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Dynamics of capillary spreading along hydrophilic microstripes
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We have studied the capillary spreading of a Newtonian liquid along hydrophilic microstripes that are
chemically defined on a hydrophobic substrate. The front of the spreading film advances in time according to
a power lawx5Bt1/2. This exponent of 1/2 is much larger than the value 1/10 observed in the axisymmetric
spreading of a wetting droplet. It is identical to the exponent found for wicking in open or closed microchan-
nels. Even though no wicking occurs in our system, the influence of surface curvature induced by the lateral
confinement of the liquid stripe also leads to an exponent of 1/2 but with a strongly modified prefactorB. We
obtain excellent experimental agreement with the predicted time dependence of the front location and the
dependence of the front speed on the stripe width. Additional experiments and simulations reveal the influence
of the reservoir volume, liquid material parameters, edge roughness, and nonwetting defects. These results are
relevant to liquid dosing applications or microfluidic delivery systems based on free-surface flow.
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I. INTRODUCTION

The kinetics of capillary phenomena such as spread
wetting, wicking, and imbibition control the quality of liquid
film deposition in numerous applications like coating, pai
ing, printing, and lubrication. Several decades of work ra
ing from theoretical analysis and molecular dynamics sim
lations to time resolved ellipsometric studies have elucida
how intermolecular forces control the spreading and flow
thin films @1–3#. Nowadays, the study of capillary phenom
ena and microfluid dynamics is regaining attention as te
nological advances facilitate the miniaturization of devic
for chemical analysis or medical diagnostics. The chem
patterning of substrates or closed channels into region
mixed wettability has introduced interesting approaches
fluid migration and flow control in confining networks.

The capillary spreading of a liquid droplet on a smoo
and chemically homogeneous surface has been investig
extensively. Tanner@4# first measured the radial advance o
completely wetting droplet of a Newtonian liquid on
smooth substrate and foundr (t);(g/h V3t)1/10 whereg is
the liquid surface tension,h the liquid viscosity, andV the
droplet volume. He also confirmed this result with a qua
static hydrodynamic model. Later studies revealed that
completely wetting liquids, the contact line is preceded b
thin precursor film of molecular dimensions@5–7# whose
evolution follows diffusion dynamics according toKt1/2. The
prefactorK was found to depend on the liquid’s molecul
weight and the relative humidity@7#.

The spreading rate of liquids on corrugated surfaces
be enhanced by capillary migration and wicking into narr
surface grooves. Various experimental and theoretical stu
have explored liquid advances on a surface with random
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periodic grooves both parallel and perpendicular to the dir
tion of spreading@8–18#. These studies have shown th
completely wetting liquids spreading along streamwise o
ented grooves follow Washburn-type dynamics,@20# wherein
the liquid front advances ast1/2. Hydrodynamic modeling of
wicking into a surface groove of arbitrary and constant cr
section confirms this exponent and reveals that the fr
speed as a function of distance is proportional to the gro
depth@12,15#.

In this paper we consider the spreading of a Newton
liquid on smooth and flat but chemically micropatterned s
faces. The patterns consist of narrow hydrophilic stripes o
hydrophobic background. The liquid is confined to these
drophilic areas and does not spread onto the hydroph
regions. Our experiments show that the liquid front advan
in time ast1/2 despite the fact that no capillary wicking oc
curs. Moreover, the front speed as a function of position
found to depend on the fourth power of the stripe width. T
is a significantly stronger size dependence than observed
liquids spreading in capillary tubes or along surface groov
We develop a hydrodynamic lubrication model, which sho
that the dynamics are dominated by the transverse curva
of the air-liquid interface. The results derived for the sprea
ing exponent and the dependence on stripe width and liq
volume are in excellent agreement with experiment.

II. EXPERIMENTAL SETUP

The substrates used in the spreading experiments w
fabricated from glass slides~Corning 1737 F! and silicon
wafers@~001! oriented,n-type doped with resistivity 10–20
V cm]. The samples were cleaned with acetone and iso
panol and then immersed in a mixture of sulfuric acid, h
drogen peroxide, and deionized water at 80 °C for 15 m
This step was followed by 10 min of oxygen plasma clea
ing. The silicon wafers were further treated by immersi
into concentrated hydrofluoric acid for 10 min. The samp
ic
©2001 The American Physical Society03-1
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were coated with a self-assembled monolayer of 1H-1H-2
2H-Perfluorooctyl-trichlorosilane~PFOTS, Fluka! @21,22#.

