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Temporal fractal model for the anomalous dielectric relaxation of inhomogeneous media
with chaotic structure
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The potential of the fractional derivative technique is demonstrated on the example of derivation of all three
known patterns of anomalous, nonexponential dielectric relaxation of an inhomogeneous medium in the time
domain. It is explicitly assumed that the fractional derivative is related to the dimensionality of a temporal
fractal ensembldin a sense that the relaxation times are distributed over a self-similar fractal $y3ieen
proposed fractal model of a microstructure of inhomogeneous media exhibiting nonexponential dielectric
relaxation is built by singling out groups of hierarchically subordinated ensentbldxlusters, clusters,
superclusters, efcfrom the entire statistical set available. Different relaxation functions are derived assuming
that the real(physica) ensemble of relaxation times is confined between the upper and lower limits of
self-similarity. It is predicted that at times, shorter than the relaxation time at the Idpestitive) self-
similarity level, the relaxation should be of a classical, Debye-like type, whatever the pattern of nonclassical
relaxation at longer times.
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[. INTRODUCTION transition rates. Hence, a spatial disorder is expected to in-
duce a temporal energetic disorder.

Anomalous(nonexponential relaxations have long been Another approach to the problem of anomalous relax-
and still are a hot topic in the physics of inhomogeneousations makes use of fractal concep®s-11,22—-2% In this
media[1-26]. Broadly speaking, one may refer to three gen-case, the problem is analyzed using the mathematical lan-
eral relaxation laws that are encountered in the experimentgluage of fractional derivative§16,22—23 based on the
studies of complex systems: Riemann-Liouville fractional differentiation operat¢27—

(i) stretched exponentidl,2,12: 29]

t B o 1 d t W
;) } 0<p<i t>r. (L1 DLA(D]= Fri—a7 gy L(t—r) t(ndr, (1.4

f(t)~exp{—

wherel'(x) is the gamma function
In spite of a reasonable success of the latter approach, use
t of the fractional derivative as represented by Bg4) makes
f(t)wexp{ -B In”‘(—) }

(ii) exponential-logarithmi¢3—5]:

(1.20  the interpretation of differentiation procedures diffic(for
example, the nonzero value of a fractional derivative of a
constank, as well as their relevance to the assumed fractal
(iii) algebraic decays]: ensemble. One may also note that so far the fractional de-
rivatives were analyzed in essentially phenomenological
o terms; moreover, the equations based on fractional deriva-
f(t)~ P (1.3 tives were constructed more by intuitidguessel rather
than obtained by derivation.
Where a,’sy B'S’ T'S, andB are the appropriate f|tt|ng param_ The fractional derivative technique is used for description
eters. of different physical phenomer(a.g.,[30—38). Apparently,
Currently, there seems to be no quantitative microscopi@lumenet al.[11] were the first to use fractal concepts for
theory for the cited law§6,7,15; moreover, sometimes even the analysis of anomalous relaxations. The same problem
the possibility of such a theory is denigt3—15. The main ~ Was treated i12,16,22—-2p using the fractional derivative
argument is that a spatia' inhomogene(@uch as, e_g., a approach. Excellent review of the use of fractional derivative
random distribution of impurities within a matrix, or of in- Operators for the analysis of various physical phenomena can
teratomic Spacings in amorphous semicondua;mﬁ nec- be 6:|SO found "[30] HOWeVer, up ljlnt” n.OW there seems to
essarily result in an extremely broad range of microscopid®€ little understanding of the relationship between the frac-
tional derivative operator and/or differential equations de-
rived therefrom(which are used for the description of vari-
*Email address: novikov@te.net.ua ous transport phenomena such as transport of a quantum
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particle through the potential barrier in fractal structures, or Assume that a functiori(x) is defined on a fractal en-

transport of electromagnetic waves through a medium with @emble);, of dimensionality 6<d;<1. Let the function

fractal-like profile of dielectric permittivity, etg. and the f(x) (hereafter referred to as a fractal functidse continu-

fractal dimensionality of a medium. ous through);, be self-similar at different scales, and have
In this context, attempts to construct fractional derivativesno tangent at any point of its trajectory. It is assumed that

and to clarify their relevance to the assumed fractal ensemblig(x) =0 if x<0, and|f(x)|<oe.

