
PHYSICAL REVIEW E, VOLUME 64, 031504
Temporal fractal model for the anomalous dielectric relaxation of inhomogeneous media
with chaotic structure
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The potential of the fractional derivative technique is demonstrated on the example of derivation of all three
known patterns of anomalous, nonexponential dielectric relaxation of an inhomogeneous medium in the time
domain. It is explicitly assumed that the fractional derivative is related to the dimensionality of a temporal
fractal ensemble~in a sense that the relaxation times are distributed over a self-similar fractal system!. The
proposed fractal model of a microstructure of inhomogeneous media exhibiting nonexponential dielectric
relaxation is built by singling out groups of hierarchically subordinated ensembles~subclusters, clusters,
superclusters, etc.! from the entire statistical set available. Different relaxation functions are derived assuming
that the real~physical! ensemble of relaxation times is confined between the upper and lower limits of
self-similarity. It is predicted that at times, shorter than the relaxation time at the lowest~primitive! self-
similarity level, the relaxation should be of a classical, Debye-like type, whatever the pattern of nonclassical
relaxation at longer times.

DOI: 10.1103/PhysRevE.64.031504 PACS number~s!: 77.22.2d, 05.45.Df
n
u
n
n

-

p
n

-

p

in-

ax-

lan-

, use

f a
tal
de-

ical
iva-

ion

or
lem

ive
can

to
ac-
e-

i-
tum
I. INTRODUCTION

Anomalous~nonexponential! relaxations have long bee
and still are a hot topic in the physics of inhomogeneo
media@1–26#. Broadly speaking, one may refer to three ge
eral relaxation laws that are encountered in the experime
studies of complex systems:

~i! stretched exponential@1,2,12#:

f ~ t !'expF2S t

t D bG , 0,b,1, t.t, ~1.1!

~ii ! exponential-logarithmic@3–5#:

f ~ t !'expF2B lnaS t

t D G , ~1.2!

~iii ! algebraic decay@8#:

f ~ t !'S t

t D 2a

, ~1.3!

wherea’s, b’s, t’s, andB are the appropriate fitting param
eters.

Currently, there seems to be no quantitative microsco
theory for the cited laws@6,7,15#; moreover, sometimes eve
the possibility of such a theory is denied@13–15#. The main
argument is that a spatial inhomogeneity~such as, e.g., a
random distribution of impurities within a matrix, or of in
teratomic spacings in amorphous semiconductors! will nec-
essarily result in an extremely broad range of microsco
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transition rates. Hence, a spatial disorder is expected to
duce a temporal energetic disorder.

Another approach to the problem of anomalous rel
ations makes use of fractal concepts@9–11,22–25#. In this
case, the problem is analyzed using the mathematical
guage of fractional derivatives@16,22–25# based on the
Riemann-Liouville fractional differentiation operator@27–
29#

Da@ f ~ t !#5
1

G~12a!

d

dt E
c

t

~ t2t!2a f ~t!dt, ~1.4!

whereG(x) is the gamma function
In spite of a reasonable success of the latter approach

of the fractional derivative as represented by Eq.~1.4! makes
the interpretation of differentiation procedures difficult~for
example, the nonzero value of a fractional derivative o
constant!, as well as their relevance to the assumed frac
ensemble. One may also note that so far the fractional
rivatives were analyzed in essentially phenomenolog
terms; moreover, the equations based on fractional der
tives were constructed more by intuition~guessed!, rather
than obtained by derivation.

The fractional derivative technique is used for descript
of different physical phenomena~e.g.,@30–38#!. Apparently,
Blumen et al. @11# were the first to use fractal concepts f
the analysis of anomalous relaxations. The same prob
was treated in@12,16,22–25# using the fractional derivative
approach. Excellent review of the use of fractional derivat
operators for the analysis of various physical phenomena
be also found in@30#. However, up until now there seems
be little understanding of the relationship between the fr
tional derivative operator and/or differential equations d
rived therefrom~which are used for the description of var
ous transport phenomena such as transport of a quan
©2001 The American Physical Society04-1
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particle through the potential barrier in fractal structures,
transport of electromagnetic waves through a medium wi
fractal-like profile of dielectric permittivity, etc.!, and the
fractal dimensionality of a medium.

In this context, attempts to construct fractional derivativ
and to clarify their relevance to the assumed fractal ensem
are believed to remain feasible for the treatment of the pr
lem of anomalous relaxations. In our previous papers@37#,
the analysis of a classical problem of polarization of an
homogeneous medium permitted us to establish the rela
ship between anomalous relaxation and dimensionality o
temporal fractal ensemble, which characterizes a nonequ
rium state of a medium. Thus, the main aim of the pres
paper is the further extension and generalization of th
results within the frame of a fractal model.