The hydrophilic patterns were defined with photolithog
phy and reactive ion etching in a Plasmatherm 790 us
oxygen plasma for 12 min (O2 flow rate 39 SCCM, pressur
100 mTorr, power 40–70 W!. Since the thickness of th
monomolecular PFOTS coating is only about 2 nm, the s
strate presents a practically flat surface to the oncoming
uid flow. The masks used for photolithography were prin
with a commercial image setter. The stripe edges showe
roughness and waviness of amplitude on the order of 5mm,
which is far smaller than the stripe width. The hydrophi
patterns consist of square-shaped reservoir pads 5 mm
width, which are connected by 26-mm long hydrophi
stripes. The stripe widthw ranged from 100 to 800mm. The
sample layout is depicted in Fig. 1.

The liquid used in this study was polydimethylsiloxa
silicone oil DC200~Fluka! of viscosity m520 mPas. The
surface tensiong is 20.6 mN/m and the densityr is 954
kg/m3. Liquid droplets were deposited on the reservoir p
with a Hamilton digital syringe with a volume resolution o
0.1 m l. The spreading front was tracked with an Olymp
BX-60 microscope equipped with a CCD camera and a gr
passband filter centered about 537 nm. The leading edg
an advancing rivulet was imaged via optical fringes result
from interference between the air-liquid interface and
solid substrate. To maintain isothermal conditions, the s
strates rested on a solid metal block and the light source
equipped with an infrared cutoff filter.

III. THEORETICAL DESCRIPTION

A. Horizontal capillaries—the Washburn equation

For a Newtonian liquid wicked into a small circular c
pillary of radiusR, the meniscus shape closely approxima
a spherical cap of radiusR/cosu, where u represents the
advancing contact angle assumed constant. The men
curvature lowers the pressure in the liquid phase byDp
52g cosu/R. There exists a pressure difference, therefo
between the inlet and the meniscus front given
2g cosu/R. The balance of this wicking pressure against
viscous drag on the wall produces a radially averaged ve

FIG. 1. Diagram of the sample layout. The width of the squ
reservoir pads is 5 mm; the length of the stripes connecting
reservoirs is 26 mm.
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ity profile given by ^u&5(R2/8m)(Dp/x), where x repre-
sents the advancing meniscus position along the capill
The differential equation̂ u&5dx/dt5 (Rg cosu/4m)(1/x)
results in the well known Washburn equation@20#

x2x05S Rg cosu

2m D 1/2

~ t2t0!1/2, ~1!

wherex0 is the initial position of the moving air-liquid inter
face andt0 denotes the initial time. The characteristict1/2

scaling reflects the fact that a constant pressure differe
Dp is exerted over an ever increasing lengthx. This scaling
relation holds equally well for capillaries of constant b
noncircular cross section with modification only to the pre
actor in Eq.~1!. Krotov and Rusanov@23# studied the wick-
ing speed for capillaries of circular, square, and triangu
shape and found that^u& was largest for tubes with triangu
lar cross-section.

Equation ~1! predicts that the liquid front speed̂u& is
proportional to the capillary tube radius and inversely p
portional to the distance traveled. Deviations from the Wa
burn equation, especially at early times, have been obse
by Jooset al. in capillary rise experiments@24#. The devia-
tions have been attributed to inertial effects for capillary ra
larger than about 500mm and to the velocity dependence
the advancing contact angle. Bubble formation in water fil
capillaries of radiir ,0.3 mm has also been found to caus
deviations from the Washburn equation@25#.

B. Liquid spreading in surface grooves

Summet al. @8# and Ryeet al. @13# studied the wicking
process into open surface grooves and found that the me
cus advanced according tox5K8(u,a)Agd/m t1/2, whered
is the depth of the surface groove andK8(u,a) a geometric
factor, which depends on the advancing contact angleu and
the apex anglea of the groove. Despite the nonenclose
geometry and the free-surface flow, thet1/2 behavior and the
linear dependence on the characteristic dimension persis

This result may seem surprising at first, since the fl
field in a closed capillary differs significantly from the ve
locity profile of liquid in a surface groove that maintains
free and deformable surface. However, thet1/2 kinetics are
robust so long as the pressure differenceDp driving the flow
is independent of the meniscus position. Deviations to
t1/2 scaling, especially for early times, can result from
variation of the advancing contact angle with the speed
the wetting line, from changes in the groove geometry a
from inertial and streamwise surface curvature terms, wh
decay quickly ast increases@14#.

