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Scaling laws in magneto-optical properties of aggregated ferrofluids
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Since statistically isotropic fractal aggregates of particles are a particular case of self-organized critical
systems, we describe formally field-induced behaviors of aggregated ferrofluids as responses of regular at-
equilibrium critical systems at the critical point to the small field conjugated to its order parameter. This leads
us to expect some general scaling laws, which are checked numerically on two examples: the magnetic
susceptibility and the magneto-optical linear dichroism of two-dimensional aggregated ferrofluids. This is
performed by numerical simulations of such an aggregating system under weak magnetic field applied in the
plane of the aggregates.
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I. INTRODUCTION

A ferrofluid consists of colloidal magnetic particles di
persed in a nonmagnetic liquid carrier@1,2#. Often, these
particles are formed well monodispersed and small eno
to constitute a single magnetic domain. Their mean diam
is typically adjusted in the range 10–40 nm. Moreover, th
global shape does not show any relevant morphological
isotropy and can be approximated by a sphere, even if s
crystalline anisotropy can appear in their local magne
properties@3#. In free space, these particles may aggregat
form complicated shapes such as chains, loops, and bra
ing points@4–6#, and their statistical morphology is fracta
with a fractal dimension depending on the magnitude of
magnetic moments of the individual particles. These unus
shapes are difficult to handle analytically, and this expla
why little is known theoretically about the equation of sta
@7#. Hence, numerical simulations represent the standard
to understand their unique features, and extensive wo
have been performed to characterize the morphology of
ferrofluid aggregates@8#. Under an external magnetic field
particles are known to aggregate in a way dependent on
field @9,10#, with preference for chains in the case of t
weak concentrations, and of labyrinthic patterns for the la
concentrations.

Even though conceptually simple, these magnetic mat
als exhibit quite unusual and exciting properties for wh
complete understanding is yet a challenge. In the pre
work, we consider the optical response of a thin slab of
rofluid, with low concentration of magnetic particles, su
jected to a constant external magnetic field in the plane of
slab ~see Fig. 1!.

Such magneto-optical effects are known to be rather
portant in magnitude, and they are used nowadays to cha
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terize the ferrofluid state@11,12#. To be more precise, we
consider here the incident transverse electromagnetic w
with the wave-vector perpendicular to the slab, and we
vestigate the properties of the transmitted wave. Two po
izations of the electric field have to be discussed: the incid
polarization parallel to the magnetic field~the parallel polar-
ization, denoteduu), and the incident polarization perpendic
lar to the magnetic field~the perpendicular', polarization!.
Such a system is experimentally known to have import
magneto-optical properties, probably due to particular agg
gation and collective orientation induced by the field@10,13–
15#. In this paper, we discuss more precisely the case of
linear dichroism for simulated aggregates under the magn
field. In addition, the temperature of the system is assum
to be small enough and low concentration is used, in orde
study only the role of the aggregate morphology and ori
tation.

II. GROWTH SIMULATION ON THE TRIANGULAR
LATTICE

The numerical simulation of ferrofluid aggregation is
long story, beginning with the work of Chantrell@16#.
Among the various ways to simulate numerically tw
dimensional ferrofluid aggregation, it has been shown t
simulation on a triangular lattice is convenient@17#. In effect,
this kind of simulation is able to reproduce correctly t
behavior of clusters generated by more sophisticated w
~e.g., off-lattice Langevin dynamics@18#! but the computing
effort is considerably reduced since much of the compu
tions are realized on integer instead of real numbers@17#.
Nevertheless, the particular symmetries of the triangular
tice need some care. For example, when an external fie
used, this field should by no means be connected to the
©2001 The American Physical Society01-1
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tice ~this is a real-component vector!, and averaging has to
be done to avoid symmetry artifacts.

