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Reconstructed rough growing interfaces: Ridge-line trapping of domain walls
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We investigate whether surface reconstruction order exists in stationary growing states at all length scales or
only below a crossover length.. The latter behavior would be similar to surface roughness in growing
crystal surfaces; below the equilibrium roughening temperature they evolve in a layer-by-layer mode within a
crossover length scalg, but are always rough at large length scales. We investigate this issue in the context
of Kardar-Parisi-ZhandKPZ) type dynamics and a checkerboard type reconstruction, using the restricted
solid-on-solid model with negative monatomic step energies. This is a topology where surface reconstruction
order is compatible with surface roughness and where a so-called reconstructed rough phase exists in equilib-
rium. We find that during growth reconstruction order is absent in the thermodynamic limit, but exists below
a crossover length.>>1g, and that this local order fluctuates critically. Domain walls become trapped at the
ridge lines of the rough surface, and thus the reconstruction order fluctuations are slaved to the KPZ dynamics.
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[. INTRODUCTION Consider a surface that is flat and reconstructed in equi-
librium at low temperatures. BelowWg it appears to grow

Equilibrium surface phase transitions have been a topic oWithin I as flat in a layer-by-layer mode. Moreover, below
research for several decades. Various types of critical behav. (if T,.c<Tg) it appears as reconstructed if the new par-
ior are well established in both theoretical models and actudicles can find their proper reconstruction positions at time
experiments. This topic includes surface rougheribg@],  scales that are short compared to the rate at which a new
surface melting[3,4], and surface reconstructiofb—7]. layer is completed. Presume that this is indeed the case. The
Moreover, the competition between these phenomena leadgxt, more intriguing, question is whethkgg. can be larger
to additional phases and phase transitions, like disordered fléhan|g; i.e., whether rough growing surfaces can be recon-
phases, preroughening transitions, and reconstructed rougtructed? The compatibility of surface roughness with sur-
phases [8—10. Roughening induced deconstruction in face reconstruction was addressed in the context of equilib-
P1(110 [7,11] and preroughening induced deconstruction inrium phase transitions several years ago. The answer
Si(110) type geometries are other examples of this competidepends on intricate details of the surface topology. For ex-
tion [12]. ample, in missing row reconstructéMRR) (110 facets in

The theory of dynamic nonequilibrium processes like surfcc crystals, like Au and Pt, roughness is incompatible with
face growth has flourished during the last decade as welkeconstruction order, and the surface roughening transition
Several additional types of dynamic universality class havenust simultaneously destroy the reconstructigh In such
been identified. Kardar-Parisi-ZhangfPZ) type growth is geometries, reconstruction order cannot exist in growing
one examplg13—-20. Unfortunately, in this area the gap surfaces beyond the roughness length scale either, and
seems wider between theoretical and experimental interests,=<Ig.

Theoretically oriented research tends to focus on universal Surface roughness and reconstruction are compatible with
aspects of these processes, such as the large scale propergash other in other crystal structures. Simple cybg MR

of growing surfaces in the stationary growing state and howeconstructed110 facets are an example. In equilibrium,
this state is approached in the asymptotic large time limitthey can roughen before the reconstruction order decon-
Experimentally oriented research tends to focus on more mistructs, Tg<T,... The intermediate phase is known as a re-
croscopic short distance aspects of growing surfaces, e.g., asnstructed rough phas$&,10]. For those surfaces it might
encountered in actual epitaxial growth. be possible to observe genuine deconstruction type phase

One of the fundamental issues relevant to both perspedransitions in growing surfaces. Or, if not, the surface recon-
tives is whether any of the above equilibrium surface phasstruction can at least persist well beyond the roughness
transitions persist in the stationary state of growing inter<rossover length scalé,.=>1g, and will be limited by an
faces. In this paper we address whether surface reconstruitiddependent mechanism. These issues are the topic of our
tion order can exist during growth. research reported here.