C. Capillary spreading along hydrophilic stripes

In the following we consider the capillary spreading of
Newtonian liquid confined to flow on a hydrophilic micros
tripe residing on a hydrophobic background. Referring
Fig. 1, a small liquid volume is deposited onto one of t
square-shaped hydrophilic reservoir pads that are conne
to long and narrow hydrophilic stripes. The liquid spontan
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DYNAMICS OF CAPILLARY SPREADING ALONG . . . PHYSICAL REVIEW E64 031603
ously flows from the reservoir along the microstripe there
relaxing the advancing contact angle toward its static eq
librium valueueq. In our caseueq is zero, such that the liquid
will continue to spread until it covers the entire hydrophi
surface area. Hoskinget al. have also studied capillar
spreading in a similar geometry of comparable size. Ho
ever, they considered the more complex problem of a mu
component liquid solder reacting with the copper surfa
during spreading@19#.

We first discuss the asymptotic solution for the liquid s
face profile that describes the final equilibrium configuratio
We then derive the equation governing the dynamic evo
tion of the liquid stripe and solve it using a self-similari
transformation.

1. Asymptotic solution

A liquid droplet deposited on a reservoir pad will adop
surface with mean curvature 2/Rr , whereRr is its radius of
curvature. If the stripe width is much smaller than the res
voir size, drainage into the stripe can be neglected, andRr
remains essentially constant in time. In the asymptotic lim
the system maintains a constant capillary pressure thro
out the liquid. Consequently, the cross sectional profile in
channel is a sector of a circle with apex heighth` . More-
over, the radius of curvatureRc is constant along the hydro
philic channel@see Fig. 2~a!#. Assuming gravitational effects
to be negligible, the condition of constant mean curvat
further requires that 2/Rr51/Rc . For small values ofus @see
Fig. 2~b!#, h`5Rc(12 cosus)'Rcus

2/2 and w52Rc sinus

'2Rcus, which results in the relation

h`5w2/8Rc5w2/4Rr . ~2!

In our experiments, the width of the reservoir pads is
mm, which is larger than the capillary length for silicone o
l c5Ag/rg'1.5 mm. Hence, the condition of constant pre
sure is actually not equivalent to the condition of const
curvature. For length scales exceedingl c , the gravitational
pressure must be taken into account. In this case, the rela

FIG. 2. ~a! Coordinate system and nomenclature used in
description of a liquid sample deposited on a square reservoir
and spreading along a hydrophilic stripe.~b! The transverse cross
sectional profile of a liquid rivulet is a segment of a circle.us

denotes the apparent contact angle in a plane perpendicular t
hydrophilic/hydrophobic boundary line.
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2/Rr51/Rc is replaced byp(0,0)5g/Rc , wherep(0,0) is the
sum of the capillary and hydrostatic pressure at the bottom
the reservoir pad. This relation clearly does not affect
square dependence ofh` on the stripewidth@Eq. ~2!# as also
verified by numerical simulations usingSURFACE EVOLVER

@26#.

2. Evolution equation

In what follows, we consider flow along microstripes fo
which the Bond number Bo5rgw2/g!1 and the capillary
number Ca5m^u&/g!1. In addition, the stripe widthw is
much smaller than the reservoir size and consequently,
liquid height on the stripe is much smaller thanw. For well
developed flow such that the distance spread,L, is much
longer than the stripe widthw, the transverse and vertica
components of the velocity,uy anduz , are negligible. In this
lubrication approximation,@27# volume conservation deter
mines the evolution of the liquid cross-sectional areaA ac-
cording to

]A

]t
1

]Q

]x
50, ~3!

