap PR (36

m—f R0+ y(s
_B%.M o (6v)

since §(Vv) =V (v). An integration by parts then changes and the linearity of the relation between the paits§) and

Eq. (30) into (0,Vv), which together with Eq(36) ensures that
mfm&f)d'(m)(s dv
= — . 50—div| —| - Sv JR . IR
5| 90 dVu — 0+—<—-Vv=2R.
0\() (?Vv
+ f R ) SvdA (3D
~w V|- -ov .
78\ IV C. Classical balances
Moreover, by the chain rule Equations(34) and (35) together with Eqs(24)—(27) are
R the basic equations of this theory; in particular, use of Egs.
R JR d0 IR dD IR (24) and(25) in Eq. (34) yields the complete evolution equa-
%:ﬂ@o%jwﬁ 30 :% (32 tions for the body. Classically this role is played by the bal-
ance equations for linear and angular momenta. Though in
and the present setting it would be illusory to derive from these
balances the evolution of complex microstructures such as
JR oR 90 oR oD IR 90 IR the one described by a tensor of arbitrary rank, it remains

(33 crucial to ascertain that the evolution predicted by this theory

does not violate the classical balance equations. Here we

show how these equations can indeed be recognized as valid.
The balance of linear momentum requires that

—=—F0——+—0—— =—0 — + —
dVv 50 dVv dD Vv ) Vv dD

Here the symbole denotes composition; for example,
([9R1907e[ 801 90]),=[ R/ 90 ;][9D;/90,].  Combining

these equations with Eq$29) and (31), we arrive at the d
generalized form of Eq(4) valid for a dissipative ordered aﬁ, prdV= L pfdV+ J;CtdA (37
fluid:
( JR 90 IR for any sub-bodyC, wheref is the body force per unit mass
X— iV(—AOWwLﬁ—D =0 (348 andt is the contact force per unit area. For unstructured
90 v continua, only the torques of the same forces as in(&d.
$ in B, enter the balance of angular momentum. When, however,
there is a microstructure connected with an internal rotation
X+ fzo (34b) of the material element, additional couples in the form of
L d0 body and surface moments must be accounted for. The gen-
and eral form of the balance of angular momentum is then
s oue [R 0 GR| d
XX+ 5o ove b V0 (353 —f p(m+x><v)dvzf p(xxf+k)dv+f (xXt+1)dA,
v dt)e c ac
on dB,
XP+X5=0 (35  wherex is the position vectorpm is the intrinsic angular

momentum,k the body moment per unit mass, ahdhe
In particular, the boundary equatiori35) deserve a com- surface contact moment per unit area.
ment. When the regioi8 is not free to change in time, all Whent and| at a given point are assumed to depend only
admissibledv vanish ondB, and so Eq.358 would not on the local surface normad by Cauchy’s tetrahedron argu-
properly follow from our reasoning; however, it can still be ment one can show that they can be expressed in terms of a
regarded as valid, provideX® is interpreted as @eactive  stress tensof and a couple stress tendoraccording to
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t=Tw, I=Lvw. (39

oK oK
OXE—H)X—:O. (43
Then, by use of the conservation of m#&8), it is possible Y

to write the classical balance equations in point form as We are now in a position to give an alternative form.

: ) Starting from the stres@tl), we find

pv=pf+divT (39
IR 30, W

— +——0 /|,
K (?O| (?l)j Kk (?OH

and | = €] (44

pm=pk—7+divL, (40 \where use has also been made of the identiyA; =

— €jkAyj - By Egs.(34b) and(16), the first term on the right-

where is associated with the skew symmetric parfloby  ond side of Eq(44) can be written as

7= €ijk Tjx» With € the components of Ricci’s alternator.