This issue is related to the absence of surface roughening In Sec. Il we review rough versus layer-by-layer growth
transitions in growing surfaces. Below the equilibrium in surfaces, and in Sec. lll the basic properties of equilibrium
roughening transition temperatufg the growing surface is reconstructed rough phases. Next, in Sec. IV, we start to
rough at large length scales, but remains flat and grows laydocus on the reconstruction versus dynamic roughness issue,
by layer at distances shorter than a crossover length kgale and then, in section V, we choose a specific type of recon-
which varies with temperature and oversaturation. We revievstruction and a specific type of surface growth dynamics to
this briefly in Sec. Il in the context of elementary nucleationstudy it quantitatively by means of Monte CaflC) simu-
theory. lations. The model must be as simple as possible, avoiding
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secondary effects that might obscure the central issue. Our
choice is the so-called restricted solid-on-soliRBSOS
model with negative step energies, which describes a simple
cubic checkerboard type reconstruction, and KPZ type
growth. The MC simulation results are presented in Sec. VI,
and analyzed in Sec. VII. Finally, in Sec. VIIIl we summarize
our results.

Il. ROUGHNESS IN GROWING SURFACES

The topic of this paper is whether surface reconstruction
order can exist during growth, but as a start it is useful to
review briefly the related issue of dynamic surface roughness
from long and short length scale perspectives. Elementary
nucleation theory suffices for this purpose. Equilibrium crys- o
tal surfaces undergo well defined roughening transitiondions (Au) and sufficiently belowT (large step free ener-
from macroscopic flat to macroscopic rough. On the othegies ) the growing surface can appear to be flat for all
hand, growing surfaces are theoretically “always rough”practical purposes, over any typical experimental length
[21,22). This seems at odds with practical reality, where sur-scale.
faces appear to grow quite differently below and above the The same types of issue arise in our study concerning the
equilibrium roughening temperatufig;. Above T they are  compatibility of surface reconstruction order with growth dy-
rough (dynamic roughnegswhile below T they seem flat namics. First we address whether surface reconstruction or-
(layer-by-layer growth on flat surfaces as well as step-flowder can persist during growth at macroscopic length scales
growth on sloped ong23,24)). Above Tg the growth veloc-  (the thermodynamic limjt and, if not, whether it might still
ity vy is proportional to the oversaturatian,~Au, while exist in a practical sense within a characteristic length scale
below Ty it is inversely proportional to a nucleation time |rc below the equilibrium reconstruction temperatiig..
scalev g~ 7~ with 7~ 1~exd —ar?/(AukgT)] [21]. 7 is the
Chapes have sharp angies, i which many facete, including A RECONSTRUCTED ROUGH EQUILIBRIUM PHASES
that are above theifr, are missing. This apparent difference  Surface reconstruction is conventionally associated with
in growth mechanism is one of the most useful experimentaflat interfaces. However, surface roughness does not neces-
tools to locate equilibrium roughening transitions in crystalsarily destroy the reconstruction order. A rough but still re-
facets. constructed surface is in a so-called reconstructed rough

The origin of the exponential factor inis the existence (RR) phase. The equilibrium versions of RR phases were
of a nucleation barrier for creating a terrace of heilghth studied theoretically some years ago in the context of the
+1 belowTg. The edge(step free energy loss ternfpro-  competition between surface roughening and reconstruction
portional to » times the circumferengecompetes with the in MR reconstructed fc§110 facets[6,7]. The topological
surface energy gain tergproportional toA i times the ter- details of those fcc surface prevent the existence of RR
race arep The nucleation barrier vanishes when the step fre@hases, implying that in P10 the surface roughens and
energyz vanishes, i.e., alr. After a new terrace larger than deconstructs simultaneoud]ly] as observed experimentally
the nucleation threshold is nucleated with an exponentiallyn P{110) [11]. This implies immediately that during growth
small probability, it spreads out fast by particle adhesion ateconstruction order is limited to the roughness crossover
its edge into a macroscopic domain, until it merges withlength scalel .<Ig. The same theoretical studies also iden-
other spreading terraces that have nucleated in the medified other surface geometries where RR phases do exist.
time, and thus completes the new surface layer. HoweveFor thosd .. is not limited byl . In this section we review
new terraces are nucleated on top of spreading terraces #® basic properties of RR phases, using as examples check-
well. This nesting effect, together with the spatial fluctua-erboard and MR type reconstructed simple cubic stackings.
tions of nucleation events, leads to the loss of a well defined To avoid confusion, it is useful to distinguish between
(length scale freeglobal reference surface level. This meansmisplacement and displacement type reconstrudtl@h In
that, although at small enough length scales the surface looksisplacement reconstructions, particles have moved to dif-
flat and seems to grow layer by layer, at large length scales ferent solid-on-solid type stacking positions, or are removed
is rough. altogether, compared to the unreconstructed flat surface