A system ofN identical particles of diameterd52a is
generated randomly at the initial time. Each particle is
lowed to stay on node of a triangular lattice of sizeL5N.
This is the simplest choice to avoid artificial self-interacti
of linear-shaped clusters. At each particlei is attached to a
three-dimensional real magnetic momentmi of given com-
mon modulusm, in order to simulate single-domain ferro
magnetic particles. The small temperature of the whole s
tem is homogeneous and set equal toT, and an externa
magnetic fieldH5HuH is applied in the two-dimensiona
plane. The reduced energy of the system is then equal t

U/kBT5KmTS (
i 5” j

@mi•mj23~mi•ui j !~mk•ui j !#/r i j
3

2KmH(
i

mi•uHD . ~1!

In this expression, the two nondimensional parametersKmT
5m2/d3kBT andKmH5Hd3/m are used. They represent th
relative strengths of the moment–moment interaction to
thermal energy, and of the magnetic moment to exter
field, respectively. Note that we prefer to use hereKmH in-
stead of the more usual parameter:mH/kBT5KmHKmT ,
since the system under investigation is only subjected
small values of the temperatureT, so KmH takes reasonable
finite values.

The system is stabilized so that electrostatic and van
Waals interactions between particles can be neglected w
compared to the magnetic forces. The aggregation schem
based on the diffusion-limited cluster aggregation proc
@19,20# developed for short-ranged interaction particle agg
gation. When, during their motion, two particles are
neighboring nodes, they stick. In addition, we make the us
assumption that sticking is irreversible due to the small te
perature of the system, and absence of any hydrodyna
stress. An isolated particle will be considered as a cluste
size 1. The Metropolis algorithm@21# is used at each Monte

FIG. 1. Schematic view of the system investigated in the pres
work. The ferrofluid is confined inside a slab, and light@wave vec-
tor k, and (E,B) is the electromagnetic field# arrives perpendicu-
larly to it. A constant magnetic fieldH is set in the plane of the slab
This figure is drawn for the parallel-polarization case (E parallel
to H).
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Carlo step: a random movement~translation or rotation! of a
cluster is assumed. If this move corresponds to a decreas
the system energy, it is performed. If this corresponds to
increaseDU.0 of this energy, it is performed with the prob
ability exp(2DU/kBT). After each tentative movement, relax
ation of all the magnetic moments is performed: ifH i repre-
sents the local apparent field applied on the particlei, its
magnetic moment is aligned along this field. In principle, th
alignment should not be perfect and modelized, for exam
according to the Metropolis algorithm with the local ener
2mi•H i , but here the temperature is chosen such that
approximation of perfect alignment holds. This sequence
process is repeated until an equilibrium configuration
found for the whole system.

We do not consider here the fractal morphology of su
aggregates as a function of the applied field. This aspect
been studied in detail elsewhere@22,8#. Three typical aggre-
gates ofN564 particles, formed at different values ofKmH ,
are shown in Fig. 2.

III. CALCULATION OF THE OPTICAL PROPERTIES

To compute the optical properties of such aggregates,
suppose that the radius of the particles is so small that e
of them can be replaced by a single electromagnetic dip
This is the case for scatterers of radius of some nanome
interacting with light. One defines then the Clausiu
Mossotti dielectric susceptibility @23# xp5(3/4p)@(np

2

2n1
2)/(np

212n1
2)#, and the polarizability@24# ap5vpxp for

each particle of volumevp and refractive indexnp . We treat
here the simple case where the scattering particles are n
an optical resonance, in order to avoid problems of lig
localization@25#. The refractive indexn1 is for the dispersing
nonmagnetic medium. The electromagnetic dipole mom
Pi of particle i is then the product of its polarizability and o
the total local electric field. More precisely, the set of se
consistent linear equations is

Pi5apS Einc1(
j 5” i

Ĝ~r i j !Pj D , ~2!

where the free-space Green tensor is given by

Ĝ~r !5k3~A~kr !dab2B~kr !uaub!.

