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Porous silicon formation and electropolishing
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Electrochemical etching of silicon in hydrofluoride containing electrolytes leads to pore formation for low
and to electropolishing for high applied current. The transition between pore formation and polishing is
accompanied by a change of the valence of the electrochemical dissolution reaction. The local etching rate at
the interface between the semiconductor and the electrolyte is determined by the local current density. We
model the transport of reactants and reaction products and thus the current density in both, the semiconductor
and the electrolyte. Basic features of the chemical reaction at the interface are summarized in the law of
mass-action-type boundary conditions for the transport equations at the interface. We investigate the linear
stability of a planar and flat interface. Upon increasing the current density the stability flips either through a
change of the valence of the dissolution reaction or by a nonlinear boundary condition at the interface.
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I. INTRODUCTION solved through an electrochemical reaction. Thus in contrast
to the better understood systems mentioned above, we have
Porous silicon was discovered in the 1950s trying to electo consider the transport of several species in the presence of
tropolish silicon in hydrofluoric acidl1,2]. For low current an electric field. Moreover, since the species feedback into
densities and high electrolyte concentrations, silicon is nothe electrical field and react with each other, the transport
electropolished but pores are formed. Increasing the curremguations become nonlinear.
density over a threshold value, which decreases with the One approach to model the dissolution process is by a
electrolyte concentration, results in electropolishing. In thestochastic growth model, i.e. growth of the fluid into the
beginning of the 1990s visible luminescence at room temsemiconductor; see, for examplg/,8]. These models are
perature was discover¢d,4]. The possibility to produce op- inspired by the diffusion limited aggregatigBLA) model.
toelectronic devices out of porous silicon started enormou$Vhile, in principle, such a model is on the atomic scale,
research activity. Meanwhile many applications for poroushbecause of numerical limitations in practice, larger spatial
silicon are in development. Most of these applications araunits are used. By suitable adjustments of model parameters
based on the morphology of porous silicon; for a review seetructures qualitatively similar to porous silicon can be pro-
[5]. duced, but the quantitative connection of model parameters
Porous silicon is formed by anodic dissolution of silicon to physical parameters is lost and, in some cases, the coars-
in hydrofluoric acid. The silicon surface is in contact with the ening introduces a new length scale into the system that ob-
electrolyte, usually in a Teflon cell. Through the externalscures the physics.
potential an electric current is maintained across the cell and A second approach, starting at much larger length scales,
flows from the semiconductor to the acid. Defect electronss to use a continuum description for both the motion of the
(i.e., holeg from the semiconductor and Hf®r F ion9g interface and the ionic and electronic transport; see, e.g.,
from the electrolyte combine at the fluid-semiconductor in-[9-12]. These models include a depletion or passivation
terface and dissolve silicon through an electrochemical readayer at the interface in a phenomenological way and assume
tion. The morphology of the unsolved silicon depends on theanad hocsurface tension to stabilize against small perturba-
current. In the electropolishing phase the silicon surface isions and to provide a length scale that can be compared with
etched layer by layer and remains essentially flat, whereas ithe pore formation. However, surface tension can only affect
the porous silicon phase many holes are formed of a sizkength scales of the order of the micropore diameter, i.e.,
ranging from a few nanometers to microns. Porosities ohanometers. The above-mentioned models are not valid on
over 95% relative to crystalline silicon can be reached. these small scales since the mean free path, quantum effects,
Despite its importance, there is little theoretical under-and the electrical double layer in the electrolyte would have
standing of how porous silicon is formed; for a review seeto be taken into account.
[6]. Even the basic issue why there is a transition from po- We will use here also a description through continuum
rous silicon formation to electropolishing is unresolved. Theequations, but take care to model the actual chemistry and
reasons are rather obvious, when one compares with oth&inetics at the interface and the physical transport mecha-
pattern formation processes like dendrites, viscous fingeringjisms. This results in a somewhat complicated set of evolu-
and colloidal aggregation. As in these systems, we have ttion equations and we have to be satisfied with the more
understand the dynamics of a moving interface, here betweanodest goal to understand whether continuum equations in
a semiconductor and an acid. At the interface silicon is disgeneral are able to predict the transition from electropolish-
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ing to pore formation. As a benchmark for the transition we B. Transport equations

use the dispersion relation as obtained from a linear stability ha |0cal current density is determined by the transport of
analysis of the flat interface moving at a constant velocity. Ifrgactants and reaction products in the semiconductor and the
the dispersion switches from unstable to stable, we interprefjecirolyte as well as by the reaction kinetics. Modeling the
this as the transition from pore formation to polishing. Of yansnart and the interface reaction depends strongly on the
course, if the continuum equations contain the information of.qsidered length scale. mdoped silicon, the pore spacing
the pore struct.ure at all, it will not be unraveled in such ajg typically some microns whereas msilicon nanometer
stability analysis. , . sized pores are formed.