are believed to remain feasible for the treatment of the prob- Let us divide a segmeliik,x,] so that the length of each

lem of anomalous relaxations. In our previous pagé&, gth fragment at thenth scale level is

the analysis of a classical problem of polarization of an in-

homogeneous medium permitted us to establish the relation- Axg“)zgn(xo—x), (2.6

ship between anomalous relaxation and dimensionality of a

temporal fractal ensemble, which characterizes a nonequilijvhereé<1 is the scaling factofi.e., the index of similarity

rium state of a medium. Thus, the main aim of the presenef the ensemblél,).

paper is the further extension and generalization of these The number of dividing points of the segmdmntx,] at

results within the frame of a fractal model. the nth step is therefore,

— in+1
1. GENERAL OVERVIEW: DERIVATIVE OF FRACTAL m=12,...4 ! 2.7

FUNCTIONS wherej is the number of blocksi.e., the branching index
In genera'l functions for which the total increment involved in the construction of the fractal unit Cé]|=2 for
the Cantor’s ensemble
A f(x)=f(x+Ax)—f(x) (2.2 Let the unit scale at thath step beAx®,
can be represented as - 1
[AX{] =5 (%= %), 28
Anf=A[AX]"+a(x)[AX]",  (lim a(x)=0) (2.2 .
Ax=0 whereN;=j!, ...; N,=|" (that is,N,=j" determines the

number of fragments at thaeth scale level This definition

(i) h=1:0:f(x) belongs to the classical ensemble of dif- of the unit scale for the segmet, xq] allows us to associate
ferentiated functions: and each point(element of the fractal ensemble with a point of

(i) h#1 (Hoelder index f(x) belongs to the ensemble an ultrametric space which can be represented by the Cayley
of functions for which it is not the classical derivative but 1"€€[11,42.

may be subdivided into two classes:

only the fractional derivative that exists, It follows from Eq.(2.8) thatnlimAxf]”)=0; hence Ax{
d"f(x) Anf is an infinitesimal quantity. From now on, the increment of
o lim [Ax]" (2.3)  the function argumenAxg”) at thenth step will be denoted
Ax—0

asAx (that is, Ax=Ax{"), while the corresponding coordi-

It is pertinent to recall here that fractals are defined, somer-]ates of dividing points will be defined as

times, as continuous functions characterized by the absence
of derivatives(tangentg at any point, with a curvilinear cone
serving as a tangent to the fractal curve trajec{@§]. Ap- whereq=0,1,2 . .. j"*. Recognition of fractal dimension-
parently, Czech scientist Bolzano was the first to study sucg“ty asd; =« implies, further,

continuous, nondifferentiated functions around 1830e

Xq=Xo— GAX{" =X~ gAX, (2.9

corresponding manuscript was discovered only in 1920 1\n

[39]). Wiener’s proces§.e., Brownian motionand Kolmog- AX=(X0—X)/ (E) v [AX]*=[(Xo—Xx)“/Ny],

orov’s turbulencdi.e., nonsmooth vector fieldnay be cited

as examples of phenomena that can be described by continu- 1\ na

ous, nondifferentiated functior{§ractal functions. (_) =|"=N,. (2.10
The displacementy(t) of a Brownian particle in the 3

former (Wiener's process is defined 440} Consider an incrememX ,f(x) = f(xg) — f(Xo— AX); then

ly(t+At)—y(t)|~[At], (2.9 the gth incrementA? f(x) will be determined through bino-

mial coefficients with alternating sigri87]
whereas the singular velocity of the latter phenomefiani-

mogorov’s turbulent flowis characterized bj41] m

A$f<x0>=q§0 [—1]9CA(f(xo— gAX)),

(|AB[Py~[AX]P", (2.9
where Av=p(x+ Ax)—v(x) is the difference of velocities cl— m! m=jn+1 (2.11)
between two points separated by distance mogl(m—qg)!’ ' '
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and the functiorf(x) in the vicinity of pointx, will be
dL(x)= f (x—t)* Y f(x)—f(t)]dt. (2.19
f(X)=(1-A,)"f(Xo). (2.12

Using Egs.(2.6)—(2.12), one can derive an analog of the Taking into account that=(x—y)z+y, and
Taylor series for functiorf(x)

(@ (x) = 1 [ a1
. v (X)—m y(X—t) [f(x)—f(t)]dt
f(x)=2 aq(Xg—X)“9, (2.13

1
— _ a _ a—1 _ %
~ e e a2 - @)z

wherea,=(j%q!) f (“9(x,), andf (“V(x,) defines the frac-
tional derivative ofgqth order of the fractal functiori(x) at

the pointx=x, as f*(2)=f[(x=y)z+y],
A f(xo) it can be shown that
f (@@ (x lim ao (2.19
(%)= axwo ([AX]H)Y Dy ¢ f(x) =D}, ®{™(x) (2.20

The coefficients of the series E@®.13 depend both on or
the fractional derivative of thgth order of the fractal func-
tion f(x) at the pointx=x, and on the branching indgxof Df_ f(x)= D){,yCDy*ﬁ)(x),
the fractal ensemble for which the functié(x) is specified.
It follows from Eg. (2.13 that the first derivative d  wherea+ 8=1, 0<a<1, andf(x)=0, if x<O0.