There is no phase transition between the layer-by-layestructure. The checkerboard reconstruction in Fig. 1 and also
and rough growth regimes, only a characteristic crossovethe more realistic MR type reconstructions are examples of
length scale. The latter is of ordeg=v <7, with v the step  this. The average surface height has changed by half a unit,
velocity (determined by the particle deposition rate at theh—h—3%. In displacement reconstructions the atomic stack-
step edgeand 7 the above time scale at which terrace nucleiing does not change. Instead, the atoms are merely elastically
are being created. Surface flatness cannot be maintained dulistorted at the surface with a commensurate or incommen-
ing growth over large length scales, but at small oversaturasurate period compared to the bulk. Misplacement type re-

FIG. 1. checkerboard type misplacement surface reconstruction.
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(a) Moo The fate of reconstruction versus roughness depends on
the energies of these steps and domain walls, including the

kink energies. They set the scale of the meander type entropy

® N e S and therefore the temperature dependence of the step free
T - - -7 -7 energies. If the domain wall free energy vanishes first, the
e e e . surface remains flat but the reconstruction vanishigs,

<Tg. In case the free energy of one of the two types of step
vanishes first, the surface enters a reconstructed rough phase,
Tr<T,ec. At the roughening transition one of the two recon-
struction order parameters vanishes, but the other type of
order remains. So there exist two topologically distinct types
of RR phase(Notice that only the one with the parity type
order is readily observable by, e.g., conventional x-ray dif-
FIG. 2. (a) A perfect reconstructed surfacg) A domain wall;  fraction)

both order parameters ch_ange sigm.A step where only the even- In the RSOS model below, the RR phase has parity order,
odd row order changes sig(d) A step where only the parity order j.e., the step free energy of tHe) type steps is zero, but
changes sign. walls and(d) type steps still have nonzero free energy. We