where]Q/]x is the longitudinal gradient of the volumetri
flow rateQ. For liquids with low vapor pressure under iso
thermal conditions, the mechanism driving spreading is
longitudinal capillary pressure gradient]p/]x where p'
2g(]2h/]x21]2h/]y2). Since the longitudinal curvature
term is negligible forw/L!1, ]p/]x'2g]3h/]x]y2. In
the limit Ca!1, there is no viscous contribution to the ca
illary pressure. In addition, the lubrication regime requir
that uy;]p/]y50. Consequently, the transverse cros
sectional profile of the liquid spreading along the hydroph
stripe is a curve of constant curvature, i.e., an arc of a cir
The cross-sectional areaA is therefore given byA(x)
52*0

w/2h(x,y)dy, where h(x,y)5hc(x)(124y2/w2) and
hc(x) is the local apex height of the liquid rivulet. Th
boundary conditions of no slip at the stripe surface@ux(z
50)50# and vanishing shear stress at the air-liquid int
face @]ux /]z(z5h)50# lead to a Poiseuille-like velocity
profile

ux5
1

m

]p

]x S z2

2
2hzD . ~4!

The volumetric flow rate is therefore given by

Q5E
2w/2

w/2 E
0

h 1

m

]p

]x S z2

2
2hzDdzdy. ~5!

In analogy to the derivation of Eq.~2!, the dominant contri-
bution to the pressure gradient is given by

]p

]x
'2g

]3h

]x]y2
5

]

]x S g

Rc
D'

8g

w2

]hc

]x
. ~6!

Substitution into Eq.~3! yields the evolution equation for th
apex heighthc(x)

e
ad

the
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]hc

]t
2

64

35

g

mw2

]

]x S hc
3 ]hc

]x D50. ~7!

Strictly speaking, this equation does not hold at the reser
inlet, where the assumption of a shallow profileh!w is
invalid. Moreover, it does not hold close to the advanc
contact line, since the flow field at the front is not strict
unidirectional and the longitudinal curvature cannot be
glected. However, Eq.~7! is expected to describe the flow i
between these limits properly.

3. Self-similar solution for the spreading profile

Following Ref.@15#, a solution to Eq.~7! can be found by
applying a self-similarity transformation@28,29# with dimen-
sionless variables

F5h/h` and h5
x

ADt
,

where

D5
64

35

gh`
3

mw2
, ~8!

h` represents the apex film height at the stripe inlet in
asymptotic limit. This change of variables transforms the
tial differential equation~7! into an ordinary differential
equation

d

dh S F3
dF

dh D1
h

2

dF

dh
50. ~9!

The boundary conditions areF(0)51 and*0
`Fdh,`. The

second constraint, which is equivalent to the liquid volum
being finite, requires thatF(h) maintain a value of zero
beyond some limiting distanceh0 . The numerical solution
shown in Fig. 3 yields the valueh0'0.87. A close approxi-
mation to the exact numerical solution can be found by
pandingF(h) in a power series and solving Eq.~9! to first
order. A comparison between this approximate formF(h)

FIG. 3. Numerical~triangles! and analytical solution~continu-
ous line! corresponding to Eq.~9!.
03160
ir

-

e
ar-

e

-

5(12h/h0)
1/3 and the numerical solution is shown in Fig.

The slope and curvature of these solutions have a singula
at the position of the contact lineh0 that can be eliminated
by consideration of a molecularly thin precursor film@1#.

According to the similarity transformation in Eq.~8!, the
wetting front advances asx5ADt. This is the same time
dependence as for a liquid wicking into a small capillary
surface groove. Again, thet1/2 behavior reflects a constan
pressure difference exerted over an increasing lengthL. The
average streamwise velocity is therefore given by

^u&5
dx

dt
;AD

t
;

g

m

h`
3

w2

1

x
;

gw4

m

1

x
. ~10!

Thus, the spreading speed,dx/dt;w4, exhibits a strong
dependence on the stripe width. Equation~10! also deter-
mines the dependence of the velocity on the volumeV of
liquid deposited on the reservoir pad. As pointed out in S
III C 1, h`5hc(x50) is inversely proportional toRr for pad
sizes wr smaller than the capillary lengthl c . Since V
;1/Rr;h` , we therefore expect̂u& to be proportional to
the third power of the volumeV3. For pad dimensions ex
ceeding l c , as in our case, gravity noticeably flattens t
profile of the air-liquid interface above the reservoir pad. T
dependence of the hydrostatic pressure at the bottom of
reservoir pad is slightly less than linear in the liquid volum
SURFACE EVOLVER calculations gave the resultp(0,0)
;V0.92 for a pad dimension of 5 mm. Consequently, we e
pect a dependencêu&;V2.76.