In the latter expression, the functionsA and B are @26#
A(x)5(x211 ix222x23)exp(ix), B(x)5(x2113ix22

23x23)exp(ix), anddab is the Kronecker symbol applied t
the two Cartesian coordinatesa andb. This constitutes the
basic discrete dipolar approximation equations@27,28#, in the
case of one electromagnetic dipole per particle. The equa
~2! can be rewritten introducing the discrete polarization d
tribution di5Pi /vp , and the tensor of effective optical su
ceptibility x̂ i , as

di5xpS Einc1(
j 5” i

vpĜ~r i j !dj D 5x̂ iEinc . ~3!

nt
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SCALING LAWS IN MAGNETO-OPTICAL PROPERTIES . . . PHYSICAL REVIEW E 64 031401
FIG. 2. Three aggregates of 64 monodisperse particles o
two-dimensional triangular lattice, with density about 1%. The v
ues ofKmH are ~a! 0, ~b! 0.05, and~c! 0.5, andKmT510 000. The
direction of the magnetic field is from the bottom to the top of t
page of the diagram.
03140
We see that if one knows the solution of Eq.~3!, then the
susceptibility tensor of each particle can be calculated,
the average valuêx̂& estimated for one aggregate. The
equations are solved by the efficient scattering-order met
@29#: inversion of the linear Eq.~3! is formally expressed as
a series of terms corresponding, respectively, to the suc
sive scattering orders~the first term is the incident field, the
second is the single-scattering field, and so on!. Each higher-
order field is calculated using the previous-order field, un
series convergence is achieved.

We consider now a monodisperse collection of aggrega
of sizeN, all formed in the same physical conditions, andn
will denote the volume concentration of the system. An el
tromagnetic plane wave propagating inside this medium w
have an oscillating electric fieldE solution of the wave equa
tion:

“3“3E1
n1

2

c2

]2E

]t2
52monP~d&

with ^d& the average discrete polarization distribution forone
particle of the system. Taking the Fourier transform allo
us to express the dispersion equation for the monochrom
wave as a function of the average susceptibility tensor of
particle @30,31#:

n25n1
2~11n^x̂&! . ~4!

We have supposed that the electromagnetic wave does
interact with the static magnetic moments of the particl
induced by the external magnetic field, such that the effec
refractive index for the system reflects only the geometri
arrangement of the particles. Of course, averaging ove
large number of independent aggregates is needed to ach
an accurate estimate of the refractive index of the system

IV. MAGNETIZATION

In the absence of external magnetic field, the morpholo
of aggregates of ferromagnetic particles is fractal, and ch
acterized by the fractal dimensionD f51.23 @32,17#, for
large magnetic moments per particle. The dipolar magne
static interaction depending on both long-range and dir
tional particle correlations, the average magnetization
particle, M5u(1/N)S imi u, reflects these particular long
ranged fractal correlations@33#. It should result in a broad
distribution of the local fields~due to all the dipoles! inside
the aggregate. As a consequence, the effectiveness o
external fieldH, in aligning a magnetic moment will vary
from position to position according to the strength of t
local field, and one can anticipate that the functionM vs H,
expected to be linear in the case of short-range interacti
should not be so simple in the present case. Experiment
this function is known to have a gigantic slope at the ze
field.

We can guess a generic form for the magnetization
small external fields with the following argument. Correl
tion functions of fractal objects decrease as power laws. S
zero-field ferrofluid aggregates can then be considered

a
-

1-3
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BOTET, TROHIDOU, BLACKMAN, AND KECHRAKOS PHYSICAL REVIEW E64 031401
self-organized critical systems@34#, since this criticality
arises here without tuning of the driving parameters@35#.
Another point which goes with the critical behavior of su
objects, is theM-finite-size scaling demonstrated numerica
in these kind of ferrofluid aggregates@36#: uMN2M`u
;N21/D f . Hence, applying a small external field to such
structure is equivalent to applying this field to a critical ma
netic systemat the critical point. One can then expect th
magnetization to be of the formM;H1/d, with a value of the
critical exponentd larger than 1, and probably quite larg
We have in principle to shift the results by the zero-fie
magnetization~but this correction is small as compared
the magnetization under field!, according to the complete
formulaMN(H)2MN(0);H1/d. In Fig. 3 is one example fo
N564 andN532 aggregates at small volume concentrat
(1% and 2%, respectively!.