will refer to those excitations as “loops of zeros,” because in

constructions are more likely to disorder at temperatures nedP€ rough surface they show up as contours across which the
Tg than displacement type reconstructions. For clarity weeight change is zeralh=0. The deconstruction transition
focus here on misplacement reconstructions. (inside the rough phaseakes place at the temperature where
The definition of the reconstruction order parameter is athe surface tension of the loops vanishes. In equilibrium that
the core of RR phas€d,10]. In checkerboard and MR re- turns out to _be an ordinary Ising transition. This concludes
constructed s¢110) facets, the reconstruction order can beour brief review. For more details we refer to Reffg] and
formulated in two distinct ways. One formulation keeps track[10]-
of whether the black or white fielteven or odd rowis on
top. _The other measures it in t_erms of antiferroma_gnetic or- IV RECONSTRUCTED ROUGH GROWTH
der in the parity type Ising variable€s =exp(h,), with h,
=0,=1,%2,... thesurface height at site (see Fig. 2 Let us focus now on surface growth. Only in surfaces
These two formulations might seem equivalent in flat surwhere equilibrium RR phases are topologically possible can
faces, but they are not in the presence of roughness. the surface reconstruction length schlg exceed the onset
The compatibility of surface reconstruction with surfaceof dynamic roughness of length scdlg. Moreover, it is
roughness depends on topological properties of step and dqguite possible that the reconstruction order persists over all
main wall excitations; on how they affect the two versions oflength scalesl{,.—«), such that a genuine dynamic decon-
the order parameter. Figure 2 shows in cartoon style a crosgruction phase transition takes place in the stationary state of
section of the reconstructed surface, and also domain wathe growing surface, just as in equilibrium.
and step excitations. The domain wall(lp) does not change For comparison, imagine a two-dimensioriaD) lattice
the surface height. Notice that both order parameters changeth a height variable and an Ising spin degree of freedom
sign. Across the step ift), from left to right, the even-odd (representing the reconstruction ordem each site. This
order parameter changes sign, but the parity order is unafeads to two coupled master equations, one for surface
fected. At the step ind) the opposite happens. These two growth, e.g., KPZ type dynamics, and the other for the re-
types of step are the only topologically distinct ones that areonstruction order, e.g., Glauber type Ising dynamics. In
possible;(c) couples only to the even-odd row type order equilibrium surfaces, the coupling between the two sectors is
parameter andd) only to to the parity version. weak, to the extent that the reconstruction transition in the
It is possible to construct many more step and domairising sector and the roughening transition in the height vari-
wall structures that look locally different from the ones in the able sector do not interfere with each oth@j25]. The cen-
figure, but those induce the same change in height and/dral issue is whether and how this coupling changes during
reconstruction ordés) and therefore are from a topological growth. The Ising dynamics itself is blind to the growth bias.
point of view identical to the ones in the figure. Notice alsolf the coupling between the two sectors remains weak, the
that the excitations ifb)—(d) are related to each other in the Ising spins can still reach the Gibbs equilibrium state and
sense that any of the three can be interpreted as a bound statedergo a conventional equilibrium reconstruction transition.
of the two others. Elastic surface deformations in the actual Coupled master equations of this type have been studied
atomic positions near the surface and additional ones neaecently in the context of specific 1D growth models. Those
the steps and domain walls influence the local internal strucdisplay strong coupling between the Ising and roughness de-
ture of steps and domain walls, but do not affect these topogrees of freedom, such as growth being pinned down by
logical features, and therefore need not be explicitly repretsing domain walls[26—28. Pinning favors spontaneous
sented in the following discussion(They certainly faceting. In our 2D model, we observe different effects, in
renormalize the step and domain wall energies and the inteeddition to the obvious fact that in 1D equilibrium recon-
actions between such surface excitatipns. struction order cannot exist.
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V. RESTRICTED SOLID-ON-SOLID MODEL we can choose+q=1. At infinite temperature=0) and

The 2D restricted solid-on-solid model is one of the workdeIOOSItlon only @=0) the model reduces to the well known

; .~ Kim-Kosterlitz [18] model for KPZ type growth.
horses of surface physics research. Integer valued heig . I
. ~ . : We will present only our MC results far from equilibrium,
variablesh,=0,=1,£2, ... areassigned to a square lattice .