In Sec. Il we discuss the full nonlinear transport equations  Tha shorter the considered length scale the more detailed
and their boundary conditions at the interface. We derive o model has to be. The mean free path of charge carriers in

simplified transport model that covers essential features of,o semiconductor is of the order of some 10 nm. Transport
electrochemical etching of semiconductors and calculate thg, this length scale can be described by Boltzmann equa-

stability of the dissolutic_)n frqnt in linear order in Sec. Ill. tions, but their nonlocality makes them difficult to analyze
Our results are summarized in Sec. IV. [15].
On the nanometer scale, quantum effects start to play a
Il. MODELING ELECTROCHEMICAL ETCHING role[4] and the electrical double layer at the interface in the

electrolyte, i.e., the Helmholtz layer, has to be taken into
) o - ) ) ) » _account16]. At this level, details about the electrochemical

While anodizing silicon in hydrofluoric acid, silicon is yeaction pathway have to be fed into electronic structure cal-
dissolved in an electrochemical reaction. The detailed reacsjations to determine the boundary conditions. Such de-
tion mechanism is still a topic of actual research. Howeverjled knowledge is not available and the presence of an elec-
during pore formation hydrogen evolution is observedyglyte makes the calculations even more complicated.
whereas no hydrogen is formed during electropolishing. The ' To avoid these difficulties we restrict our model to length
valence v of the chemical reactiorithe number of unit scgles, large as compared to the mean free path in the semi-
charges needed to pass through the interface to dissolve oggnductor, i.e., larger than 100 nm. Then, the transport in the
silicon atom) differs in both cases. During pore formation the semiconductor and in the electrolyte can be described by
dissolution steps for a single silicon atom add ug18] drift and diffusion, i.e., by Nernst-Planck equations. The cur-
rent density of electrong,,, and holesj,, is given by

A. Electrochemistry

Si+6HF+h"=SiFa +H,+4H" +e . )
- 2

For each Si atom two positive charges are needed and the Jn=eD,Vn+eu,nE, @
valence isv=2. To be more detailed, a defect electiae.,
hole) h* is consumed and an electron is injected into the
semiconductor. Two more charges are required to charjge t%ereDn,p is the diffusion constaniy,, the mobility,e the
oxidation state of Si from 0 in the crystal todin the SiFg elementary charge, arflthe electric field. The electron and
ion in the solution. They originate from the reduction of the ho|e concentrations andp determine the local charge den-

H atoms into two HF molecules, which leads to the produc-sijty and thus the electric field via the Poisson equation
tion of H,. In the electrolyte only neutral molecules are con-

sumed and a double negatively charged ion and four posi- e
tively charged ions diffuse into the bulk, so their sum is just V-E=—(p—n+N), 5
two positive charges. S

For electropolishing the sum reaction| 4] with N the density of ionized dopant atoms aag the di-
. .o electric constant of silicon. Fgrdoped siliconN is negative
Si+6HF+4h"=SiFg" +6H". 2) and forn-doped silicon is pog'itiveF)Since the electri?: field is
determined by the charge carrier concentration, the products
E andpE in Eqg. (4) represent nonlinearities. Another non-
nearity appears due to production and recombination of
éelectron hole pairs in the continuity equation

jp=—eD,Vp+e?u,pE,

Since four holes are consumed the valencevis4. All

charges needed to oxidize the silicon atom are delivered b

the electrical current and there is no hydrogen formation.
In both cases, pore formation and electropolishing, th

local silicon dissolution rate is proportional to the local elec-
_E pn-= peqneq_

trical current density component normal to the interface, de- Vi ~Vjp, (6)
noted byj, . Thus the local interface velocity is T Peqt Neq
w=—-Fj,, (3)  Wwherer is the lifetime of the charge carriers ang,,andp,

are the equilibrium electron and hole concentration, respec-
whereF is the volume of silicon per unit area dissolved by atively [17]. We make the quasistatic approximation neglect-
unit charge. This number is inversely proportional to the vading the time derivative of the concentration fields. This is
lencer of the chemical reaction. The valence doubles as thgustified if the relaxation time for any field involved in the
current density is increased over the threshold value for eledissolution process is much faster than the interface
tropolishing[14]. movement. The electrical charge is conserved due to
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V-j=V-(jn+jp)=0. The source term in Ed6) is derived C. Boundary conditions