II. GENERAL OVERVIEW: DERIVATIVE OF FRACTAL
FUNCTIONS

In general, functions for which the total increment

Dhf ~x!5 f ~x1Dx!2 f ~x! ~2.1!

can be represented as

Dhf 5A@Dx#h1a~x!@Dx#h, ~ lim
Dx→0

a~x!50! ~2.2!

may be subdivided into two classes:
~i! h51;0:f (x) belongs to the classical ensemble of d

ferentiated functions; and
~ii ! hÞ1 ~Hoelder index!: f (x) belongs to the ensembl

of functions for which it is not the classical derivative b
only the fractional derivative that exists,

dhf ~x!

dxh 5 lim
Dx→0

Dhf

@Dx#h . ~2.3!

It is pertinent to recall here that fractals are defined, som
times, as continuous functions characterized by the abs
of derivatives~tangents! at any point, with a curvilinear cone
serving as a tangent to the fractal curve trajectory@38#. Ap-
parently, Czech scientist Bolzano was the first to study s
continuous, nondifferentiated functions around 1830~the
corresponding manuscript was discovered only in 19
@39#!. Wiener’s process~i.e., Brownian motion! and Kolmog-
orov’s turbulence~i.e., nonsmooth vector field! may be cited
as examples of phenomena that can be described by con
ous, nondifferentiated functions~fractal functions!.

The displacementy(t) of a Brownian particle in the
former ~Wiener’s! process is defined as@40#

uy~ t1Dt !2y~ t !u'@Dt#a, ~2.4!

whereas the singular velocity of the latter phenomenon~Kol-
mogorov’s turbulent flow! is characterized by@41#

^uDnW up&'@Dx#p/3, ~2.5!

whereDnW 5nW (x1Dx)2nW (x) is the difference of velocities
between two points separated by distanceDx.
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Assume that a functionf (x) is defined on a fractal en
sembleV f , of dimensionality 0,df,1. Let the function
f (x) ~hereafter referred to as a fractal function! be continu-
ous throughV f , be self-similar at different scales, and ha
no tangent at any point of its trajectory. It is assumed t
f (x)50 if x,0, andu f (x)u,`.

Let us divide a segment@x,x0# so that the length of each
qth fragment at thenth scale level is

Dxq
~n!5jn~x02x!, ~2.6!

wherej,1 is the scaling factor~i.e., the index of similarity
of the ensembleV f ,!.

The number of dividing points of the segment@x,x0# at
the nth step is therefore,

mn51,2, . . . ,j n11, ~2.7!

where j is the number of blocks~i.e., the branching index!
involved in the construction of the fractal unit cell~ j 52 for
the Cantor’s ensemble!.

Let the unit scale at thenth step beDxa,

@Dxq
~n!#a5

1

Nn
~x02x!a, ~2.8!

whereN15 j 1, . . . ; Nn5 j n ~that is,Nn5 j n determines the
number of fragments at thenth scale level!. This definition
of the unit scale for the segment@x,x0# allows us to associate
each point~element! of the fractal ensemble with a point o
an ultrametric space which can be represented by the Ca
Tree @11,42#.

It follows from Eq. ~2.8! that lim
n→`

Dxq
(n)50; hence,Dxq

(n)

is an infinitesimal quantity. From now on, the increment
the function argumentDxq

(n) at thenth step will be denoted
asDx ~that is,Dx5Dxq

(n)!, while the corresponding coordi
nates of dividing points will be defined as

xq5x02qDxq
~n!5x02qDx, ~2.9!

whereq50,1,2, . . . ,j n11. Recognition of fractal dimension
ality asdf5a implies, further,

Dx5~x02x!Y S 1

j D n

, @Dx#a5@~x02x!a/Nn#,

S 1

j D na

5 j n5Nn . ~2.10!

Consider an incrementDa f (x)5 f (x0)2 f (x02Dx); then
theqth incrementDa

q f (x) will be determined through bino
mial coefficients with alternating signs@37#

Da
mf ~x0!5 (

q50

m

@21#qCm
q
„f ~x02qDx!…,

Cm
q 5

m!

q! ~m2q!!
, m5 j n11, ~2.11!
4-2
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and the functionf (x) in the vicinity of pointx0 will be

f ~x!5~12Da!mf ~x0!. ~2.12!

Using Eqs.~2.6!–~2.12!, one can derive an analog of th
Taylor series for functionf (x)

f ~x!5 (
q50

`

aq~x02x!aq, ~2.13!

whereaq5( j q/q!) f (aq)(x0), and f (aq)(x0) defines the frac-
tional derivative ofqth order of the fractal functionf (x) at
the pointx5x0 as

f ~aq!~x0!5 lim
Dx→0

Da
q f ~x0!