In the absence of internal rotational degrees of freedgrk, IR 30, n n
andL vanish and Eq(40) reduces to the usual requirement €k o a o €ijkX| Z 5jlpOI';: fiij XILO'E'
that the stress tensor be symmetric. JOr Pk p=1 p=1

Using the generalized for@@4) in the equation of motion
(34a, one finds that this latter takes the fo(88) when the
stress tensor is chosen to be

whereX, are the components of. Thus, upon inserting Eq.
(25), EQ. (44) becomes

n
R IW
W s2enye W R DR =€ pZ M+ ——— | O+ o
=(W=po’) NO 90 "o (4 1} 9O
wherel is the identity tensor. With this choice for the stress, _[ W O+ W O, «
it follows from Egs.(26) and (359 that the traction o5 is d0i m p 90 ;
balanced by the surface fore€; accordingly, it would van- L
ish on a free surface. n ax
To make the balance of angular momentum explicit, we :eijka M,i+——| O
enforce the requirement that the elastic energy densgibe p=1 P90 P
invariant under change of frame. This can be written as
n n —( il El g O] (45)
W(O, ,O|,j):W( 0,11 Q ;..05Qi 11 Q|me), b
m=1 m=1

where the second equation follows from the identi#g).
whereQ is an arbitrary rotation. Using essentially the same The balance of angular momentu@0) is indeed satis-

arguments as i3], one finds that this leads to fied, if we can set
D[ ow AW AW =0xM, (46)
Eijk 2 _ O||r<n+ . O|ﬁ1’| + fohk =0.
m=1 ﬁol'm (70|1m,| gl provided we further interpret andL as follows:
(42)
ax
Introducing a generalized vector-valued product of two ten- k=- ‘OX% (47)
sors of the same rank, defined by
and
n
(AXB);=eyc 2, AilBik, oW
p=1 PP =
Lij= e.HpEl O o, " (48)
Eqg. (42) can also be written in compact form as
Actually, by Egs.(20) and(43), Eq. (46) properly definesn
0 JW VO JW o as
50 TV vn Y
ox X (49)
m=0UX—.
In a similar way, by requiring the kinetic energy of the 90
microstructurex to be the same in all inertial frames, we
obtain Moreover, it follows from Eqs(48) and (38) that
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where all external actions have been omitted for simplicity.

%")' (50 Our first objective is to decompose the poweimnto con-
jugated velocities and forces. We choose as veloditiesnd

the material time derivative of the director Here, again
ith the aid of Eqs(13) and(22), Eq. (19) becomes

=0Xx

It is clear from Eq.(50) that the couple stress depends only
on the elastic energy. The absence of any viscous contriblfY

tion to the couple stress is a consequenc&@f being ex- . )
.7-'=f [pv~v+
B

— —divo—=

cluded from the dissipatiofcf. [30] for an analogous result o vn

in a restricted setting

JW &W) .
‘n

dv+ f ( w ndA
” ovn?| NdA.

In this section we make specific Eq84) and (35) for a (51
special family of anisotropic fluids, the uniaxial nematic lig- . )
uid crystals. In the case where the scalar order parameter &incen is orthogonal ton andVu is traceless, the powef
constant, the dynamical equations for these materials hawemains unchanged whenever the integrands in(&f.are

long been established: they were obtained as balance equaltered as follows:
tions for linear and angular momenta, the latter also includ-

VT |y
IV. UNIAXIAL NEMATICS (V) avn) v

ing the microstructural contributiod8—5]. The dynamics of e o M—div JW wunln
uniaxial nematics with variable order was treated much later s P o gvn ©
by Ericksen[6], who posited an additional balance equation
for the scalar order parameter. 19

Our perspective here is different; the fact that for both —((Vn) aVnerl Vo dv
these theories we shall arrive at the same evolution equations
from an independent principle shows that all classical nema- oW .

) - -~ o + —<—v+upn |- ndA, (52

todynamics falls within the range of validity of this principle. PEARAAL

Furthermore, it indicates that even when no guidance is

gained by analogy to the balance laws of classical continuurwhereu, uy,, andp are arbitrary scalar fields. An integration
mechanics this principle is still able to establish the basidy parts in Eq.(52) then allows to identify the generalized
equations of the theory. This is especially important for nem{orces

atics with tensorial ordef31]. Moreover, we shall illustrate

here by example how to overcome the difficulties that arise X= on+divl (VT IW | 53
when constraints are prescribed on the order tensor and the =pv+div| (Vn) avn +pl, (53
velocity field.