D. Surfaces of constant capillary pressure

Once the liquid rivulet extends far into the channel, i.
whenL@w, the change in the capillary pressureDp is small
on a lengthscaleDx'w. It is therefore a good approximatio
to regard the air-liquid interfacelocally as a surface of con
stant mean curvature. We have used the software pac
SURFACE EVOLVER@26# to study the influence of stripe edg
roughness and nonwetting defects on the surface profil
liquids confined to narrow hydrophilic lines. Hydrostat
forces were included in all simulations, however, because
the small stripe width, their effect was negligible in compa
son to the surface tension forces. The results of the sim
tions for w5500 mm presented below can therefore be d
rectly scaled down to smaller feature sizes.

1. Influence of stripe edge roughness

Due to the no-slip boundary condition, the streamw
velocity vanishes at the edges of the chemically patter
stripe defining the boundary between the hydrophilic and
exterior hydrophobic region. Microscopic roughness of the
edges is therefore not expected to influence the flow dyn
ics significantly. The effect of edge irregularities on the s
face profile of a liquid rivulet depends strongly on the wav
length spectrum. Figure 4 shows the longitudinal variation
the apex height for a liquid rivulet on a hydrophilic stripe
average widtĥ w&5500 mm and with a sawtooth edge co
rugation of amplitudea510 mm. When the corrugation
3-4
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DYNAMICS OF CAPILLARY SPREADING ALONG . . . PHYSICAL REVIEW E64 031603
wavelength is much larger than the stripe width, the liqu
height variation saturates at a valuehmax/hmin
5(wmax/wmin)

2, provided the lateral liquid contact angleus
is small. However, as the corrugation wavelength decrea
below the stripe width, a highly nonlinear decay of the heig
variation is observed. The dependence of the height varia
on the roughness amplitudea is linear for small values of
a/^w& as shown in the inset of Fig. 4.

These results suggest that small amplitude edge rough
with a wavelength smaller than the average stripe width d
not have any significant influence on the velocity or the s
face profile of the spreading liquid. However, long ran
variations of the average channel width can manifest th
selves in a noticeable modulation of the longitudinal hei
profile.

2. Influence of nonwetting surface defects

Contact line distortions due to the presence of surf
heterogeneities and defects have been studied experimen
and theoretically by a number of groups@30–36#. Neglecting
gravity, Shanahan@35# studied the spatial decay of a loca
ized contact line distortion for the case of a droplet w
small equilibrium contact angleu0. In the limit of large drop-
let radii r 0, he derived the asymptotic form of the wettin
line distortiond(x); f (pgu0

2)21 ln(r0 /uxu), wherex denotes
the coordinate axis perpendicular to the radial direction af
the localized force responsible for the distortion of the trip
line. Joanny and de Gennes@30# had derived a similar resul
under slightly different approximations. According to th
model, contact line distortions decay logarithmically on
length scale governed by the droplet radius. The prefacto
the logarithmic term is inversely proportional tou0

2.
We performed energy minimization simulations to det

mine the surface profile of a 3 mmliquid ribbon confined to
a hydrophilic microstripe containing a small nonwetting c
cular defect. Figure 5~a! shows the surface profile of

FIG. 4. Apex height variation of a static liquid rivulet confine
to a corrugated hydrophilic stripe. The edge roughness has a
tooth contour with longitudinal wavelengthl and amplitudea
510 mm. The average width of the channel^w& is 500 mm; the
average height ish0550 mm. Inset: dependence of the heig
variation on the amplitude of the channel edge roughness fo
wavelengthl5^w&.
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500-mm wide liquid ribbon with a 20-mm diameter nonwet-
ting defect located at the stripe center. The height pro
decreases to zero at the perimeter of the defect. This red
the effective apex height of the liquid rivulet to approx
mately one-half the undisturbed value far upstream or do
stream of the defect. Figure 5~b! shows longitudinal cross
sections for three different values of the undisturbed liq
height hc . As can be seen, the decay length of the hei
profile is proportional to the width of the hydrophilic strip
but practically independent ofhc . This result cannot be di-
rectly compared to Shanahan’s results since his model
scribes the distortion of a contact line while ours consid
the decay length of the film height in the vicinity of a d
wetted spot.