~@Dx#a!q . ~2.14!

The coefficients of the series Eq.~2.13! depend both on
the fractional derivative of theqth order of the fractal func-
tion f (x) at the pointx5x0 and on the branching indexj of
the fractal ensemble for which the functionf (x) is specified.

It follows from Eq. ~2.13! that the first derivative (q
51) is

da f ~x0!

dxa 5 f ~a!~x0!

5 lim
Dx→0

Da f ~x0!

@Dx#a 5 lim
Dx→0

f ~x0!2 f ~x02Dx!

@Dx#a .

~2.15!

thus, Eq.~2.3! is recovered.
In a similar way, one can also specify the integral of fun

tion f (x) on fractal ensembleV f as a limit of integral sum-
mation @37#

E
y

x

f ~ t !@dt#a5 lim
Dt→0

(
q51

n

f ~y2~q21!Dt !@Dt#a,

~2.16!
lim

Dt→0
~n@Dt#a!5~x2y!a.

For convenience in the further use of a fractional deri
tive, let us introduce the differentiation operatorDx2y

a :

Dx2y
a f ~x!5 lim

x→y

f ~x!2 f ~y!

@x2y#a , 0,a<1.

The integration operatorI x2y
a will be defined as

I x2y
a f ~x!5E

y

x

f ~ t !@dt#a, ~2.17!

I x2y
a f ~x!5Dx2y

2a f ~x!. ~2.18!

Consider the function
03150
-
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Fy
~a!~x!5

1

G~a!
E

y

x

~x2t !a21@ f ~x!2 f ~ t !#dt. ~2.19!

Taking into account thatt5(x2y)z1y, and

Fy
~a!~x!5

1

G~a!
E

y

x

~x2t !a21@ f ~x!2 f ~ t !#dt

5
1

G~a!
~x2y!aE

0

1

~12z!a21@ f ~x!2 f * ~z!#dz,

f * ~z!5 f @~x2y!z1y#,

it can be shown that

Dx2y
12a f ~x!5Dx2y

1 Fy
~a!~x! ~2.20!

or

Dx2y
b f ~x!5Dx2y

1 Fy
~12b!~x!,

wherea1b51, 0,a<1, and f (x)50, if x,0.
If f (y)50, the following should hold:

Dx2y
2a f ~x!5Fy

~a!~x!,

f ~x!5Dx2y
a Fy

~a!~x!,
~2.21!

f ~x!5Dx2y
2a Dx2y

a f ~x!,

Dx2y
a f ~x!5Dx2y

2a Fy
~a! .

Summarizing, the developed fractional differentia
integral concepts establish the link with the procedure
construction of the fractal ensemble that determines the fu
tion f (x).

III. DIELECTRIC RELAXATION

The potential of fractional derivatives will become ev
dent, and the relationship between the exponentsb anda in
Eqs. ~1.1!–~1.3! and the fractal dimensionalitydf will be
established, in the subsequent treatment of the classical p
lem of polarizationP(t) of a dielectric medium~which is, in
fact, equivalent to the general problem of relaxation of int
nal parameters of a nonequilibrium phase!.

Assume thatP(t) contains two contributions@7#

P~ t !5P01P1~ t !, ~3.1!

where the former one (P05x0E) varies exactly~at least,
with negligibly small retardation! as the applied fieldE,
while the latter time-dependent oneP1(t) is retarded. Let
P* 5x`E be the upper limit~at fixedE!; then the instanta-
neous rate of approach of the contributionP1(t) to this limit
will be higher, the larger the amplitude (x`E2P(t)).
Hence, the corresponding relaxation equation may be wri
as
4-3
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V. V. NOVIKOV AND V. P. PRIVALKO PHYSICAL REVIEW E 64 031504
dP1~ t !

dt
5

1

t
„DxE2P1~ t !….

~3.2!
Dx5x`2x0 ,

wheret is the relaxation time. After integration, one deriv
from Eq. ~3.2!

P~ t !5P01P1~ t !5Fx01DxX12expS 2
t

t D CGE ~3.3!

~for the field fixed atE!, and

P~v!5P01P1~v!5@x01Dx/~11 ivt!#E ~3.4!

~for the field alternating asE5E0eivt!.
Therefore, the dielectric permittivity of a medium may b

defined, finally, as@7#

«5«`1
«02«`

11 ivt
, ~3.5!

where

«`5 lim
v→`

«; «05«uv50 .

The next issue concerning us will be the case of
anomalous relaxation in which the ‘‘smearing out’’ of rela
ation spectrum~i.e., the deviation of complex susceptibilit
from its Debye form! is associated with the concept of rela
ation times distribution~RTD!. As is well known, this con-
cept implies a continuous distribution of dipoles by th
relaxation times.