=1)is If f(y)=0, the following should hold:
daf(xo) —f(a)( ) DX—ayf(X):(I)ila)(X)!
dx®
f(x)=Dg_ X),
o A0 fO0) (0= A%) ( A (2.2
im = lim - . .
o [AXTE 5 [Ax] f(x)=Dy Dy, f(x),
(2.19

_ N2« (@)
_y fx)=D5&,dy*.
thus, EQ.(2.3) is recovered.

In a similar way, one can also specify the integral of func- Summarizing, the developed fractional differential-
tion f(x) on fractal ensembl€); as a limit of integral sum- intégral concepts establish the link with the procedure of

mation[37] construction of the fractal ensemble that determines the func-
tion f(x).
f(t)[dt]“— lim qE f(y—(g—1)At)[At]%, lll. DIELECTRIC RELAXATION
At—09=
(2.16 The potential of fractional derivatives will become evi-
lim (n[At]*)=(x—y)®. dent, and the relationship between the expongrasid « in
At—0 Egs. (1.1)—(1.3) and the fractal dimensionalitg; will be

established, in the subsequent treatment of the classical prob-
For convenience in the further use of a fractional derivajem of polarizationP(t) of a dielectric mediuntwhich is, in

tive, let us introduce the differentiation operaff_ : fact, equivalent to the general problem of relaxation of inter-
nal parameters of a nonequilibrium phase
. 0 —1f(y) Assume thaP(t) contains two contributionf7]
x—yf(x): lim W, O<a=1.
o P(t)=Pgo+P4(t), (3.

The integration operatdi,_ will be defined as where the former oneR,= xoE) varies exactly(at least,

« with negligibly small retardationas the applied fielcE,
|;{yf(x)=f f(t)[dt], (2.17  while the latter time-dependent ori®(t) is retarded. Let
y P* = x..E be the upper limit(at fixed E); then the instanta-
neous rate of approach of the contributi®p(t) to this limit
_y F(X) =Dy f(x). (2.18  will be higher, the larger the amplitudey{E—P(t)).
Hence, the corresponding relaxation equation may be written
Consider the function as
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Let S/(t) be the probability of transition from thigh mini-
mum into the (+ 1)th one, so that

S(t)y=e~ "7, (3.6
‘ where the relaxation time is
Qi
TI="To ex;{k—_l_ , 3.7
nl'z T‘; < Iy ’rn r Q) is the barrier heighi is the Boltmann’s constant, arfids

the absolute temperature.
Implicit in the RTD concept is the assumption of compa-
rable magnitudes of barrier heigh® (Fig. 1); hence, the

FIG. 1. Schematic of the potential barrier landscape. ~ Characteristic timeat,;=t,,; —t, of transitions over the bar-
riers will also be of comparable magnitudes. Therefore, dur-
dPy(t) 1 ing the timet>nr, a system will pass throughbarriers with
dlt = Z(AYE—Py(1)). a probability 1— S(t) so that
’
(3.2 "
AX=xX»—Xo> S(t)=|]:[lS|,
(3.9

wherer is the relaxation time. After integration, one derives

from Eq. (3.2 S=exp(— At /7).

AssumingAt,=t/n, it becomes clear that the dispersion of
1_9)(% —1))}E (3.3 intervals At, may.be negle_cted in the limit qﬁ>1; as a
T result, Eq.(3.8) will regain its Debye form with the mean
relaxation time(7) defined as