. i ) . i.e., atq=0 with deposition only. We observe no qualitative
?nnodstns:éej;itr:je;ihg T 1he_||_g?]r;tsé:er;ag;estr|cted to differ by aéifferences closer to equilibrium,<0p<<1, but the interpre-
T tation of the data becomes increasingly obscufasl ex-
1 pected by (conventional crossover scaling from the equilib-
E=-K >, (h,—h,)2 (1)  rium deconstruction phase transition.
2 (r.r’y At low temperaturesK — —«, the Metropolis dynamics
slows down considerably. The rejection rate becomes high
depends only on nearest neighbor interactions. We use dind the density of active sites becomes low. Therefore we
mensionless unitsK =J/kgT. The K>0 side of the phase employ the following rejection free algorithm. During the
diagram contains a conventional equilibrium surface roughMmcC simulation we keep a list of active sites, i.e., sites where
ening transitio25]. Moreover, the nonequilibrium version particles can deposit without violating the RSOS condition.
has been studied extensively 70 as well, because itisa They are grouped in=1, ... ,5sets, according to the five
natural lattice realization of KPZ growfli3-19. distinct energy changeAE; that can occur during deposi-
For K<O0, the model contains one of the simplest ex-tion. First we preselect one of those five sets, with probabil-
amples of an equilibrium RR phag25], and is probably the jty (piN)/(Z;piN;)), wherepj=min(1,e‘AEi) andN; is the
most compact formulation of the coupling between Ising anchumber of sites of typg Next, a particle is randomly depos-
surface degrees of freedom. Tikh=*1 steps are more ited at one of the sites in that specific $eRejection free
favorable than fladh=0 segments. At zero temperatuke, procedures like this upset the flow of time. To restore proper
— —o, thedh=0 states are frozen out, and the model re-time, we increase the MC time during each update step by
duces to the so-called body centered solid-on-S@i@SOS  1/px 1/N;. We checked explicitly that this reproduces the
model, but in this version it lacks step energies, which meangorrect value for the KPZ dynamic exponezt 8/5[18—-20
that the surface is rough even at zero temperature. The suit K=0: we findz=1.6+0.1.
face is rough, but since nearest neighbor heights must differ The above algorithm resolves the slowing down problem
by 1, all heights on one sublattice are even, and odd on thg the actual MC simulation, but does not address its origin.
other, or the other way around. This two-fold degeneracyn the limit K— —« the RSOS model reduces to the BCSOS
represents the checkerboard type RR order. The stagger@gbdel, withdh=+1 at all bonds. Thelh=0 loops are fro-
magnetization, defined in terms of the parity spin type varizen out completely. In BCSOS type KPZ growth dynamics,
ablesS =exp(h), is nonzero. two particles are deposited at once in the form of vertically
The dh=0 excitations that appear a>0 form closed  oriented bricks, otherwise a “forbidden” configuration with
|OOpS and behave like |Sing type domain walls. The recongh=0 would arise. In th&K <0 RSOS model at very low
struction order changes sign across such loops. Their sizggmperatures the same event is achieved as a two-step two-
diverge at the equilibrium deconstruction transitiéR=  particle process, by the deposition of a second particle at the
—0.9630[25] (determined by transfer matrix finite size scal- same site soon after the first one. The probability for depo-
ing techniques The Ising and roughness variables couplesition of the first particle is equal tp=L 2exp(X). The
only weakly. Numerically, all reconstruction aspects of thesecond particle deposition on top of it happens with probabil-

transition follow conventional Ising critical exponents. jty p=L"2. This implies that the time clock in the RSOS
Moreover, the thermodynamic singularities in the Ising seCmodel runs more slowly by a factor =exp(X)[1

tor affect only the temperature dependence of the surfac¢4exp«)+...],
roughness parametéts, defined in terms of the height- A final remark about surface roughness. In normal sur-

height correlator, faces, the equilibrium roughness increases with temperature,
5 . due to the fact that meander type entropy renormalizes the
((hysr =hr )9)=(mKg) ~In(r). (20 step energy into a reduced step free eneit§l. In our

model, surface roughness evolves in the opposite way; it

The continuum limit analysis confirms these numerical re-decreases with increasing temperature. The surface is less
sults. The point in the generalized phase diagram where th®ugh at infinite temperaturé =0 than in the zero tempera-
Gaussiartheighy and Ising degrees of freedom decouple is ature limit K— —«. A high temperature RSOS surface, with
stable renormalization type fixed poifitO]. dh=0,=1 is obviously less rough than a BCSOS surface,

We study this same RSOS model in the presence of a KP@ith only dh= = 1. Recall that this BCSOS model lacks step
type growth bias. In the MC simulation, we first select anenergies, such that it is just as roughTat 0 as atT—co.
update column and next whether a particle deposition oFrom the BCSOS perspective the thermally excitdd=0
evaporation event will be attempted. The move is rejected ifoops stiffen the surface, and give rise to an inverted rough-
it would result in a violation of the RSOS conditi@h=0, ness versus temperature profile. On the one hand, this is an
+1. If allowed, it will take place with probabilityP interesting phenomenon in its own right. Moreover, we could
=min(p,pe 25) in case of deposition, and with probability fine tune it by introducing next-nearest neighbor interactions,
P=min(q,qe “5) for evaporation. Without loss of generality since they represent BCSOS type step energies. On the other
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FIG. 3. Reconstruction order susceptibiljgyas function of tem-
perature at system sizels=8-64. The data collapse onto a  FIG. 4. Histogram(inse} of the reconstruction order parameter

single curve by the shiftk'=K—KpeL), with Kpea(L) m atl__:32 andK_: —3.2 from 28 data points usinhM =0.01 as
=-0.77In(/2.2). bin width. The tails about the peaksrat= £1 scale as power laws