Consider the Froelich’s relaxation model@43# which is
based on the RTD concept. It is usually assumed that
relaxators are homogeneously distributed along the heigh
the potential barrierU; however, this assumption is no
strictly correct. As can be seen from Fig. 1, many shallow
minima may exist between two main minima; therefore
system is involved in a continuous chain of transitionsr 1
→r 2→r 3→ . . . →r k→r n between adjacent minima~Fig. 1!.

FIG. 1. Schematic of the potential barrier landscape.
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Let Sl(t) be the probability of transition from thel th mini-
mum into the (l 11)th one, so that

S~ t !5e2~ t/t!l , ~3.6!

where the relaxation time is

t l5t0 expS Ql

kTD , ~3.7!

Ql is the barrier height,k is the Boltmann’s constant, andT is
the absolute temperature.

Implicit in the RTD concept is the assumption of comp
rable magnitudes of barrier heightsQl ~Fig. 1!; hence, the
characteristic timesDt l5t l 112t l of transitions over the bar
riers will also be of comparable magnitudes. Therefore, d
ing the timet@nt l a system will pass throughn barriers with
a probability 12S(t) so that

S~ t !5)
l 51

n

Sl ,

~3.8!
Sl5exp~2Dt l /t l !.

AssumingDt l5t/n, it becomes clear that the dispersion
intervals Dt l may be neglected in the limit ofn@1; as a
result, Eq.~3.8! will regain its Debye form with the mean
relaxation timê t& defined as

^t&215
1

n (
l 51

n

t l
21. ~3.9!

Thus, the chain of transitions considered above is eff
tively reduced to the exponential, Debye-like relaxation w
the mean relaxation timêt&. In other words, the concept o
RTD implies the Debye-like relaxation of a system. How
ever, it is evident that the relaxation will become nonexp
nential, should a system be characterized by a complex
ceptibility of, say, Cole-Cole type.

Thus, it can be conclude that the RTD concept applies
the case of a Debye-like relaxation~even though its fre-
quency dependence may be smeared out!, whereas it be-
comes inapplicable in the case of still slower relaxation p
terns. In this latter case, the distribution of relaxation tim
over a self-similar, fractal ensemble seems a physically m
reasonable assumption. As is well known, the fractality
geometrical objects implies their noninteger dimensional
however, a more exact definition of the fractal concept w
respect to the ensemble of relaxation times is in order.

As proved by Nigmatullin@22–25#, fractional derivatives
by time in Newton’s equations imply that the interactio
between a system and an external field are not continu
but occur in discrete time intervals. In this context, the fra
tality of an ensemble of relaxation times simply means t
the relaxation is not a single process with a unique relaxa
time, but a series of successive relaxation events with dif
ent relaxation times.

Let us consider now the nonequilibrium state of a fract
like medium assuming that this nonequilibrium state is ch
4-4
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TEMPORAL FRACTAL MODEL FOR THE ANOMALOUS . . . PHYSICAL REVIEW E 64 031504
acterized by many events such that each next event is s
rated by a certain time intervalt i from a previous event. In
this case, some intervals will be eliminated from a contin
ous process of system evolution by a definite law. Assu
that such a process is caused by a temporal fractal sta
dimensionality df ; the corresponding relaxation equatio
can be written as

Dx2t
a P1~x!5

1

ta „DxE2P1~ t !…, ~3.10!

and rearranged as

@11~tDx2t!
a#P1~ t !5DxE. ~3.11!

The latter Eq.~3.11! can be solved using the Laplac
transform@27–30#

@11~tp!a#P1~p!5
DxE

p
, P1~p!5E

0

`

e2ptP1~ t !dt,

~3.12!

which yields

P1~p!5
DxE

p

1

11~tp!a . ~3.13!

Insofar as

1

11~pt!a 5
~pt!2a

11~pt!2a 5 (
n50

`

~21!n~pt!2a~n11!,

~3.14!

the solution of Eq.~3.13! in the domain of originals will have
the following form:

P1~ t !5DxE(
n50

` ~21!nS t

t D a~n11!

G@a~n11!11#
, ~3.15!

whereG(x) is the gamma function. Therefore,

P~ t !5P01P1~ t !5F x01Dx (
n50

` ~21!nS t

t D a~n11!

G@a~n11!11#
GE.

~3.16!

After substitution ofa51 into Eq.~3.16!, Eq. ~3.3! may
be recovered; in fact,

P~ t !5F x01Dx (
n50

` ~21!nS t

t D ~n11!

G~n12!
GE

5Fx01DxX12expS 2
t

t D CGE ~3.17!

@in the derivation, the standard Eq.~3.18! was used#
03150
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n50

`
~21!nzn

G@~n11!#
5exp~2z!, z5

t

t
. ~3.18!