from a law of mass action for the recombination reaction At the interface between the semiconductor and the elec-
e +h"=0. trolyte, the dissolution reaction Eqggl) and (2) have to be
If convection is negligible, the transport of molecules andtaken into account. In both equations, the electric current
ions in the electrolyte can be described analogously. HF, H density component normal to the interfa@enoted by the
H*, and SiE~ have to be considered as well as fluoride F subscriptL) is given by the difference of the forward and
and OH . For each componerX a Nernst-Planck equation backward reaction rate. In a law of mass action type approxi-
gives the particle current density, denotedifyin contrast mation, these rates are given by the concentration product of
to the electric current densify, the reactants and the reaction products, respectively. Thus for
the pore formation reaction we obtain
ix=—DxVCx+axuxCxE, (7) 4
i1 = ~Tpore( CleP— poreCsiz-Ci,Cryn),  (10)
with the particle’s chargel,. The reactions HE:H" +F~
and HO=H"+OH" have to be taken into account in with the reaction rat& yo... The parametes,ois a measure
source terms for the continuity equations of the correspondfor the equilibrium concentration product for this reaction.
ing current densities The current density is taken positive for currents flowing
from the electrolyte into the semiconductor. For reaction Eq.

Vi 1 Cou Cy+—Ky (2) we obtain correspondingly
“lon—= 2 ’
TH,0 Chyo i. =T poiish(CoeP*— WpolishCSiFg_CEﬁ)- (11)
Cpg-Cy+ In both cases, the concentration of crystalline silicon is a
. 1 Coy-Chi—K, 1 Cuyp F constant summarized in the parametérsand 7. Surface
V.igr=— 5 [ RS tension could be accounted for by a curvature dependence of
TH0 Ch,o THF H0 7 but cannot play a role at the length scales discussed here.
(8)  Obviously, these boundary conditions are highly nonlinear.
The particle current density components normal to the inter-
Cg- Cy+ face represent the stoichiometry of the corresponding chemi-
< Kur cal reaction. In case of Eq1l) this is
o .
T T Ch0 dige, =6ig+, ,
The equilibrium constants for the water dissociation and the Jpr=lnt>
HF hydration areK,,=10 % mol?//? andK;z=3.5x10 4
mol// [19]. In Eq.(8) the water concentration, considered as 1 .
a natural constant of unit mef/, has been added to correct elp T IHL (12)
the units[18]. In the electrolyte the Poisson equation is
4
e —j pL— (R
V.-E=—(Cp+—Cr-—Cop-—2Cg2-), 9 €
€Ele 6
1
with the electrolyte’s dielectric constaat.. As in the semi- elpt T IsiF L,
conductor, the law of mass action-type source terms and the
coupling of the ion concentrations to the electric field repre-and for Eq.(2)
sent nonlinearities that make the transport equations consid- _ _
erably more complicated as compared to equations used to THEL = TH+1
describe directed solidification or viscous fingering for ex-
ample[20]. Moreover, especially in the description of the 1
transport in the electrolyte, there are poorly understood fea- EJPL_LHS‘FS_L : 13
tures. First of all, there are many other ions in the electrolyte
that do not take part in the dissolution reaction directly but 6. .
affect the electric field and the transport properties. Second, EJm:‘“Hn .

during pore formation, silicon enters the solution as HSIF

and reacts to S@: in the solution13]. The reaction rate for Thus the current densities of all species taking part in the
this process is not known and it is possible that a considereaction are determined by fixing the current density of one
able amount of HSifis present near the interface in the of them. The normal current density component of species
solution. Third, hydrogen bubble evolution is not modeled aghat do not take part in the dissolution reaction is zero.