This power-law behavior is clear when the external fie
is not large enough to saturate the magnetization. Here
find an exponent 0.2360.02, corresponding to a valued
54.460.4, amazingly very close to the usual values of t
critical exponent for a number of second-order magne
phase transitions. Note also that it is definitely not equa
the valued53 derived for the mean-field theory. The beha
ior of the magnetization is clearly not linear with the ma
netic field, and gives a diverging magnetic susceptibility
the zero field. The same kind of analysis, with the sa
results and same exponents, can be done for the modul
the averaged projection ofM on the magnetic fieldH. Since,
by symmetry, this averaged projection is zero for zero fi
this quantity acts just as an order parameter for the sys
with the external field as its conjugated field.

V. LINEAR DICHROISM

Linear dichroism occurs when the imaginary part of t
refractive index depends on the state of polarization of

FIG. 3. Double-logarithmic plot of the magnetization of tw
dimensional aggregates of sizeN532 ~crosses! andN564 ~circles!
as a function of the reduced in-plane magnetic fieldKmH . The
magnetization at saturation is denotedM0, and is equal to 1 with
our units. Each point is the average over 2000 and 1000 inde
dent clusters, respectively. The behavior for small values of the fi
is a power law with exponent 0.2360.02, as shown by the line
followed by the saturationM /M051 for the high fields.
03140
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incident wave. This is the case, in particular, for magne
optical dichroism of ferrofluid@37# in the applied magnetic
field. Two directions for the polarization are then to be stu
ied: when polarization is parallel to the applied field, or wh
it is perpendicular to it. Generally, the difference between
refractive indices is scaled by volume concentration in or
to eliminate trivial linear~for small densities! concentration
dependence. In the following calculations, we assumed
the magnetic particles are homogeneously constituted
Fe3O4, with complex refractive indexnp52.22 i 0.58, in
water ~refractive indexn151.33) @13#. Each particle is a
sphere of radiusa54 nm, and the incident electromagnet
wave has a wavelengthl5633 nm. We explained above~in
Sec. III! how to compute the complex refractive indexn of
the slab. In principle, it could be a full 232 tensor, after
Eq.~4!, but it is found to be almost diagonal for any physic
conditions we studied~off-diagonal terms are found to b
about 1023 times the diagonal terms in all our simulations!.
So, we used only the two diagonal terms to describe
optical properties of the slab for theuu and' incident polar-
izations.

Often, the quantity to measure is set equal to the diff
ence of 1/n2 instead of the difference of the refractive ind
ces. We take this convention here, but both forms g
readily the same result, sinceDn is generally quite small.
Figure 4 shows the result of the parameter:D(1/n2)/n, re
scaled by the volume concentrationn, as a function of the
field parameterKmH . After a steep increase, one can see
saturation due to perfect alignment of rodlike aggregates
the field. This behavior is qualitatively the same as measu
in the experiments@31#.

We should like to discuss now these results in more
tails. Since there is lack of analytical fit for this kind o
curve, precise agreement with the experiments is not so e
to trust, especially because some adjustable parameters
be handled. So, we propose below a scaling formula for
small-field behavior, which is the most interesting case.

The Cotton–Mouton effect is a particular case
magneto-induced orientational linear dichroism appearing
systems ofnonaggregatedmagnetic colloidal particles. A

n-
ld

FIG. 4. Plot of the imaginary part ofD(1/n2)/n vs in-plane
applied magnetic fieldKmH , for 1000 two-dimensional aggregate
of sizeN564.
1-4
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classical formula gives the small-field difference of refra
tive index between the two incidentuu and' polarizations,
under the form@38#

D~1/n2!/n}H2. ~5!