(main frame with exponent—0.9+0.1.

hand, this effect is unlikely to affect the central question we ] )
want to addresghow do roughness and reconstruction de-law shape instead of the exponential form mandatory for a

grees couple during growttand therefore we choose not to SPontaneously broken symmetry. - _
do so in this study. Power laws are the hallmark of critical fluctuations. So,

quite surprisingly, it appears as if the RR order is critical at
low temperatures for alK <K, Instead of an isolated
critical point, we seem to be dealing with a critical phase.
We search for reconstruction order as a function of tem-

VI. RECONSTRUCTION DURING GROWTH

perature, for—o<K<0. The susceptibility type parameter VIl. LOOPS TRAPPED ON RIDGE LINES
29
[29] The surprising critical fluctuations in the reconstruction
x=L2((m?)—(|m[)?) (3)  order parameter can be traced to the following loop dynam-
ics. Consider a typical configuration at very low tempera-
of the reconstruction order parameter tures. Figure 5 shows an exampB9]. The surface is in an
_ almost pure BCSOS type dynamic rough stationary state
m=((—1)*"Ye' ™)) (4 (with dh=1), and contains only a fewth=0 loops separat-

ing surface areas of opposite checkerboard type RR order.
is shown in Fig. 3 for the stationary state of the growing  The typical life cycle of such a loop runs as follows. It is
surface, as a function df for different system sizes®. The  nucleated in a valley bottom. Next it runs up hill, growing in
sharp maxima seem to confirm the existence of a dynamigiameter and encompassing the entire valley, until it be-
surface reconstruction transition into a RR phase. Howevegomes trapped on a ridge line. There it lingers until another
several features are very different from equilibrium. The
peak height diverges as~L?; i.e., more strongly than at the
equilibrium transition point where it scales gs-L”"*. This
could be a signal of a first order phase transition. However,
the peak position does not converge to a specific critical
pointK.. Instead it keeps shifting with lattice size. It scales & RS
logarithmically, as KpeafL)=—AIn(L/Ly) with A=0.77 % AN 3
+0.05 andLy=2.2+0.2. o N

Next, we monitor in detail the reconstruction order pa-

rametermm near and below the equilibriukg; as a function of
time. It behaves similarly as in conventional spontaneously
ordered phases, but flipflops more frequently than is justifi-
able from finite size effects alone. Moreover, the fluctuations
in m within each phase are too strong. Figure 4 quantifies
this in terms of a histogram of the number of times a specific
value of m appears in a typical time series. The distribution
has two distinct peaks, suggesting the presence of spontane- FIG. 5. A typical low temperature configuration of the growing
ously broken reconstruction order, but the tails have a powesurface with one large loop trapped at a ridge line.
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out of the valley bottom but running uphill on one slope
segment only.

The rise of a seedling loop out of the valley bottom into a
macroscopic object is a very fast process. Almost no MC
moves that make the loop grow and rise are rejected; energy
barriers are rare, because the length of the Igspenergy
increases uniformly. Compared to this, the nucleation fre-
quency in the valley bottom is very small. This means that

FIG. 6. (a) One-dimensional cross section of the surface near ghe time scale at which a macroscopic loop emerges out of
valley with two loop segments. On the slope(d are the only  the valley is limited by the nucleation time scalg and
active adso_rptlomdesorptlom sites. The d_omaln walls always move independent of the valley size.
upward during adsorptiorib) A loop of size ofl nuclgated at the To measurer, we prepared a surface in the BCSOS KPZ
Eecjggonrgtfjc?iézczg\:ﬁlyeé d(;:ay and white sites have different surfacey,iinnary state and measu@ a very low temperaturég

: <K,) the intervals between macroscopic loop events. Nu-
merically we findr,~exp(—aK) (measured in BCSOS time
loop annihilates it, or until the KPZ surface fluctuations to units) with «=3.0+0.1.
which it is slaved shrink it back to zero. This agrees qualitatively with the following estimate. The