well as convection. Nevertheless, we propose to proceed The inner Helmholtz layer in the electrolyte is not de-
with the nonlinear transport Eq&)—(9). scribed by the ion transport equations. This layer has a very
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high capacity as compared to the diffuse part of the electricathough many parameters have a direct physical interpreta-
double layer in the electrolyte and the depletion layer in theion, experimental values are not available to fix them.
semiconductof21]. For this reason, the main potential drop  Our goal is to study the transition from pore formation to
across the interface occurs in the depletion layer in the semglectropolishing, in particular to investigate the mechanism
conductor. Thus the electrical potentia(E=—VV) is con-  that can lead to such a transition. Therefore we study a sim-
tinuous at the interface in a first approximation. For the elecplified model that captures the key features of the above
tric field boundary conditions as known from electrostaticsdescription of electrochemical dissolution of silicon, namely
are used, i.e., the tangential componenEddnd the normal the interplay of more than one field determining the interface
component ofeE are continuous across the interface. motion, a change of valence of the dissolution reaction, and
We do not specify the boundary conditions at the cathoddéaw of mass-action-type boundary condition.
or at the backside of the wafer, since no experimental evi-
dence is reported for an influence of the cathode or the wafer IIl. LINEAR STABILITY ANALYSIS
backside on the dissolution process. Outside the depletion
layer the semiconductor is electrically neutral and can be
treated as an Ohmic conductor. The electron and hole con- 1. Model equations
centrations have equilibrium values. In the electrolyte, there , ,
is more variety. Due to the consumption of reactants and the 10 Nave a tractable model and to gain some experience we
accumulation of reaction products, the composition of thd'@ve to simplify and consider only one fielijg, in the
electrolyte changes in time. However, usually the electrolyteéél€ctrolyte and one field¥'s, in the semiconductor. These
is stirred. In a large container, this means, that in a certair_fl'elds could be either the concentrations of one of the species

distance from the anode, the electrolyte is homogeneous, afi! t_he eIectroc_hemicaI rea_tction, or the electrical potential, or
proximately in equilibrium, and has a composition that® linear combmatlon of f|eIQS as, e.g., the total amqunt of
hardly changes in time. Thus, a reasonable boundary condfluer per unit volume, which is the sufg-+ Cye. For sim-

tion for the model equations is to fix the concentration of thePlicity, we will work with concentration fields in the follow-
electrolyte components at a certain distance from the intefNd- T0 account for the interaction between the various fields
face to the equilibrium values. This distance dependdVe include source terms in the continuity equations that
strongly on stirring and the current density and must remaifirive the fields to their equilibrium valuegg? and W¢? in

as a free parameter. Such kind of boundary condition is e electrolyte and the semiconductor, respectively. We as-
very crude approximation, since convection certainly plays ume only diffusive transport to keep the transport equations
role even in the diffusion layer, i.e., the region near the in-inear, which allows the stability analysis of a planar inter-
terface where the electrolyte is not homogeneous due to tHace to be performed analytically. Nonlinear transport equa-
applied current. To include convection in the model is intions would lead to linearized equations for a flat and planar
principle possible. On the scale of the pores convectiodnterface with nonconstant coefficients. The particle current

should not play a role because of the high viscosity of hy-densities in the electrolyte and the semicondudtoandis,
drofluoric acid. respectively, are assumed to be given by

The model described in this section should be reasonably
close to the physics and chemistry of the etching process on
length scales, large compared to the mean free path in the. e -
sen%iconductor. V\glje haveIO to deal with nonlinearptranspor ith t_he diffusion constantde and Ds. The continuity
equations and boundary conditions. However, the two Casegquatlons are then
i.e., pore formation and electropolishing, are actually treated
as two separate models. One would like to have a model that ~ V.ig;s=— DgsVWes=— — (Pgs— Vi), (16)
decides itself which reaction pathwaye., which law of Tels
mass action boundary conditipto take, depending on con-
centrations or current densities at the interface. Combinin
the two boundary conditions E¢LO) and Eq.(11) to

A. Simplified model

iE:_Dqu,E and iS:_DSV\I,S! (15)

with the time constantsg and 7¢ for the electrolyte and the
%emiconductor, respectivel23].

At the moving interfac&={(x,y,z)|z=h(x,y;t)} we as-
sume a law of mass-action-type boundary condition for the

. 6 4
J1= = Fpord CrieP — 7poreCsirz-Ch,Cyy+N) reaction

~ T pois CReP*— mpoisnCsiz Cpe) - (14) W+ W0, (17)

gives the correct normal current density. But the stoichiomsimilar to Eq.(10) or (11). The setup is illustrated in Fig. 1.
etry equationg12) and (13) have to be included, too. For Since we want to perform a linear stability analysis of a flat
that one needs to know the local fraction of silicon atomsand planar interface the restriction to single valued interfaces
that are dissolved by the pore reactidn and the polishing is no real limitation for our analysis. Another choice of the
reaction(2), respectively. interface reaction would b&# =WV g, leading to linear law

Beside this constraint, analyzing the above developedf mass-type boundary conditions, sg2]. This type of
model (analytically or numerically would be a really de- boundary conditions does not lead to the desired properties.
manding venture. The parameter space is large and evérhe law of mass action for Eq17) is
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Weis=Wes+ oW gstO(8h?), (22
ig/s=igst digstO(Sh?). (23
From Eq.(21) the time evolution of the perturbation can be
derived
. .0 0 ) 0 dInF
Oh=—F(ig )(6hig) + 8ig )| 1+ig —— ,
dig, ,-gi