Figure 5~c! shows three sets of transverse cross secti
for three different values of the rivulet heighthc . The dashed
lines represent the unperturbed film heights far upstream
the defect. The solid lines show the liquid distortion in t
vicinity of the defect. The contact angle at the periphery
the defect varies strongly withhc , potentially leading to a
flooding of the defect ifhc exceeds a critical value. Thi
critical value increases with the ratio of the defect size to
channel width and the value of the advancing contact an
on the defect. Figure 5~d! shows transverse cross-sections
the height profiles for defects displaced from the center
wards the edge of the hydrophilic boundary. As the def
patch is shifted towards the edge, the apex height approa
the upstream value and the contact angle at the defect pe
eter decreases. Defects that are located close to the s
edges are therefore much less likely to be flooded than
fects in the center of the channel.

It is expected that the presence of a small nonwett
defect on the spreading of a liquid rivulet along a hydroph
lane should decrease the average height over a longitud
interval Dx'2w, which in turn should increase the viscou
drag in this region. Experimentally, we find that the sprea
ing speed recovers its undisturbed value once the triple
has advanced a distance on the order of 2w past the defect
location.

3. Front shapes of static liquid ribbons

We calculated the surface profile and the contact l
shape for liquid ribbons confined to a 500-mm wide stripe
for different values of the equilibrium contact angleueq .
Figure 6~b! shows longitudinal cross sections of the heig
profiles for three values ofueq55°, 10°, and 20°. As in the
case of nonwetting defects, the length scale over which
height profile decreases to zero at the contact line is equ
the stripe width irrespective ofueq . If ueq is increased be-
yond these small values, the surface profile may deve
bulges @37#. For small values ofueq , however, there is a
linear relation between the maximum height and the cont
angle.

The liquid-solid contact lines on a 500-mm wide hydro-
philic stripe for three values ofu510°, 20°, and 30° are
shown in Fig. 6~a!. Shown for comparison is a continuou
line, which is a circular arc of radius 267mm. Interestingly,
the shape of the wetting line is independent of the value

w-

a
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DARHUBER, TROIAN, AND REISNER PHYSICAL REVIEW E64 031603
FIG. 5. Equilibrium surface profiles of a liquid rivulet in th
presence of a defect placed within the hydrophilic stripe.~a! Profile
of an infinitely long and 500mm wide liquid rivulet subject to a
circular nonwetting defect of diameter 20mm centered at (X,Y)
5(0,0). ~b! Longitudinal sections of the surface profiles for thr
different values of the asymptotic liquid heighthc subject to the
same defect as in~a!. The decay length of the height profile fromhc

to zero is proportional to the width of the channel and practica
independent ofhc . ~c! Transverse sections of the height profile f
three different values ofhc . The dashed lines represent the unp
turbed film heights far upstream of the defect. The solid lines sh
the liquid distortion in the vicinity of the defect.~d! Transverse
sections of the height profile for defects displaced towards the s
edge.
03160
ueq and indistinguishable from a circular arc except at t
very edge of the hydrophilic/hydrophobic boundary.

IV. EXPERIMENTAL RESULTS

We have measured the front velocity of liquid rivule
spreading from reservoir pads onto hydrophilic stripes
widths ranging from 200 to 800mm. The velocity as a func-
tion of position was extracted from image sequences
corded with a CCD camera at defined time intervals. Exp
mental data are shown in Fig. 7~a!. For distancesx from the
reservoir inlet larger than 5–10 mm, the curves follow
power-law behavior v;xb with b'21. The time-
dependencex(t) can be extracted fromv(x) by integration.
Becausex;ta is equivalent tov;x121/a, b521 corre-
sponds to a time dependencex;t1/2 in good agreement with
the theoretical prediction in Eq.~10!.

Figure 7~b! shows the spreading velocity at fixed pos
tions x along the stripe as a function of stripe width. Th
strong dependence on stripe width—the experimental d
indicate a power-law relationv;wx with 3.84&x&3.99—is
also in excellent agreement with the prediction of Eq.~10!.
The size dependence indicates that the spreading proce
the liquid rivulets is governed by the proposed hydrod
namic mechanism.