P(t)=Po+Pi(t)=| xo+Ax

(for the field fixed atE), and

1 n
P(0)=Po+Py(@)=[xo+ Ax/(1+ion)]E (3.4 (=g 2 (3.9
(for the field alternating ak =Eqe'*"). _ Thus, the chain of transitions considered above is effec-
Therefore, the dielectric permittivity of a medium may be tjyely reduced to the exponential, Debye-like relaxation with
defined, finally, a$7] the mean relaxation timén). In other words, the concept of
RTD implies the Debye-like relaxation of a system. How-
e—e. €07 €x 3.5 ever, it is evident that the relaxation will become nonexpo-
“ l4ier’ ' nential, should a system be characterized by a complex sus-
ceptibility of, say, Cole-Cole type.
where Thus, it can be conclude that the RTD concept applies in
the case of a Debye-like relaxatigeven though its fre-
ex=lim &; g9=¢|,-0. quency dependence may be smeared,ouhereas it be-
0—® comes inapplicable in the case of still slower relaxation pat-

terns. In this latter case, the distribution of relaxation times

The next issue concerning us will be the case of arover a self-similar, fractal ensemble seems a physically more
anomalous relaxation in which the “smearing out” of relax- reasonable assumption. As is well known, the fractality of
ation spectrunti.e., the deviation of complex susceptibility geometrical objects implies their noninteger dimensionality;
from its Debye form is associated with the concept of relax- however, a more exact definition of the fractal concept with
ation times distributiofRTD). As is well known, this con- respect to the ensemble of relaxation times is in order.
cept implies a continuous distribution of dipoles by their As proved by Nigmatullif22-25, fractional derivatives
relaxation times. by time in Newton’s equations imply that the interactions

Consider the Froelich’s relaxation modet3] which is  between a system and an external field are not continuous
based on the RTD concept. It is usually assumed that thbut occur in discrete time intervals. In this context, the frac-
relaxators are homogeneously distributed along the height aflity of an ensemble of relaxation times simply means that
the potential barrierU; however, this assumption is not the relaxation is not a single process with a unique relaxation
strictly correct. As can be seen from Fig. 1, many shallowetime, but a series of successive relaxation events with differ-
minima may exist between two main minima; therefore, aent relaxation times.
system is involved in a continuous chain of transitions Let us consider now the nonequilibrium state of a fractal-
—r,—r3— ... —I—T, between adjacent minim&ig. 1). like medium assuming that this nonequilibrium state is char-
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0

>

n=0

acterized by many events such that each next event is sepa-
rated by a certain time intervaj from a previous event. In

this case, some intervals will be eliminated from a continu-
ous process of system evolution by a definite law. Assume

(-1)"

I'[(n+1)] (3.13

t
=exp—2), z—;.

Thus, the crossover from a strictly exponential to an

that such a process is caused by a temporal fractal state
dimensionality d;; the corresponding relaxation equation
can be written as

1
Dt (P1(x) =~z (AXE—P4(1)), (3.10
and rearranged as
[1+(7Dy_)*]P4(t)=AxE. (3.1)

The latter Eq.(3.11) can be solved using the Laplace
transform[27-30

— Ay — -
[1+(T|O)“]P1(|O)=T, P1(D)=f0 e PPy (t)dt,
(3.12
which yields
Pup=XE 1 (3.13
WP T (™ |
Insofar as
1 (p7)~“ -

1+(pm)© - 1+(p7) @ :nzo (—1)"(pr) @+,
(3.19

the solution of Eq(3.13) in the domain of originals will have
the following form:

t)an+l)
Pl(t)ZA)(Enzo W, (3.15
wherel'(x) is the gamma function. Therefore,
) e+
P()=Po+Py(t)=| xor Ay S ——— —_|E
o™ 1 X 2X < Tla(n+1)+1] |
(3.1

After substitution ofa=1 into Eq.(3.16), Eqg. (3.3) may
be recovered; in fact,

oo

(—1)“(
X0t Ax 2 i)

o3

[in the derivation, the standard E@®.18 was used

t (n+1)
?)

P(t)= E

(3.17

Xot+Ax

gﬁomalous relaxation pattern can be associated with the
change of a continuous distribution of relaxation times (
=1) into a fractal-like one (& a=d;<1).

It follows from Eq.(3.16 that

P(t)~ E, (3.19

x [t
Xot r(a+1)(?)

which can be compared with Eq4.1)—(1.3
In the case of alternating field, the Fourier transform of
Eqg. (3.10 yields

P(w)=[xot+Ax/(1+iwT)“]E, (3.20
and the dielectric permittivity will be
e= o e (3.21)

The latter Eq(3.21) describes the frequency dependence
of the Cole-Cole type. The real Réw) and imaginary
Im e(w) parts of the total dielectric permittivity in E¢3.21)
are, respectively,

Ta
(1—n) l+(wT)aCOST
Ree(w)=¢gq| 7+ P ,
1+2(w7)” COST—F((()T)ZCV
(3.22
. Ta
(n—1) 1+(w7)“$|n7
Ime(w)=¢q ;
Ta
1+ 2((1)7)“00574—((1)7)2“
(3.23
therefore, the dielectric loss tangent will be
(w7)”
tand=(n—1) )
Ta
1+ Z(wT)“COST-I-(a)T)Z"‘
(3.29

wheren=¢,/gg.