FIG. 1. Sketch of the simplified model. The semiconductor is ey
above the interfacén(x,y) and the electrolyte below. Particles * (24)

move to the interface from both sides and react with each other, . . . . .
dis:olving thel semiconductor. ' " with the prime abbreviating the derivative with respectto

The last term (*) is independent of the shape of the pertur-
bation sh. In terms of the valence it can be written as

iSL|I: *F(‘I’S‘PEH* 7) (18
o dinv
and the stoichiometry is represented by (*)=(1-ig die |0 | (25
i
. . SL
istlz=—TeLlz. (19

The growth speed of the perturbatidh is thus propor-

At some distancelz anddg from the interfaceZ, either  tional to sh and Eq.(24) can be written agh= w(k) sh with
the current densitygs or the field¥g,5 can be fixed. How- the dispersion relationo(k). Perturbations withw(k)>0
ever, at least at one side the field has to be fixed to eliminat@ill grow exponentially and are called unstable, whereas
all gauge freedom. We will fix the current density in the modes witho(k)<<0 are damped and stable.
semiconductor and the field in the electrolyte, iig|,—q_ From the continuity equationd6) it follows

=] and ‘I’E|Z:,dE:\Ide. The normal velocityw of the in-

1
" 2 —

terface is given by the normal current density —Dgs(6¥gs— k0¥ gs) =~ ?/55‘1’5, (26)

w=—Fig |7. (200 by comparing powers obh. The first order terms in the

boundary condition Egs(18) and (19) for the perturbed
With the choice of sign in the above equation and interfacdields 6V, g are
reaction(17) the particle current in the semiconductor has to . N 0, e 0,
flow to the interface to dissolve the silicon. This means that (8igy +ohig))|r=—T (Wt W) (sWe+ shWe)
V¥ has to be_the hole concentration. ' . +(‘1’g+‘1’Eq)(5‘l’s+ 5hq,g,))|1'
A change in the valence of the dissolution reaction can

then be modeled by a current dependBfiig, ), which is 27
inversely proportional to the valeneec1/F, i.e., the number . O -0/
of particles W5 needed to dissolve a certain amount of (9, + dhig))|z=—(dlg. + dhig) )|z 28
semiconductor material. Geometric considerations lead to that the lines z=dg and z=dg the fields satisfy Dirichlet

growth rate of the height functioh(x,y;t) boundary conditions.
) ) —-Vh)| B. Change of valence
hx,yit)==F(is.) 1 ‘islz, @D Independent of the solution of the first order equation
(26), the third term (*) in the right-hand side of the time
whereh denotes the time derivative of evolution equatiori24) changes sign with the current density
i(s)i|1 passing through the interface K (or the valencer)
2. Linearized theory varies strongly enough. A change of sign of this term

For a flat and planar interfadey(t), the transport equa- changes the sign ob(k) for all k, making stable modes
tions (16) become ordinary linear differential equations with unstable and vice versa. A similar mechanism has been pro-
constant coefficients in the independent variablEhe solu-  Posed to explain the stability of the macropore fri2d].
tions, which can be obtained analytically, depend on the A sharp change of the valence of the electrochemical dis-
boundary conditions at=dg and z=ds and will be dis- solution reaction from 2 to 4 electrons per Si atom at the
cussed later. They are linear combinations of exponentials offitical current density for electropolishing has been found
in the limiting caserg,s—, affine functions ofz. experimentally. Estimating the valence change figid], p.

Now we assume a small perturbatioh(x,y:t) of a cer- 39, Fig. 3.8 leads toig (dinuv/dis )~1.18, i.e., enough to
tain wavelengthh =2x/k of the interface and expand the change the sign of (k).
fields (and correspondingly the current densitiep to first This change of sign leads only to a stabilization of the
order in h, interface if there have been no stable modes for lower current
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densities, since these would become unstable. Moreover, our
analysis cannot explain, why the interface remains stable for
high current densities, i.e., for electropolishing, where the
valence does not change anymore.