Figure Ga) represents a cross-section of the 2D roughdeposition of the first particle in the valley bottom occurs
surface near a valley. It shows a domain of opposite recorwith probability p=L~2e?¢. This creates a fledgling loop,
struction inside an otherwise perfectly reconstructed rougtut one that is indistinguishable from the intermediate state
configuration. The two flat segments are the locations wher# an elementary BCSOS type growth evénhere a second
the domain wall loop intersects the cross section. In equilibParticle is dropped on top of it with probabilitg=L"?).
rium, the loop fluctuates with equal probability up and downThe loop grows when the next particle is dropped not on top
the slope because depositions and evaporations are equaliijt next to the previous one. That happens with probability
likely. A growth bias breaks this symmetry, the loops moreP=L"2€. The nucleation threshold diametkris reached
likely move upward than downwardsee Fig. 6a)]. This ~ When the loop growth and BCSOS growth become distin-
upward drift is the driving force responsible for the trapping9uishable, i.e., when the annihilation of a loop requires the
of |00p5 at ridge |ines’ and thus creates a Strong Coup"ngreation of a new eaSily diStingUiShable |OOp inside it. That
between the roughness and reconstruction degrees of freBappens at abouf=7 [see Fig. 60)]. The time scale at
dom, unlike equilibrium where they effectively decouple. ~ which that stage is reached is approximatetyL ~2e~ %< (in

A few comments on the topology of ridge lines in rough BCSOS time units which is of the same order of magnitude
surfaces might be useful. Imagine a rolling ball in this land-as the above numerical nucleation time scale.
scape, as in the well known analogy with renormalization The loop rises out of the valley until it becomes trapped
flow in statistical physics. Presume strong friction such thaon the ridge line that separates this valley from adjacent
the velocity is proportional to the force, i.e., the gradient ofones. From there on the loop is slaved to the growth fluctua-
the slope, at all times. The hilltops are the completely untions of the surface. Valleys grow and shritwithout biag,
stable “fixed points.” The valleys are the attractors. Theopen up, fill up, and merge. The loop has to follow this dance
ridge lines form the watersheds between valleys. Every ridgef the ridge line until a new loop nucleates out of the valley
line runs from a hilltop to a saddle point. From each hilltopand annihilates it, or until the encircled terrain happens to
an arbitrary number of ridge lines can emerge, but only tweshrink to zero(fills up) by surface growth fluctuations.
ridge lines can end at each saddle paattopposite sides of We expect that the lifetime,(L) of a ridge line of sizeL
the single direction in which the saddle point attracB the  in a growing surface scales as a power lgw L?, with zthe
ridge lines form a network, and since none of them can stoglynamic exponent of the surface roughness degrees of free-
in midair it is a closed network. The KPZ rough surface isdom (KPZ like in our mode). To test this, we measure the
scale invariant, which means that this ridge-line network haslecay times of large macroscopic defect logpisabout half
fractal properties. the lattice sizg as a function ofL, at low temperature&

Ignore, for the time being, the scale invariant aspects oK. The data in Fig. 7 indeed collapse onto one universal
the network. Imagine a landscape consisting of deep smootturve after a rescaling of time by,~L? The collapse fits
valleys surrounded by ridge lines, unlike the real rough surbest az=1.7+0.1 (in BCSOS time units which is consis-
face where every deep valley consists of collections of subtent with the known KPZ dynamical exponerz=8/5
valleys. The life cycle of a macroscopic loop in this surface[18-20.
starts with the nucleation of a new seedling loop at the floor The ridge-line fluctuations are responsible for the power
of the valley and its rise along the slopes, during which itlaw tails in the time distribution of RR order, Fig. 4. Those
grows into a macroscopic object. The only loops of interestritical fluctuations show up only below a characteristic
are those nucleated at the valley bottom and then runnintgngth scalel,., where the nucleation time scale,
uphill encompassing the entire valley. Only those loops are-exp(—aK) is larger than the surface growth time scale
topologically trapped and stable. Loops nucleated on the-L% A simple estimate fot,. follows from equating the
slopes annihilate by stochastic fluctuations before becomingvo time scalesl, ..~ exp@K/2).
macroscopically large. The same is true for loops nucleated The peaks in the susceptibility in Fig. 3 reflect this cross-
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300 | We address this issue in the context of KPZ type dynam-
- o 16 ics, in the RSOS model with negative coupling constant
250F p O 24 — <0, which in equilibrium has a checkerboard type RR phase
e S gi and a true deconstruction phase transition inside the rough
200 O@o@ . phase. We find that the stationary growing rough state lacks
@ 0 1 true macroscopic RR orddr,. remains finite. Moreover, we
§150— R @A - identify the mechanism that sets the temperature dependence
o | 1 of | ec-
100k 2 Q%g 4 The fundamental features are an upward drift of the re-
ke N ] construction domain wall loops and their trapping at the
5019 O%ga 4 ridge lines of the surface. There, the loops are slaved to
N fluctuations of the surface growth dynamitg. is set by the
B ! competition between two time scales: the nucleation time