Thus, the crossover from a strictly exponential to
anomalous relaxation pattern can be associated with
change of a continuous distribution of relaxation timesa
51) into a fractal-like one (0,a5df,1).

It follows from Eq. ~3.16! that

P~ t !;Fx01
Dx

G~a11! S t

t D 2aGE, ~3.19!

which can be compared with Eqs.~1.1!–~1.3!
In the case of alternating field, the Fourier transform

Eq. ~3.10! yields

P~v!5@x01Dx/~11 ivt!a#E, ~3.20!

and the dielectric permittivity will be

«5«`1
«02«`

11~ ivt!a . ~3.21!

The latter Eq.~3.21! describes the frequency dependen
of the Cole-Cole type. The real Re«(v) and imaginary
Im «(v) parts of the total dielectric permittivity in Eq.~3.21!
are, respectively,

Re«~v!5«0F h1

~12h!F11~vt!a cos
pa

2 G
112~vt!a cos

pa

2
1~vt!2a

G ,

~3.22!

Im «~v!5«0F ~h21!F11~vt!a sin
pa

2 G
112~vt!a cos

pa

2
1~vt!2a

G ;

~3.23!

therefore, the dielectric loss tangent will be

tand5~h21!F ~vt!a

112~vt!a cos
pa

2
1~vt!2aG ,

~3.24!

whereh5«` /«0 .
Equations~3.22!–~3.24!, respectively, were used to con

struct the plots of the real, Re«(v)/«0 ~Fig. 2! and of the
imaginary Im«(v)/«0 ~Fig. 3!, parts of complex dielectric
permittivity, as well as of the dielectric loss tangent tand
~Fig. 4! in the function of logvt for a medium withh
5«` /«0510. As can be easily verified, the relaxation spe
trum pattern strongly depends on the dimensionality o
temporal fractal ensemblea5df .

It is pertinent to mention at this point that by using oth
operators of fractional differentiation, it is possible to deri
4-5
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various laws of anomalous relaxation, such as the pop
Havriliak-Negami law@25# ~see the Appendix!.

IV. FRACTAL MODEL

Let us consider in more detail the issue of relaxation tim
relevant to our fractal model of anomalous relaxation. As c
be seen from the potential energy landscape for a sys
under the action of an external electrical field~Fig. 5!, the
energy differences between minima separated by en
maxima of different levels of self-similarity diminish, th
larger the number of a self-similarity level. In view of th
standard definition of a relaxation time,t'eU/kT, one may
write the following chain of inequalities:

t0.t1.t2 . . . . . . .t i.t i 1I . ~4.1!

It is easy to see that these inequalities meet the mo
requirement on the difference between relaxation times in
far as both the width and the height of energy maxima
assumed to decrease, the larger the number of self-simil
level ~Fig. 5!. Note, however, the existence of the upper lim
for an ensemble of relaxation times; that is, a self-sim

FIG. 2. Dispersion dependence of Re«/«0 at different values of
parametera.

FIG. 3. Dispersion dependence of Im«/«0 at different values of
parametera.
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process of a growing complexity of the potential ener
landscape is arrested at a certain levelN,`.

Thus, the proposed fractal relaxation model satisfies
criterium of self-similarity; moreover, its validity is restricte
by asymptotic lower and upper limits. Let us analyze no
the physical meaning of the self-similar potential ener
landscape@44#.

Assume that a system evolves by passing over a suc
sive series of potential barriers, each next one of hig
height. In this context, the initial relaxation processes w
short relaxation times are assumed to be followed by th
with ever increasing relaxation times.

Consider a relaxing ensemble ofN,` particles. Let this
system consist of smaller subsystems~clusters!, each of
which, in its turn, consists of still smaller subsystems~sub-
clusters!, and so on. In principle, this kind of tesselatio
might have been repeated down to the infinitesimal sc
however, as mentioned above, the accepted model req
that such a self-similar increase of system complexity sho
be arrested at a certain level. Stated otherwise, the relaxa
at then11 st level would not set on until a certain fractio
of particles at the previousnth level would have relaxed
~here it is implicitly assumed that the numeration of rela
ation levels starts at the lower self-similarity limit for a su
cluster comprising a minimum number of relaxing particle
n51, and goes up to the upper limit of self-similarity for
cluster comprising all smaller subclusters,n5N, whereN is
the total number of hierarchical levels!.

Let vq be the probablity of existence of each relaxati
level corresponding to thekth statistical ensemble; then, th
probability for a system to pass fromqth to pth relaxation
level during timet may be defined as

FIG. 4. Dispersion dependence of tand at different values of
parametera.