C. Transport and boundary conditions

The linearized interface growth model as described in
Sec. lll A can in principle be solved analytically for all types
of boundary conditions far away from the interface. Among
the many possibilities we discuss some instructive limiting
cases and infer the general behavior from them. In this sec-

3

2.5
2
1.5
1
0.5

(k)

0

-0.5

-1
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tion we assume for simplicity tha&t, and thus the valence,
is independent of the current density.
1. Infinite lifetime—double Laplacian growth

The simplest case is the limit of infinite lifetimeg,g
—oo, Both fields, W and Wg, solve the Laplace equation

and this simplified model is a straight forward extension of

the well studied Laplacian growth modg&l0]. The solutions
for the planar interface are then

| De(—=1+T
\Ilg: ——7+ u'
Ds’ ' T(ide+De¥y)

|
\I"é=D—E(z+ dg) + Wy, (29

After solving the first order equatiori26) one obtains for
the dispersion relation

Flk wg(O)—g—Sxpg(O)
E
w(k)=

kI’O(O)COﬂlkd +—S@°(0)ta hkd +—Sk.
E S DE S E T

For smallk, the sign ofw (k) is basically determined by the

— i
0051152253354

k

FIG. 2. Dispersion relation in case of infinite lifetime and for
several values oDg. Note the sign change &s=50. The other
parameters are set tb=1, D=1, dg=10, dg=20, =1, |
=-1, and\Ide:ZO.

parameters, e.g., P /Dg=1/50 in the example in Fig. 2.
The reason for the dependence of the stability on the diffu-
sion constant is the following. Reactants from the semicon-
ductor (e.g., holes reach the pore tips first. The diffusive
transport in the semiconductor thus destabilizes the interface.
On the other hand, the reactants in the electrolyte reach the
pore walls easier than the tips and thus stabilize the interface.
If the diffusion in the semiconductor is much slower than in
the electrolyte, then the growth speed is solely determined by
the transport in the semiconductor and the interface is un-
stable. This is the standard DLA scenal&0]. In the oppo-
site case, the transport in the electrolyte determines the local
dissolution rate and the interface is linearly stable. This anti-
DLA limit has been studied if25].

The term[DS\Ifg(O)/DE\Ifg(O)— 1] also has two zeros as
a function ofl since the numerator is a quadratic polynomial
in |. ForDg>Dg and a small negativethe dispersion rela-
tion is positive for allk and changes sign at the first zéro
Figure 3 illustrates this property af(k). This means that the

ratio of the diffusivities and the current direction and goesjaw of mass action boundary conditions provide a mecha-

guadratically to zero

Ds¥Q(0)

k)~Fl
00~ F beveo)

—1) dek?+0O(k?). (31)

In the limit of dg— o the dispersion relation goes linearly to
zero fork—0 with the same prefactor as aboye., substi-
tute dgk? by k).

For largek, the dispersion relation saturates at

Ds¥¥(0)
DeW(0)

V2(0)

+0 !
Ds k

Ak

(32

w(k)~FIF(

Again the term[Dg¥?(0)/D¥2(0)—1] determines the
sign. ForDg>D g the dispersion relation is positive for &l
but changes sign @3g<Dg. In other words, the interface is

1.8

-1.54

—
0051152253
k

i
35 4

FIG. 3. Dispersion relation in case of infinite lifetime and for

unstable if the front propagates into the medium with thevarious current densities. Note the sign change between 1.8

much lower diffusion constant. The ratio of diffusion con-

and|=—1.95. The other parameters dre=1, Dg=1, Dg=0.5,

stants at which the sign changes is determined by the othelz=10, ds=20, =1, and¥y_=20.
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nism to stabilize an interface simply by changing the currentions in the electrolyte that provide a buffer/reservoir for par-
density. The second zerol, is smaller than |, ticles. Since we setig—o, equilibrium is the only choice
=—DgWVWy_/de whereW2(0) changes sign. This leads to an for the boundary condition in the electrolyte far away from
unphyS|caI pole in the dispersion relation. Since we interprethe interface, i.e W g—Wgifor z— —oo. The solution for the
the fields¥ s as concentrationsl 2(0) has to be positive. flat interface is then

The finite distancedg,s have basically the effect that they |
provide an infrared cutoff changing the dispersion relation

n—=
from linearly to quadratically fok— 0 (besides changing the WO(7)= — '_ r
numerical values off' ;o). Therefore we sedg— o for the Ds I eq
discussion of the model with finite lifetimes in the electro- Deke +DexeVe
lyte.
2. Helmholtz equation in the electrolyte vi(z)= Dore e+ W, (33

To study the effect of a finite lifetime for the diffusing
species, we takeg finite while keepingrg infinite. The  wherexg=1/\Dg7g is the reciprocal diffusion length. The
choice is motivated by the high background ion concentradispersion relation for this case is

I I'yp—
P\ -—+wg ke+k?—DgDg 7 (VKE+K2— Kkg)
: — e
Kg
w(k)=—FIk : o (34
DEDsk'}_F(K_‘i"\PEq COthkd \ KE+ k2+ Dsln—k
E