Equations(3.22—(3.24), respectively, were used to con-
struct the plots of the real, Réw)/ey (Fig. 2) and of the
imaginary Ime(w)/ey (Fig. 3), parts of complex dielectric
permittivity, as well as of the dielectric loss tangent &&n
(Fig. 4) in the function of logwr for a medium with »
=g,/eg=10. As can be easily verified, the relaxation spec-
trum pattern strongly depends on the dimensionality of a
temporal fractal ensemble=d;.

It is pertinent to mention at this point that by using other
operators of fractional differentiation, it is possible to derive
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25
A0
5:’:-:-7"'0’1\‘\ \\\\\\\

10 4
3
W = 7 T4 ~
Y
378 3 R
% 5 tan(d) 2 X '
é 2 1 .8

log,p (wt)

log,o(wr)

FIG. 2. Dispersion dependence of Re, at different values of FIG. 4. Dispersion dependence of @t different values of
parameter. parametera.

various laws of anomalous relaxation, such as the popul process of a growing complexity of the potential energy

- : andscape is arrested at a certain leMet .
Havriliak-Negami law{25] (see the Appendix Thus, the proposed fractal relaxation model satisfies the

criterium of self-similarity; moreover, its validity is restricted
IV. FRACTAL MODEL by asymptotic lower and upper limits. Let us analyze now

. . . . . . the physical meaning of the self-similar potential ener
Let us consider in more detail the issue of relaxation t'mesfandscgpQM] g P oy

relevant to our fractal model of anomalous relaxation. As can < ,me that a system evolves by passing over a succes-
bedseeﬂ from. the fpotenual en:arg}y Iandlscfg;)}ae for ahsysteg]ve series of potential barriers, each next one of higher
under the action of an external electrical fi¢fg. 5), the height. In this context, the initial relaxation processes with

energy dlffergnces between minima _separat_ed_ by €Ne%hort relaxation times are assumed to be followed by those
maxima of different levels of self-similarity diminish, the with ever increasing relaxation times

larger the number of a self-similarity level. In view of the Consider a relaxing ensemble K< particles. Let this

sta_mdard definit_ion of a rela_xation Fi.mef%eU/kT’ one may system consist of smaller subsysterftdusterg, each of
write the following chain of inequalities: which, in its turn, consists of still smaller subsyste(aab-
clusterg, and so on. In principle, this kind of tesselation
TO>TI> T oo oo T Tig (4.1)  might have been repeated down to the infinitesimal scale;

however, as mentioned above, the accepted model requires
It is easy to see that these inequalities meet the moddhat such a self-similar increase of system complexity should
requirement on the difference between relaxation times insd?e arrested at a certain level. Stated otherwise, the relaxation
far as both the width and the height of energy maxima arét then+1 st level would not set on until a certain fraction
assumed to decrease, the larger the number of self-similari§f particles at the previousth level would have relaxed
level (Fig. 5). Note, however, the existence of the upper limit (here it is implicitly assumed that the numeration of relax-

for an ensemble of relaxation times; that is, a self-similaration levels starts at the lower self-similarity limit for a sub-
cluster comprising a minimum number of relaxing particles,

n=1, and goes up to the upper limit of self-similarity for a
cluster comprising all smaller subclustenss N, whereN is
the total number of hierarchical levels

Let oy be the probablity of existence of each relaxation
level corresponding to thkth statistical ensemble; then, the
probability for a system to pass froath to pth relaxation
level during timet may be defined as

U
aUo
logyy (w7) r
FIG. 3. Dispersion dependence of bz, at different values of FIG. 5. Schematic of the potential barrier landscape under the
parameter. action of an external electrical field.
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It follows from the above analysis that parallel contribu-

U . . ) .
tions of various relaxation channels may be possible only on
\/ n the condition of hierarchical subordination of the corre-
T sponding series of statistical ensembles. In this case, the
U A\ smallest statistical ensemblésubclusters merge, and the
system passes through to a higher hierarchical level of the
k / Cayley Tree(Fig. 6). After passing over barriers of higher
/\/V\ 2 2 height,Q,,, the newly born clusters merge again into larger
) entities(superclustepscorresponding to the next hierarchical