Figure 8 shows a comparison of the front shapes o
rivulet spreading in a 500-mm wide channel when close t
the inlet~left image! and close to the end~right image! of the
channel. The difference in the spreading velocities is
proximately a factor of 10, yet the shape of the contact line
almost identical. Unfortunately, our optical interferomet
setup cannot visualize the liquid-solid contact line direct
The first dark interference fringe occurs at a liquid thickne
of l/4n, wherel is the wavelength of the light andn the

y

-
w

e

FIG. 6. ~a! Equilibrium shape of the contact line for three di
ferent values of the contact angleueq510°, 20°, and 30°. The
continuous line is an arc of a circle with radius 267mm. The stripe
width is 500-mm. ~b! Longitudinal sections of a long liquid drople
confined to a 500-mm wide hydrophilic channel for three values o
ueq55°, 10°, and 20°.
3-6
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refractive index of the liquid. The advancing contact angle
reflected in the spacing of the interference fringes—
smaller in the right image, such that it appears shifted do
wards relative to the left image. The continuous line sup
imposed on the images in Fig. 8 is a circular arc. Its shap
a good approximation to the contact lines except for the

FIG. 7. ~a! Experimental dependence of the spreading velocitv
on the distance from the reservoir inletx. All measurements indicate
a power-law behaviorv;xb for x exceeding several millimeters
The curves are labeled by the stripe width and the fitted exponenb.
~b! Dependence of the velocity on the width of the channels for t
different samples. The fitted exponents are 3.84 and 3.99.

FIG. 8. Optical micrographs of the front region of a rivul
spreading in a 500-mm wide channel. The left image was record
close to the inlet, the right one close to the end of the stripe.
spreading speeds differed by approximately a factor of 10.
continuous line represents an arc of a circle with radius 350mm.
03160
s
-

r-
is
-

gions close to the stripe edges. The radius of the circular
is approximately 350mm, i.e., larger than the value foun
for static rivulets.

Figure 9 shows the spreading front of two liquid rivule
on a 400- and 800-mm wide hydrophilic lane. From a com
parison of the two images we deduce that the shape of
spreading contact line is practically identical despite the s
nificant difference in the stripe width. Figures 8 and 9 rev
the velocity and size invariance of the contact line sha
which confirms that the liquid height profile is governed
the local capillary pressure in accordance with Ca and
being small for our system.

Figure 10 shows the spreading speed of a liquid rivule
several distances from the inlet as a function of the volu
deposited on the reservoir pad. The width of the channel
700 mm. As can be seen, the velocity follows a power la
v;Vc with an exponentc52.6560.1, independent of the
distance from the reservoir. This numerical value is again
good agreement with the theoretically predicted exponen
2.76.

V. SUMMARY

The spreading of a Newtonian liquid along hydrophi
microstripes exhibits the samex;t1/2 dependence as a liqui

o

e
e

FIG. 9. Optical micrographs of the front region of rivule
spreading along a 400mm ~top image! and a 800-mm ~bottom
image! wide stripe.

FIG. 10. Dependence of the spreading velocity on the volume
liquid deposited on the reservoir pad. The velocity was measure
distances of 3, 5, 7, 9, and 18 mm from the reservoir inlet o
700-mm wide stripe.
3-7
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spreading into a narrow groove despite the absence of c
lary wicking. In analogy to wicking phenomena, howev
the spreading kinetics is still governed by the same mec
nism, namely, the existence of aconstantpressure difference
acting over an increasing distance. The predominance o
transverse curvature of the air-liquid interface increases
size dependence of the spreading velocity.

The influence of stripe edge roughness on the liquid p
file critically depends on the roughness wavelengthl. High
frequency variations, wherel is smaller than the averag
channel width, are significantly damped, whereas long ra
fluctuations can induce noticeable liquid height variatio
Small nonwetting defects on the hydrophilic lanes alter
.

v,

v,

v,

ev

J.

03160
il-
,
a-

he
e

-

e
.
e

height profile of the liquid over a length scale equal to t
width of the channel, and do not significantly affect thex
;t1/2 spreading dynamics in the limit of long distances.
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