+ Wi
KEg E

For smallk, the sign of the dispersion relation is determined by the sign of the current dénsity
w(k)~—Fldgk?. (35)

For ds—, w(k) goes linearly to zero with the same prefactoe., substitutedsk® by k).
The dispersion relation has a limit f&r— <, which is a nonlinear function of the current dendity

I'12+ Dgke(Dgke+ 2TV EY | + Dl kZ(DPEP—Dgy) o( 1)
_|_

w(k)~—FI =
DstKE(l +DEKE\I,Eq)

ik (36)

The sign of this limiting value changes with the currentmined by the medium with the longer diffusion length. To
density in the same way as the sign of the dispersion relatiogerify this we assume a semi-infinite electrolyte and semi-
in the previous section. The difference here is, that the sigzonductor to keep formulas simple. With this type of equa-
for small values ok is independently fixed by the sign &f  tion and boundary condition it is no longer possible to fix the
For1<0, i.e., in the case of dissolution of the semiconduc-cyrrent densityl but by changing the ratio 0¥ £Y ¥ the
tor, the dispersion relation is positive for smaBnd positive — cyrrent through the interface can be controlled |nd|rectly.
or negative for large&. The change in the stability of small 1he solutions for the flat interface are then
wavelength modes is illustrated in Fig. 4.

The reason why the sign of the dispersion relation for 0/ 5\ — R o~ KZ_ A€
smallk is given byythe curr%nt densillyon[I)y is, that in this Vs(z)=Be g,
limit the electrolyte does not influence the stability of the

interface. The diffusion length &£ is a cutoff for the wave- 0,,_ Ds KEZ 1 \Jred
length up to which the electrolyte can stabilize the interface. Ve(@=5 Kg Be+We, 37
Longer wavelength perturbations are controlled only by the
semiconductor. whereB is the positive root of
3. Finite lifetime in semiconductor and electrolyte 0=TDgkeB2+[I(Dsks¥ & Denp W) + DDerski|B
The findings in the above section lead to the conjecture eaeq
that the stability of long wavelength perturbations is deter-  + T Dexe(WSWE- 7). (38)
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FIG. 4. The dispersion relation in case of finite lifetime in the  FIG. 5. Dispersion relation in case of finite lifetime in semicon-
electrolyte and infinite lifetime in the semiconductor for various ductor and electrolyte for different values of . Note that the sign

current densities. The sign of(k) for k—o changes atl of w(k) for smallk changes akg=1.83 but not the sign for large
= —3.38. The other parameters d&e=1, I'=1, Dg=10, Dg=1, Kk The other parameters afe=1, I'=1, Dg=2, Dg=1, ks=1,
ds=10, 7=1, kg=1, andWg'=1. e=1, V§'=2, andWg'=10.

We write the dispersion relation in terms of the zerothWg/Wg'. Like in the last section, short wavelength pertur-
order fields and current density at the interface and we uskations can be stabilized by increasing the current over a

the abbreviationCg,s= k2,5t k? certain threshold, i.e., increasing the ratiolof¥ W g*. In the
. example in Fig. 7 this value is 8.58/2.0.
w(k)=—FTig (0) Reducing the ratiol YW &% to the equilibrium value, i.e.,

o o for W W &%= 4, the zero order current density(0) vanishes
% DeKe(Ks— xs)We(0) ~DsKo(Ke— ke) ¥'5(0) . and the interface becomes marginally stable. Below that
I'[Deke¥2(0)+Dgks¥(0)]+DeDgLeKs value semiconductor material is deposited arft) changes
(39) sign for allk. In Fig. 8 the growth rate of the flat interfabg
and the limit of the dispersion relation for largere plotted
For long wavelength, the dispersion relation is against¥ ¢ for the same parameters as in Fig. 7, showing the
two sign changes ofo(k—). The sign change a®g!
=0.5 is accompanied by a reversion of the growth direction
whereas atP $=8.58 only the stability properties change.

o(k)~—FTi% (0)
1
g KEVE(0)~kSTY(0)]

X K2 IV. DISCUSSION
I'[DexeV2(0)+Dsks¥(0)]+DeDgkeks

Motivated by the discussion of electrochemical etching of
+0(k%). (400  silicon in HF solutions we developed a simplified model in

If the semiconductor has a much longer diffusion length
(i.e., ks<kg), the leading term is stable and it is unstable if
the diffusion length in the electrolyte is much longer. The
value of the ratioxg / kg at which the sign changes depends
on the values of the other parameters. In the example of Fig.
5 the critical ratio iskg/ks=1.83.