U, i level, and so on. It is this kind of a hierarchical subordination
which is believed to be the main cause of critical slowing
/\/\/\/\/\/\/\ rs

down of the relaxation process, which manifests itself as the
transformation of exponential, Debye-like behavior into a
slower, nonexponential decay.

a) b) Within the frame of the phenomenological approach, con-

_ . ) sider possible patterns of temporal depende®(dé at vari-
FIG. 6. Schematic of the self-similar potential energy Iandscapedble distribution majorants (1) andQ(l). Assume that the

and of the Cayley Tree. descending tails of the probability distribution may be ap-
proximated as

n;

Sqp(t) =exp(—t/74p), 4.2
D~exp(—1/1p); [)~1"P, 4,
where 7, is the relaxation time defined as oull)=exp(=1lo)iw(l) @9
where the first and the second functions apply to weakly
Tqp=To @XAQqp/KT), (43 hierarchical and to strongly hierarchical systems, respec-

tively (herel, andD are positive parametersThe reason is
that the former exponential function, () decays at dis-
tancesl~|, and, therefore, links only a limited number of
hierarchical levels, while the latter, slowly changing power

andQq, is the barrier height between levedsand p.
The probability for a system to pass to the lewetN
after timet will be

n dependenceavg(l) accounts, in effect, for the entire set of
S(t)= 2 @qwpSep(t); (4.4) levels available.
q=1p=1 The barrier height)(I) will be approximated by three

. . . . major types of ascending functions
that is, the functior§(t) is assumed to account for contribu- Jortyp g

tions fr.om all available relaxatlop_ Channel§. Therefqre, the Q(H=QInl; Qu(H=Ql% Qe()=Q¢€, (4.6
relaxation process may be specified, provided functiops
andQq, are known. where Q is the characteristic barrier height, aad=const

It can be noted that the self-similar potential energy land-=>0.
scape(Fig. 6) resembles the so called Cayley Trieg. Asymptotics at—< derived by the saddle-point method
6(b)], provided each minimum at a certain self-similarity after substitution of Eq4.6) into Egs.(4.3) and(4.2), and of
level of the former is associated with a branch of the samehe obtained result together with Ed..5) into Eq.(4.4), are
number on the lattg@5]. The coordinates of branches on the shown in Table I. It can be seen that all relaxation laws
Cayley Tree form the ultrametric space; the metrics of thisderived in this fashion are non-Debye-like, the weakest slow-
space is specified by interbranch distances which are definédg down corresponding to a logarithmic growth of land-
as the numbers of steps between the branches and a comnmsgape heights in weakly hierarchical systefi®., the
origin (for example, the distances between branchasdb, Kohlrausch-Williams-Watts(KWW) stretched exponential
and betweera andc in Fig. 6(b) are unity and two, respec- law [1,2]]. The descending functioB(t) transforms into a
tively). power law, should the hierarchical links become stronger

As can be inferred from Fig. 5, statistical ensemites}  and/or should the increase of peaks on the landscape follow
may merge into clusters, each of which is characterized by power law. The alternative cases of exponential and power-
the maximum barrier heighQ,, separating this particular law increases of the landscape peaks in weakly and strongly
cluster from its neighbor. In view of correspondence betweerierarchical systems, respectively, would correspond to a
the ensemblefy,pt and the branches on Cayley Tree as re-logarithmic relaxation law, as described elsewhgfrg Fi-
ferred to above, the former may be also characterized byally, a double-logarithmic slowing dowfi.e., the virtual
points{q, p} in the ultrametric space separated by distancearresj of the relaxation process is expected for strongly hi-
lpq- In this context, the barrier heigh@®,,, as well as cor- erarchical systems characterized by exponential growth of
responding relaxation timeg,,, turn out to be the functions barrier heights.
of distanced y,, in the ultrametric space. Insofar as elimina- It would be instructive now to discuss the relevance of
tion of clusters from this space may be achieved by the inthese model predictions to structural features of inhomoge-
crease of corresponding barrier heights, one may concludeeous medidIM). Let us define a statistical ensemble as a
that theQ(l) should be a smoothly increasing function. set of particles in the state of constant motion. The model of
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TABLE |. Asymptotics of the correlato(t) att— .