scale of a new loop out of the valleyannihilating existing
trapped loopsand the time scalexp,~L* at which a ridge
line of radiusL vanishes due to surface growth fluctuations.
At length scales smaller thdp..~exp(K/z), the surface
appears as reconstructed rough, and the lifetime of the loops
) o is determined by the KPZ growth dynamical fluctuations.
over lengthl ... Recall that the peak shifts logarithmically. Thg |atter follow power laws. This manifests itself in critical
By setting 7, =7, we obtain the same logarithmic behavior, ,cryations in the reconstruction order at length scales
K=~ (z/@)In(L/Lo). The prefactor is too small by about gmger thanl ... In x-ray diffraction from such a growing
30%, but this is not a surprise because the estimate is rathﬁ{terface, one would observe not only power law shaped
simple minded. It ignores, for example, the self-similarity of ho515 associated with the surface roughness, but also, at tem-
the rough surface. Consider a subvalley adjacent to an aB‘eratures wherk,. is larger than the coherence length of the
ready trapped loop. Suppose a new loop nucleates out of thi§ face. power law shaped reconstruction diffraction peaks.
subvalley. The loop segments annihilate each other in pairs. A length scales larger thah,., the surface appears as
The net effect of this nucleation event is therefore that the,reconstructed rough. Loops of that size are destroyed by
trapped loop jumps across the sub valley. It now follows the, ,jeation of new loops instead of KPZ surface fluctuations,

complementary segment of the _ridg_e Iine_that encircles thg g they are not trapped anymore, because loop segments
subvalley. Such events renormalizg in particular neak . can hop across subvalleys of sizel .. by means of nucle-

ation of new loops in subvalleys.
VIll. CONCLUSIONS In our study we chose to focus on KPZ type surface

In this paper we study the compatibility of surface recon-9"oWth dynamics, but we have good reasons to expect that

struction and surface roughness during growth. There arH‘e trapping of domain walls on ”d.g?."”es IS & common
phenomenon. In general, the quasicritical fluctuations will

several possibilities. ; X
In surfaces where reconstructed rough phases are topB‘?ﬂeCt _the dynamic exponent of whatever grovv_th dynamics

logically forbidden, like missing row reconstructed fado 'S applicable. Inl rgczjent Studlefo of %jD mor(]jels W'tthfPZ ar;)d

facets, reconstruction order cannot exist on a global scale ilf"9 tyPe coupled degrees of freedom, the Ising defects be-

; ; S trapped in valleys and canyons and thus pinned down
the stationary growing state. It can appear only locally within®@M€
the crossover roughness length schlewithin which the he growth[26,27. We expect that a tendency toward face-

surface grows in a layer-by-layer fashion, ile,<lg. The ting instead of ridge-line trapping can also be realized in our
reconstruction length scalg,. can exceedl only in surfaces 2D model by varying the local growth rates.

where equilibrium reconstructed rough phases are topologi-
cally possible, and those surfaces could in principle even
display genuine deconstruction type phase transitions in the This research was supported by the National Science

FIG. 7. Histogram of the decay time of a trapped loop at
K=—6.0. The data collapse by rescaling time by a fattbf.
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