But this formula must be understood as the consequenc
two independent behaviors: the variation ofD(1/n2) with the
magnetization per particle, and the dependence of this m
netization with the magnetic field. Let us be more prec
with this classical case: the magnetizationM of each indi-
vidual colloidal particle is given by the Langevin functio
L(x)5coth(x)21/x, for x5mH/kBT. In particular, for the
small magnetic fieldsH, the magnetization is linear with th
field,

M}H ~6!

and parallel to it, leading to finite magnetic susceptibili
The Cotton–Mouton formula~5! can then be written as we
with this magnetization per particle instead of the magne
field.

D~1/n2!/n}M2. ~7!

The latter equation is more pertinent than~5! in this context,
since it connectsD(1/n2)/n to the magnetization per particle
which is directly responsible via the dipolar interaction, f
the alignment of the particles, hence for magneto-optical
chroism. But~5! is indeed more interesting for application
since it connects two quantities easily measurable.

Let us consider now the case ofaggregatedferrofluid. As
it has been argued in the preceding section, we expect
relation ~6! to hold with an exponent different from 1:

M;H1/d ~8!

with d54.460.4. But Eq.~7! should change too, since it i
essentially a consequence of the particular magnitudeand
the orientation of the magnetization per particle. In the c
of aggregated ferrofluids, we have to take account of
collective orientation of the individual magnetic moment i
side the aggregate. For example, in one branch of such
gregate, these moments tend to align head-to-tail, and so
follow more or less the geometric shape of the branch
least for the small external fields. Because the branches p
in any direction and not only in the direction of the field, th
magnitude of the aggregate magnetization could result
less pronounced effect of the dichroism. If we follow th
idea of the critical phenomenon, we deduce that the dif
ence of refractive indexDn betweenuu and' incident polar-
izations, being positive only for nonvanishing applied fie
should be a singular quantity. Hence, we can assumeDn to
behave as a power law of the order parameter (M ), like for
any singular quantity at the critical point

D~1/n2!/n}MDm. ~9!

This is the relation corresponding to~7! in the case of aggre
gated ferrofluid, and it is expected to be valid for the sm
M, with some positive exponentDm .
03140
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We have checked formula~9! with numerical simulations,
and one typical result is shown in Fig. 5. The value ofDm is
found equal to 1.6060.05 within an amazingly large rang
of values ofM. It is definitely different from the value 2
expected to hold for small compact particles.

Both results~8! and ~9! can be combined to quantify th
relation between the difference in the imaginary parts of
refractive index, and the applied magnetic field:

D~1/n2!/n}HDm /d.

From our simulations, we findDm /d50.3660.04, a value
very different from the classical value: 2, holding for nona
gregated colloidal particles.

VI. CONCLUSION

In this work we have studied the magnetization and lin
dichroism in models of low-density ferrofluids aggregated
a weak magnetic field. The field dependence of both prop
ties exhibit scaling behavior characterized by nontriv
power laws, reminiscent of the critical phenomena, a
which originates from the fractal morphology of the cluste
and the long-ranged nature of the dipolar interactions. T
observation provides new formulas for this kind of magne
material. Additionally, from a more fundamental point
view, the definition of the exponentsd andDm could be as
important for these systems as the definition of the frac
dimensionality for fractal growth models, and provide
means of characterizing different classes of ferroflu
systems.
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FIG. 5. Double-logarithmic plot of the imaginary part o
D(1/n2)/n vs the average magnetization per particle for tw
dimensional aggregates of sizeN532 ~crosses! and N564
~circles!, when in-plane magnetic field is applied. For each poi
2000 and 1000 independent aggregates are used, respectivel
average. In this figure, magnetization has not been scaled by
N-dependent factor in order to show that this plot could give dir
information about the typical size of the aggregates in the syst
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