We proceed in two steps. First we treat in Sec. IV A the oW W
classical case with constant scalar order. We then extend X=—o—diveg o+ un, (54
these results in Sec. IV B to account also for a variable scalar
o XP=|(vn)T w +pl 55

A. Constant scalar order parameter

A nematic liquid crystal is a fluid consisting of effectively xb— JW b wen (56)

uniaxial molecules that exhibit the tendency to align their gvn’ " Holh

long axes in a common direction. It is commonly described

by a unit vector fielch, the nematic director, which indicates where clearlyu, w,, andp appear as Lagrange multipliers
the local average orientatidisee[32—34 for the origins of ~ corresponding to the constraints that bottand X be or-
the equilibrium theory. thogonal ton, andv be a solenoidal field.

Most processes connected with the reorientation of the Following the general format set forth in Sec. Ill, we as-
director are slow compared with the frequency of soundsume that the dissipation density is a functidR
waves. It is' then sufficient to cqngider the nematic fluid as_ R(n,ﬁ,D) bilinear in the symmetric pai of Vo and the
incompressible. The mass densityis then a constant, and
the divergence of the velocity field must vanish to make
the mass continuity equation satisfied. This amounts to sayePresented as
ing that the velocity gradierW v is traceless. We neglect the o .
energy connected with the director rotation and write the n=n—eXn,
total energy as

corotational time derivative°1 of the director. The latter is

wherew= 3 curlv is the axial vector of the skew-symmetric

]::f L2+ W(n,Vn)ldV, partW of Vo, so thatn=n—Wn.
B[va ( )] Equation(36) here reads as
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IR o+aR D— 2R 57 . ALY
o NT-5- D=2k ij = EikiMk— -
- We have thus recovered in our setting the classical theory for
Similarly, Eqs.(32) and(33) become nematodynamicécf. especially Eqs(2.4) and(5.6) of [30]).
JR IR The most general dissipation function bilineamirand D
—_=— (58 can be found by considering all possible scalar invariants
an - on that can be built from these quantities and the director
This function can be written as
and
R=1y,n2+ y,n- DN+ £ y5(Dn)2+ Ly, tr D2+ } y5(n- D)2,
R 1 . IR (3’R® +(9R - 271 Y2 273(DN) 43y, 2 Vs( (é?;)
=3 | N®—<——F®n|+-=.

By combining Eqs(53)—(56) with (58) and (59), we can
now write Eqs.(34@ and (359 in the following form

where they’s are constants. It readily follows that

JR

£=%y2(ﬁ®n+ n®r?1)+%y3(Dn®n+ n®Dn)+ y,D

pv=divT (603 + y5(n-DN)n@n
W IJW IR in B, and
— —div_g=+—5+un=0 60Db
an avn - 59 (600 R o
and e =7yinT yDn.
Tr+X°=0 (61a The form of the viscous stress commonly used is
IW on 4B, = g.(n. A ;
(9Vn”+"‘bn+xs:0 (61b) T a1(n-Dn)n®@n+ a,n®@n+ azn®@n+ a,D+ asDnen
+ aen® Dn,
with the stress
where thea's are Leslie’s coefficientgcf. [30], Eq. (4.6)].
;W 1 IR IR JR This expression is the same as ours, provided that
T=—pl—(Vn) eri n® ———®n +E'
gn on a1=ys, =3(y2— 1), a3=3(v2ty1),
(62)
a=vs, as=3(v3—72), @s=31(v3t+72),

It is clear from Eq.(62) that the extra-stres§+pl can be
decomposed into the sum of atasticstress

where it follows that ag— as=a,+ a3, known as the
Onsager-Parodi relation. This relation is automatically satis-

T(e)-——(Vn)Tﬂ fied bgcause the_ generalized viscou; fqrces derive from a
- ovn potentialR. Here indeed Onsager’s principle reduces to the
symmetry in the mixed second derivativesRf
and aviscousstress Finally, it is worth remarking that using a codeformational
time derivativen=n+ aDn rather tham in constructing the
T(v):zl ne E_ﬁm +£_ dissipation function would in general result in ordering dif-
an an D ferently the same terms in E¢63); in particular, whenever

both y, and y5 do not vanish, the theory would not be for-

The axial vector associated with the skew-symmetric part ofnally affected.