S(t) Qi(h Qr(1) Qe(l)
Wiy t\P KT t\ KT t| o
‘H‘) exp[‘(a'“a) o
Q -1
ﬁ: 1+ k—_l_}
Wq(l) DT (QI t)D’a | (le t) -
o) "y "M
hierarchical subordination was constructed by singling out l=aln(N),
groups of ensembles from the entire statistical set available;
hence, a similar tesselation procedure should be applied to a '=In7. 4.7

the ensemble of particles making up the IM. For this pur-
pose, a principle of singling out clusters and subclusters ifn a general casé;~In N; therefore Eq(4.5 may be rewrit-
the latter should be developed. ten as

In simple terms, solid bodies may be characterized by two
main features: by the pattern of mutual arrangenipatk-
ing) of particles and by the pattern of interparticle interac-
tions. These features are complementary, rather than indes
pendent; nevertheless, it is the former one that will be use%
as a criterion to partition the entire IM system into smaller
subsystems. According to current concepts, an IM may b
considered as a structureless body at large length s¢aes
above the characteristic correlation lengfh whereas re-
gions of a short-range order are assumed to exist at small
scales(below £). In this context, it is the regions of a short-
range order which will be identified as the primitivérst
level) clusters; a set of primitive clusters will be defined as
the second level clusters, and so on. Thusntifelevel clus-
ter corresponding to the statistical ensemble ofritte hier-
archical level may be built using such a process of a self

similar increase of complexity. The *blob” model based on imitive, first level, insofar as the elementary dipoles can

these concepts was introduced elsewliéf. easily pass over a potential barrier created by their neighbors.
_ Itis possible now to find a correspondence between funcr, contrast, for the second level clusters the barrier heights
tions w(1),Q(l) and the accepted model of a short-rangeceateqd by neighboring clusters with preferential orientation
order hlerarchy. As can be |nferred from Fig. 7, the PrIMItiVe ¢ {he major fraction of dipoles is so high that no relaxation
clusterzcomprlse§ seven particles, the next one at the secopdy, gccyr, Therefore, relaxation at the second level may set
level 72=49 particles, and théth level cluster 7 particles o afer completion of relaxation in the major fraction of
(here | |s|the level numbgrObviously, for a level | compris-  ginsles at the primitive level. Stated otherwise, it is only
ing N=7" particles, the level number may be defined as  after sufficient weakening of multipole correlations of a
given cluster with its neighbors that its transition into a de-
Vo2 - polarized state becomes possible. Such self-similar processes
< > occur in succession at each next higher level, and so on.
)Y X Thus, the form of functiorQ(l) depends not only on the
number of dipoles in a cluster but on the form of a multipole
-0 potential and temperature.
Finally, in view of Eq.(4.7), Eq. (4.6) can be rewritten as

Q(N)=QIn[InN]; Qu(N)=Q(InN)%  Q(N)=QN.
(4.9

The model considerations outlined above permit us to
FIG. 7. Schematic of the self-similar structure of a dielectric clarify the results presented in Table I. For example, from the
substance. explicit definition of the KWW stretched exponent

wy(N~N"%  wg(N)~(InN) P, 4.9

The results obtained imply a rather low probability of
rge-size clusters comprising many particles for a weakly
ierarchical system; the reverse is true for a strongly hierar-
chical system. Thus, structural implications of the concept of
%trongly and weakly hierarchical systems become more
transparent.

The physical meaning of the function accounting for the
fcrease of potential barrier height will be clarified by con-
sideration of microscopic kinetics of dielectric relaxation of
a hierarchical structure. Assume that the initial polarization is
induced in the latter, and that a single particle and clusters of
particles interact through dipole and multipole interactions,
respectively. The relaxation processes start after the field is
switched off att=0. Initially, the relaxation sets on at the

b)
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-1 APPENDIX A

Q , (4.10

1+ =

IB:

Hereafter, substitution oDy ,=D“ will be implied.
Consider the operator

it can be inferred thaB—1 at T>0; that is, at sufficiently .

high temperatures the anomalous relaxation becomes Debye- ) ey —enn| V) ~a(v—n)

like. Physically, this effect may be associated with the in- (r+D%) _nZO (r 9% /D ’ (A1)

crease of fluctuation density of dipole reorientations; as a

result, the relaxation of all available dipoles occurs already at

the first level, so that the entire chain of remaining parallelyhere ¢) is the binomial coefficient.