FIG. 5. Schematic of the potential barrier landscape under
action of an external electrical field.
4-6
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Sqp~ t !5exp~2t/tqp!, ~4.2!

wheretqp is the relaxation time defined as

tqp5t0 exp~Qqp /kT!, ~4.3!

andQqp is the barrier height between levelsq andp.
The probability for a system to pass to the leveln<N

after timet will be

S~ t !5 (
q51,p51

n

vqvpSqp~ t !; ~4.4!

that is, the functionS(t) is assumed to account for contribu
tions from all available relaxation channels. Therefore,
relaxation process may be specified, provided functionsvq
andQqp are known.

It can be noted that the self-similar potential energy la
scape~Fig. 6! resembles the so called Cayley Tree@Fig.
6~b!#, provided each minimum at a certain self-similari
level of the former is associated with a branch of the sa
number on the latter@45#. The coordinates of branches on th
Cayley Tree form the ultrametric space; the metrics of t
space is specified by interbranch distances which are defi
as the numbers of steps between the branches and a com
origin ~for example, the distances between branchesa andb,
and betweena andc in Fig. 6~b! are unity and two, respec
tively!.

As can be inferred from Fig. 5, statistical ensembles$q, p%
may merge into clusters, each of which is characterized
the maximum barrier heightQqp separating this particula
cluster from its neighbor. In view of correspondence betwe
the ensembles$q,p% and the branches on Cayley Tree as
ferred to above, the former may be also characterized
points $q, p% in the ultrametric space separated by distan
l pq . In this context, the barrier heightsQqp , as well as cor-
responding relaxation timestqp , turn out to be the functions
of distancesl qp in the ultrametric space. Insofar as elimin
tion of clusters from this space may be achieved by the
crease of corresponding barrier heights, one may conc
that theQ( l ) should be a smoothly increasing function.

FIG. 6. Schematic of the self-similar potential energy landsc
and of the Cayley Tree.
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It follows from the above analysis that parallel contrib
tions of various relaxation channels may be possible only
the condition of hierarchical subordination of the corr
sponding series of statistical ensembles. In this case,
smallest statistical ensembles~subclusters! merge, and the
system passes through to a higher hierarchical level of
Cayley Tree~Fig. 6!. After passing over barriers of highe
height,Qqp , the newly born clusters merge again into larg
entities~superclusters! corresponding to the next hierarchic
level, and so on. It is this kind of a hierarchical subordinati
which is believed to be the main cause of critical slowi
down of the relaxation process, which manifests itself as
transformation of exponential, Debye-like behavior into
slower, nonexponential decay.

Within the frame of the phenomenological approach, co
sider possible patterns of temporal dependenceS(t) at vari-
able distribution majorantsv( l ) andQ( l ). Assume that the
descending tails of the probability distribution may be a
proximated as

vw~ l !'exp~2 l / l 0!; vs~ l !' l 2D, ~4.5!

where the first and the second functions apply to wea
hierarchical and to strongly hierarchical systems, resp
tively ~herel 0 andD are positive parameters!. The reason is
that the former exponential functionvw( l ) decays at dis-
tancesl' l 0 and, therefore, links only a limited number o
hierarchical levels, while the latter, slowly changing pow
dependencevs( l ) accounts, in effect, for the entire set o
levels available.

The barrier heightsQ( l ) will be approximated by three
major types of ascending functions

Ql~ l !5Q ln l ; Qp~ l !5Qla; Qe~ l !5Qel , ~4.6!

where Q is the characteristic barrier height, anda5const
.0.

Asymptotics att→` derived by the saddle-point metho
after substitution of Eq.~4.6! into Eqs.~4.3! and~4.2!, and of
the obtained result together with Eq.~4.5! into Eq. ~4.4!, are
shown in Table I. It can be seen that all relaxation la
derived in this fashion are non-Debye-like, the weakest slo
ing down corresponding to a logarithmic growth of lan
scape heights in weakly hierarchical systems@i.e., the
Kohlrausch-Williams-Watts~KWW! stretched exponentia
law @1,2##. The descending functionS(t) transforms into a
power law, should the hierarchical links become stron
and/or should the increase of peaks on the landscape fo
a power law. The alternative cases of exponential and pow
law increases of the landscape peaks in weakly and stro
hierarchical systems, respectively, would correspond t
logarithmic relaxation law, as described elsewhere@7#. Fi-
nally, a double-logarithmic slowing down~i.e., the virtual
arrest! of the relaxation process is expected for strongly
erarchical systems characterized by exponential growth
barrier heights.

It would be instructive now to discuss the relevance
these model predictions to structural features of inhomo
neous media~IM !. Let us define a statistical ensemble as
set of particles in the state of constant motion. The mode

e
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TABLE I. Asymptotics of the correlatorS(t) at t→`.