For largek— oo, the dispersion relation has a limit

¥2(0) \If2<0>) 1
Ds - D, +0 E) (42

o(k)

w(k):—FFigL(O)(

6T T T T
perturbations is determined by the ratio of diffusion con- 0 16 32 48 64 80 96 112128

Like in the previous sections, the stability of small scale

stants. They are stable if the diffusivity in the semiconductor k

is much larger than in the electrolyte and unstabld g FIG. 6. Dispersion relation in case of finite lifetime in semicon-
<Dg. For the parameters in Fig. 6, the critical ratio of dif- ductor and electrolyte for different valuesDf;. Note that the limit
fusion constants i®s/Dg=0.90/2.0. of w(k) for k—% changes sign d@s=0.90. The other parameters

With the boundary conditions discussed in this sectionareF=1, '=1, Dg=2, kg=1, kg=10, e=1, ¥g%=2, andW
the current through the interface is controlled by the ratio=10.

031604-8



POROUS SILICON FORMATION AND ELECTROPOLISHING PHYSICAL REVIEW &4 031604

(k)

B B e S
0 16 32 48 64 80 96 112128 . 5
k e

FIG. 7. Dispersion relation in case of finite lifetime in semicon-
ductor and electrolyte for different values &%, i.e., different
current densities. Note thai(k) for k<1 remains positive. The
other parameters are=1, I'=1, Dg=2, Dg=1, ks=1, kg
=10, e=1, andV=2.

FIG. 8. The growth velocity of the flat interfadeashed ling
and the limiting value ofw(k) for k—o (dotted ling are plotted
against?gt. The growth velocity andw() change sign atrg?
=0.5. At ¥ =8.58 onlyw() changes sign. The other parameters
are the same as in Fig. 7.

Sec. lll. This model has more than one field determining the
interface motion, includes a change of valence in the dissaion of the current density can change sign from positive to
lution reaction, has nonlinear law of mass-action-typenegative. The sign ob(k) for smallk is determined by the
boundary condition, and includes a background reservoir foratio of diffusion lengths. The side with the larger diffusion
the reactants. The transport in both, the semiconductor aréngth 1k, i.e., the larger lifetimer, determines the stability
the electrolyte is diffusive. We performed a linear stability of long wavelength perturbations. If the diffusion length of
analysis of a flat interface for three limiting cases of a sim-the semiconductor is much longer than the one of the elec-
plified model and found two mechanisms that can cause kolyte, the interface is unstable for long wavelengths. If the
stabilization of the interface at high current densities. diffusion length in the electrolyte is much larges(k) is
First, a change of valence of the dissolution reactionnegative for smalk.
with current density can stabilize the interface. The sign Our analysis shows, that a continuum model of surface
of the dispersion relation flips when the change of the valgrowth, i.e., a moving boundary value problem for partial
ence with current density is large enough, namely, ifdifferential equations, can have a transition from linear sta-
i2,(0)[dIn V(i)/di]|i°5L(0)>1' This is true in general, indepen- bility to instability with increasing current density. The two

dent of the transport mechanisms in the semiconductor anrdnechanisms discussed here are particularly interesting from

electrolyte, the number of reactants and reaction producté"‘ theoretical point of view in that the effects of nonlinearities

and the type of boundary conditions. For electrochemicamr;tzhrgol?ne;a?cg:gﬁi?;a(r:g;yssi’g" be handled analytically

etching of silicon in hydrofluoric acid the change of valence . ) . .
at the transition from pore formation at low current densities It Is que_st|onable whethgr Fhe transition from porous sili-
to electropolishing at high current densities is large enough(.:On fprmanon to electrppohshmg can be described by one of

The stability of the interface at high current densities, aftellhe discussed mechanisms alone. The valence of the dissolu-

the valence settled at the electropolishing value, cannot bg'on reaction_ofs_ilicon does change in this_transitio_n. B_u_t the
! mplementation in the model of Sec. Il A is oversimplified.

explained with this mechanism. However, there an oxidéA listi del d include t it i
layer is formed that has to be dissolved chemically. At low’. more realiStic model would include two afternalive reac-
on pathways for the species at the interface in the spirit of

current densities, when pores are formed, silicon is dissolve 14). Th vsis in thi hould b ded
directly. This oxide layer reduces the diffusivity in the elec- g. ( . ). The analysis in this paper should be regarded as a
stepping stone for the development of such models.

trolyte considerably, leading to a stabilization of the inter-
face. Our model shows, that an interface propagating into a
much more dlffusn./e.r.nedmm is stablgiven that. the reac- ACKNOWLEDGMENTS
tants are the rate limiting species, not the reaction proglucts
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