relaxation channels becomes ineffective. Making use of Eq(Al), the relaxation law for complex
In a similar fashion, it becomes easy to prEdiCt the patter%uscepub"ny may be written as

of anomalous, nonexponential relaxation at times shorter

than the relaxation timer; at the lowest(i.e., firsy self-

similarity level. This level may be considered as primit{ire 0 e ) XoEo i
a sense that it cannot be tesselated further into subclysters T Dy expliot)]= —Gmexpliot).  (A2)
hence, the relaxation should be of a classical, Debye-like
type, The solution of Eq(A2) yields the standard definition of
complex susceptibility
P(t)~e 7, (4.1
S X007 X
X(l(‘))_Xoc+ (1+(iw7)a)w (A‘?’)

whatever the pattern of nonclassical relaxation at longer

times. which is identical to the empirical Havriliak-Negami I8

In this case, the dielectric permittivity will be
V. CONCLUSIONS

The potential of fractional derivative technique is demon-
strated on the example of derivation of three known patterns e lw=ge,
of anomalous, nonexponential dielectric relaxation of an in-
homogeneous medium in the frequoncy_ domain. Itis eXp”CWith the real and the imaginary parts, respectively,
ity assumed that the fractional derivative is related to the
dimensionality of a temporal fractal ensembilea sense that
the relaxation times are distributed over a self-similar fractal R &(iw)]=g&..+ (g9~ &)
system. The proposed fractal model of a microstructure of
inhomogeneous media exhibiting nonexponential dielectric sine !
relaxation is built by singling out groups of hierarchically 2
subordinated ensemblésubclusters, clusters, superclusters, cog varctg B
etc) from the entire statistical set available. In this context, it 0037 +(o1)™
is the regions of a short-range order which are identified as
the primitive (first leve) clusters; a set of primitive clusters 1+ (01 2%+ 2(w7)% CoS—
are defined as the second level clusters, and so on. 2

Different relaxation functions are derived assuming that (A5)
the real(physica) ensemble of relaxation times is confined
between the upper and lower limits of self-similarity. In this
respect, the temporal fractal differs from the geometrical Im[e(iw)]=(go—¢.)
fractal (“Cantor dust”) for which only an upper limiti.e.,
the initial segment before its subdivisiois assumed to ex- sin2 ™
ist. It is predicted that at times shorter than the relaxation . 2
time at the lowestprimitive) self-similarity level the relax- sinj varcta am
ation should be of a classical, Debye-like type, whatever the Cos—-+ (01)~

pattern of nonclassical relaxation at longer times. X

€07 €x

T "

aT

5 aT
1+ (w7r)“+2(w1)” COST
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. aT
in—
| i
sin| v arcta
aTT B
COST‘F(C()T) @
tané= (A7)
. aT
sin—
€4 ) aT 2
p—. 1+ (w7)*“+2(wT)* cOS—=—|+Cc0g varcta
0 ©w

The relaxation equation for an initially polarized dielec-

tric is

(77 *+D")"P(1)=0, (A8)
and its solution is

e w(r+1).(vtn—1)
PO=Pat lnzo (=1 n!
(t)an
7
(A9)

“Tlantr+1)’

where P, is the initial polarization(this solution also di-
verges at—0).

The case of a dielectric without initial polarizatiéwhen
the field is switched on &t=0), is described by EqA10)

E

(7 4+ DY) P(t)= );‘fw , (A10)
and its solution is the function
- v(v+1)...(v+n—1)
P()=xoE> (—1)" :
n=0 n!
t a(n+v)
X—;) All
IMNan+v)+1)" (A1D)
APPENDIX B

Consider functiond (x), g(x) with the Laplace transfor-
mationL[f(x)]L[g(x)], and the convolution,

aT _
COST-F((UT) «

f(x)*g(x)= foxg(x— 7)f(r)d7r= foxg(r)f(x— 7)d7.
(B1)

The Laplace transformation for the convolution is the
productL[f(x)]-L[g(x)], i.e.,

LIF(x)*g(x)]=L[F(x)IL[g(X)]
Thus, the functionb(x) from Eg. (2.19 can be defined as

(B2)

O W(x)= Lng(x— 7 f*(r)dr. (B3)
y I'(a) Jy

where

Qo= L P ()=f()-1(y). (B4

It follows from Eq. (B2) that
L[ () ]=LIg(x) L[ f*(x)]=p~ “L[f*(x)], (B5)

where

L[x* 1]=p “T(a). (B6)
In view of Eq.(2.20 and of Eq.(B7)
L[w =pLLD(X)], (B7)
dx
one obtains iff(y)=0
L[D; -y fO0]=p*  “LLf(x)], (B8)

or

L[DE,f0]=p LIf(x)], B=1-a.
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