S(t) Ql( l ) QP( l ) Qe( l )

Ww
expF2S t

t0
DbG

b5F11S Q

kTDG
21

expF2SkT

Q
ln

t

t0
D1/aG S kT

Q
ln

t

t0
D21/l 0

Ws( l )
t2g;g5

DT

Q S Q

kT
ln

t

t0
D2D/a FlnSkT

Q
ln

t

t0
DG2D
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theric
hierarchical subordination was constructed by singling
groups of ensembles from the entire statistical set availa
hence, a similar tesselation procedure should be applie
the ensemble of particles making up the IM. For this p
pose, a principle of singling out clusters and subclusters
the latter should be developed.

In simple terms, solid bodies may be characterized by
main features: by the pattern of mutual arrangement~pack-
ing! of particles and by the pattern of interparticle intera
tions. These features are complementary, rather than i
pendent; nevertheless, it is the former one that will be u
as a criterion to partition the entire IM system into smal
subsystems. According to current concepts, an IM may
considered as a structureless body at large length scales~i.e.,
above the characteristic correlation lengthj!, whereas re-
gions of a short-range order are assumed to exist at sm
scales~below j!. In this context, it is the regions of a shor
range order which will be identified as the primitive~first
level! clusters; a set of primitive clusters will be defined
the second level clusters, and so on. Thus, thenth level clus-
ter corresponding to the statistical ensemble of thenth hier-
archical level may be built using such a process of a s
similar increase of complexity. The ‘‘blob’’ model based o
these concepts was introduced elsewhere@46#.

It is possible now to find a correspondence between fu
tions v( l ),Q( l ) and the accepted model of a short-ran
order hierarchy. As can be inferred from Fig. 7, the primiti
cluster comprises seven particles, the next one at the se
level 72549 particles, and thel th level cluster 7l particles
~here l is the level number!. Obviously, for a level l compris-
ing N57l particles, the level number may be defined as

FIG. 7. Schematic of the self-similar structure of a dielect
substance.
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l 5a ln~N!,

a215 ln 7. ~4.7!

In a general case,l; ln N; therefore Eq.~4.5! may be rewrit-
ten as

vw~n!;N2G; vS~N!;~ ln N!2D. ~4.8!

The results obtained imply a rather low probability
large-size clusters comprising many particles for a wea
hierarchical system; the reverse is true for a strongly hie
chical system. Thus, structural implications of the concep
strongly and weakly hierarchical systems become m
transparent.

The physical meaning of the function accounting for t
increase of potential barrier height will be clarified by co
sideration of microscopic kinetics of dielectric relaxation
a hierarchical structure. Assume that the initial polarization
induced in the latter, and that a single particle and cluster
particles interact through dipole and multipole interactio
respectively. The relaxation processes start after the fiel
switched off att50. Initially, the relaxation sets on at th
primitive, first level, insofar as the elementary dipoles c
easily pass over a potential barrier created by their neighb
In contrast, for the second level clusters the barrier heig
created by neighboring clusters with preferential orientat
of the major fraction of dipoles is so high that no relaxati
can occur. Therefore, relaxation at the second level may
on after completion of relaxation in the major fraction
dipoles at the primitive level. Stated otherwise, it is on
after sufficient weakening of multipole correlations of
given cluster with its neighbors that its transition into a d
polarized state becomes possible. Such self-similar proce
occur in succession at each next higher level, and so
Thus, the form of functionQ( l ) depends not only on the
number of dipoles in a cluster but on the form of a multipo
potential and temperature.

Finally, in view of Eq.~4.7!, Eq. ~4.6! can be rewritten as

Ql~N!5Q ln@ ln N#; Qp~N!5Q~ ln N!a; Qe~N!5QN.

~4.9!

The model considerations outlined above permit us
clarify the results presented in Table I. For example, from
explicit definition of the KWW stretched exponent
4-8
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b5F11
Q

kTG21

, ~4.10!

it can be inferred thatb→1 at T@0; that is, at sufficiently
high temperatures the anomalous relaxation becomes De
like. Physically, this effect may be associated with the
crease of fluctuation density of dipole reorientations; a
result, the relaxation of all available dipoles occurs alread
the first level, so that the entire chain of remaining para
relaxation channels becomes ineffective.

In a similar fashion, it becomes easy to predict the patt
of anomalous, nonexponential relaxation at times sho
than the relaxation timet1 at the lowest~i.e., first! self-
similarity level. This level may be considered as primitive~in
a sense that it cannot be tesselated further into subclust!;
hence, the relaxation should be of a classical, Debye-
type,

P~ t !;e2~ t/t!, ~4.11!

whatever the pattern of nonclassical relaxation at lon
times.