TM is —nx (aR/dn), with the meaning of a viscous torque
on n; hence Eq(60b), once written in the equivalent form

W W IR

dv—e-—"—"7"——
Jdvn dn on

nXx

B. Variable scalar order parameter

The local degree of order of a uniaxial nematic liquid
crystal can be measured by the Maier-Saupe order parameter
S which is given by

S=(P,(n-u)), (64)

can be interpreted as a balance of torques acting on the di-

rector. A similar interpretation can also be given for Eq.where the bracketé - -) indicate a local orientational aver-
(61b). Moreover, according to Eq48) the components of age over the molecules aiy is the second Legendre poly-
the couple stress tensor read as nomial inn-u, the cosine of the angle between the molecular
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figure axisu and the nematic directar. S can take values

between—1/2 and 1. To describe the average orientation
along with the scalar order, it is convenient to employ the

uniaxial second-rank alignment tensor

a=S(nen—13l), (65)

which also reflects theematic symmetnpyi.e., the physical
equivalence oh and —n. By use of Eq.(65), a theory for

uniaxial nematics with variable order is obtained naturally as

PHYSICAL REVIEW B4 031705

Furthermore, the additional equati¢é®8) becomes

W 9w .
__d|V_+Bln' Dn+,328=0

N AR (72

Apart from the microinertia, which we have neglected here,
the evolution equations that we find are the same as Ericks-
en’s[6], where again the extra Onsager relation he derived is
automatically satisfied.

V. CONCLUSIONS

a special case of a theory for the full second-rank alignment

tensor[31]. However, here we prefer to tre@tandn as two

We adopted a variational principle to extend the classical

independent variables. In this way we can profit from theLagrange-Rayleigh equations of mass-point dynamics to flu-

results of the preceding subsection.

ids with dissipative microstructure, where the internal order

The energy connected with the order is now a functionis described by a tensor of arbitrary rank. In this way, starting

W=W(S,VS,n,Vn), and it will in general contain not only
elastic terms, but also a Landau-deGennes potenti&. in

only from the free energy and the dissipation, we arrived
directly at the evolution equations for the fluid along with the

Using the same method illustrated above, one finds an add&ppropriate boundary conditions.

tional term in the generalized for¢g3), which here becomes

. OW OW
X=pv+div| (VN)T—==+VS® ——=+pl |.

avn JdVS (66

We compared this theory to the classical one, where the
evolution equations arise from writing balances together with
constitutive assumptions. It turned out that the flow equation
can always be interpreted as the balance of linear momen-
tum, where the stress tensor derives directly from the free

Equation (54) remains unchanged, and a third generalizedenergy and the dissipation. Similarly, the balance of angular

force conjugated t& is found as

X(S)_(?W q oW 5
s Vovs €7
which enters the balance equation
JR
XO+ —=0. (69)
S

SinceSis scalar, its material time derivativ@ is frame-
indifferent, and we can write the dissipation functionRs

= R(n,ﬁ,S,S, D). The most general form this can take is

R=3,5n-Dn+18,5? (69)
+ % ’ylﬁz“l‘ ’)/ZF]' Dn
+3¥3(DN)?+ 3 y, tr D>+ 3 y5(n-Dn)?,
(70)

where now allg’s and y’s are arbitrary functions o
It then follows that the equations of motion still hold in

the form (60), where the stress is given by the tensor in Eq.

(62) plus the one related to the scalar order:

AW .
TO=-VS® ——=+8,Sn®n.

dVS ()

momentum follows from the evolution equation for the order

tensor: We made use of invariance properties of both elastic
and kinetic energies to identify the internal angular momen-
tum and both body and contact couples.

While it is always possible to reconcile our approach with
the classical balance equations, the reverse does not hold
true. In general, the internal order has more than just the
rotational degrees of freedom, and so additional balances and
constitutive relations would be needed.

As a specific example, we showed how the hydrodynamic

theory for uniaxial nematic liquid crystals is derived within
our setting. In particular, this illustrates how special con-
straints can be treated. For a constant scalar order parameter,
we found the stress tensor in the form used in the Ericksen-
Leslie-Parodi theory. While one can reconcile in the bulk this
stress with the symmetric stress of the Harvard griddpp.
208, by adding a divergence-free term, this is not possible on
the boundary because it would contradict the boundary con-
ditions. In the more general case of variable degree of orien-
tation we found the additional contributions to the stress and
a balance equation for the scalar order parameter in the form
proposed by Ericksef6].
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