V. CONCLUSIONS

The potential of fractional derivative technique is demo
strated on the example of derivation of three known patte
of anomalous, nonexponential dielectric relaxation of an
homogeneous medium in the frequency domain. It is exp
itly assumed that the fractional derivative is related to
dimensionality of a temporal fractal ensemble~in a sense tha
the relaxation times are distributed over a self-similar frac
system!. The proposed fractal model of a microstructure
inhomogeneous media exhibiting nonexponential dielec
relaxation is built by singling out groups of hierarchical
subordinated ensembles~subclusters, clusters, supercluste
etc.! from the entire statistical set available. In this context
is the regions of a short-range order which are identified
the primitive ~first level! clusters; a set of primitive cluster
are defined as the second level clusters, and so on.

Different relaxation functions are derived assuming t
the real~physical! ensemble of relaxation times is confine
between the upper and lower limits of self-similarity. In th
respect, the temporal fractal differs from the geometri
fractal ~‘‘Cantor dust’’! for which only an upper limit~i.e.,
the initial segment before its subdivision! is assumed to ex
ist. It is predicted that at times shorter than the relaxat
time at the lowest~primitive! self-similarity level the relax-
ation should be of a classical, Debye-like type, whatever
pattern of nonclassical relaxation at longer times.
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APPENDIX A

Hereafter, substitution ofDx2y
a 5Da will be implied.

Consider the operator

~t2a1Da!n5 (
n50

`

~t2a!nS n
nDDa~n2n!, ~A1!

where (m
n ) is the binomial coefficient.

Making use of Eq.~A1!, the relaxation law for complex
susceptibility may be written as

t2a1Da n@x exp~ ivt !#5
x0E0

tan exp~ ivt !. ~A2!

The solution of Eq.~A2! yields the standard definition o
complex susceptibility

x~ iv!5x`1
x02x`

~11~ ivt!a!n , ~A3!

which is identical to the empirical Havriliak-Negami law@7#.
In this case, the dielectric permittivity will be

« iv5«`1
«02«`

~11~ iv!a!n , ~A4!

with the real and the imaginary parts, respectively,

Re@«~ iv!#5«`1~«02«`!

3

cosF n arctgS sin
ap

2

cos
ap

2
1~vt!2a

D G
11~vt!2a12~vt!a cos

ap

2

~A5!

Im@«~ iv!#5~«02«`!

3

sinF n arctanS sin
ap

2

cos
ap

2
1~vt!2a

D G
11~vt!2a12~vt!a cos

ap

2

~A6!

and the dielectric loss tan is
4-9
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tand5

sinF n arctanS sin
ap

2

cos
ap

2
1~vt!2a

D G
«`

«02«`
F11~vt!2a12~vt!a cos

ap

2 G1cosF n arctanS sin
ap

2

cos
ap

2
1~vt!2a

D G . ~A7!
c-

he
The relaxation equation for an initially polarized diele
tric is

~t2a1Da!nP~ t !50, ~A8!

and its solution is

P~ t !5P0tan21(
n50

`

~21!n
n~n11!...~n1n21!

n!

3

S t

t D an

G~a~n1n!11!
, ~A9!

where P0 is the initial polarization~this solution also di-
verges att→0!.

The case of a dielectric without initial polarization~when
the field is switched on att50!, is described by Eq.~A10!

~t2a1Da!nP~ t !5
x0E

tan , ~A10!

and its solution is the function

P~ t !5x0E(
n50

`

~21!n
n~n11!...~n1n21!

n!

3

S t

t D a~n1n!

G~a~n1n!11!
. ~A11!

APPENDIX B

Consider functionsf (x), g(x) with the Laplace transfor-
mationL@ f (x)#L@g(x)#, and the convolution,
03150
f ~x!* g~x!5E
0

x

g~x2t! f ~t!dt5E
0

x

g~t! f ~x2t!dt.

~B1!

The Laplace transformation for the convolution is t
productL@ f (x)#•L@g(x)#, i.e.,

L@ f ~x!* g~x!#5L@ f ~x!#L@g~x!# ~B2!

Thus, the functionF(x) from Eq. ~2.19! can be defined as

Fy
~a!~x!5

1

G~a!
E

y

x

g~x2t! f * ~t!dt. ~B3!

where

g~x2t!5~x2t!a21, f * ~t!5 f ~t!2 f ~y!. ~B4!

It follows from Eq. ~B2! that

L@Fy
~a!~x!#5L@g~x!#L@ f * ~x!#5p2aL@ f * ~x!#, ~B5!

where

L@xa21#5p2aG~a!. ~B6!

In view of Eq. ~2.20! and of Eq.~B7!

LFdF~x!

dx G5pL@F~x!#, ~B7!

one obtains iff (y)50

L@Dx2y
12a f ~x!#5p12aL@ f ~x!#, ~B8!

or

L@Dx2y
b f ~x!#5pbL@ f ~x!#, b512a.
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