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Scaling laws in magneto-optical properties of aggregated ferrofluids
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Since statistically isotropic fractal aggregates of particles are a particular case of self-organized critical
systems, we describe formally field-induced behaviors of aggregated ferrofluids as responses of regular at-
equilibrium critical systems at the critical point to the small field conjugated to its order parameter. This leads
us to expect some general scaling laws, which are checked numerically on two examples: the magnetic
susceptibility and the magneto-optical linear dichroism of two-dimensional aggregated ferrofluids. This is
performed by numerical simulations of such an aggregating system under weak magnetic field applied in the
plane of the aggregates.
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[. INTRODUCTION terize the ferrofluid staté11,12. To be more precise, we
consider here the incident transverse electromagnetic wave
A ferrofluid consists of colloidal magnetic particles dis- with the wave-vector perpendicular to the slab, and we in-
persed in a nonmagnetic liquid carrigt,2]. Often, these Vestigate the properties of the transmitted wave. Two polar-
particles are formed well monodispersed and small enougiiations of the electric field have to be discussed: the incident
to constitute a single magnetic domain. Their mean diametepolarization parallel to the magnetic fiefthe parallel polar-
is typically adjusted in the range 10—40 nm. Moreover, theifzation, denoted]), and the incident polarization perpendicu-
global shape does not show any relevant morphological arf@ to the magnetic fieldthe perpendiculat, polarization.
isotropy and can be approximated by a sphere, even if someUch @ system is experimentally known to have important
crystalline anisotropy can appear in their local magnetidh@gneto-optical properties, probably due to particular aggre-
propertied3]. In free space, these particles may aggregate tgation and collective orientation induced _by the figl0,13—
form complicated shapes such as chains, loops, and branch)- I this paper, we discuss more precisely the case of the
ing points[4—6], and their statistical morphology is fractal, I|_near dlchro_ls_m for simulated aggregates under the magnetic
with a fractal dimension depending on the magnitude of thdi€!d- In addition, the temperature of the system is assumed
magnetic moments of the individual particles. These unusudP P& small enough and low concentration is used, in order to
shapes are difficult to handle analytically, and this explains$tudy only the role of the aggregate morphology and orien-
why little is known theoretically about the equation of statetation-
[7]. Hence, numerical simulations represent the standard tool
to understand their unique featur.es, and extensive works | GROWTH SIMULATION ON THE TRIANGULAR
have been performed to characterize the morphology of the LATTICE
ferrofluid aggregateg8]. Under an external magnetic field,
particles are known to aggregate in a way dependent on the The numerical simulation of ferrofluid aggregation is a
field [9,10], with preference for chains in the case of thelong story, beginning with the work of Chantrefll6].
weak concentrations, and of labyrinthic patterns for the largAmong the various ways to simulate numerically two-
concentrations. dimensional ferrofluid aggregation, it has been shown that
Even though conceptually simple, these magnetic materisimulation on a triangular lattice is conveni¢h?]. In effect,
als exhibit quite unusual and exciting properties for whichthis kind of simulation is able to reproduce correctly the
complete understanding is yet a challenge. In the presefitehavior of clusters generated by more sophisticated ways
work, we consider the optical response of a thin slab of fer{e.g., off-lattice Langevin dynamid4.8]) but the computing
rofluid, with low concentration of magnetic particles, sub- effort is considerably reduced since much of the computa-
jected to a constant external magnetic field in the plane of théons are realized on integer instead of real numbém.
slab(see Fig. 1 Nevertheless, the particular symmetries of the triangular lat-
Such magneto-optical effects are known to be rather imtice need some care. For example, when an external field is
portant in magnitude, and they are used nowadays to charaused, this field should by no means be connected to the lat-
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<@\ Carlo step: a random movemeitanslation or rotationof a
cluster is assumed. If this move corresponds to a decrease of
the system energy, it is performed. If this corresponds to an
increaseAU >0 of this energy, it is performed with the prob-
I ability exp(—AU/kgT). After each tentative movement, relax-

E K H ation of all the magnetic moments is performedHifrepre-
_____ sents the local apparent field applied on the particlas
----------------- 3 magnetic moment is aligned along this field. In principle, this

alignment should not be perfect and modelized, for example,
according to the Metropolis algorithm with the local energy
—m;-H;, but here the temperature is chosen such that this
approximation of perfect alignment holds. This sequence of
FIG. 1. Schematic view of the system investigated in the presenprocess is repeated until an equilibrium configuration is
work. The ferrofluid is confined inside a slab, and lifivave vec-  found for the whole system.
tor k, and E,B) is the electromagnetic fie]darrives perpendicu- We do not consider here the fractal morphology of such
larly to it. A constant magnetic fiell is set in the plane of the slab. aggregates as a function of the applied field. This aspect has
This figure is drawn for the parallel-polarization cade garallel been studied in detail elsewhd22,8]. Three typical aggre-
toH). gates ofN= 64 particles, formed at different valueskf,,

. . _ are shown in Fig. 2.
tice (this is a real-component vecjpand averaging has to

be done to avoid symmetry artifacts.
A system ofN identical particles of diameted=2a is lll. CALCULATION OF THE OPTICAL PROPERTIES

generated randomly at the in!tial time. Er_slch particle is al-  To compute the optical properties of such aggregates, we
lowed to stay on node of a triangular lattice of sizeN.  suppose that the radius of the particles is so small that each
This is the simplest choice to avoid artificial self-interactionof them can be replaced by a single electromagnetic dipole.
of linear-shaped clusters. At each particles attached to a This is the case for scatterers of radius of some nanometers,
three-dimensional real magnetic moment of given com- interacting with light. One defines then the Clausius—
mon deU|USmi in 9I'rr?er to ﬁlmulate Smg'e'sohma'”hf?”o' Mossotti dielectric susceptibility[23] x,= (3/4m)[(n?
magnetic particles. The small temperature of the whole sys-_ 2y//.2 2 iz ahili —
tem is homogeneous and set equalTioand an external ny)/(ny+2n3) ], and the polarizability24] ap=vpyx, for
- = . C ) , each particle of volume, and refractive index,. We treat
magnetic fieldH=Huy is applied in the two-dimensional |eore the simple case where the scattering particles are not at
plane. The reduced energy of the system is then equal 0 5 ptical resonance, in order to avoid problems of light
localization[25]. The refractive index; is for the dispersing
U/kBT:KmT(Z [mi'mj—3(mi'Uij)(mk~uij)]/fﬁ nonmagnetic medlum. The eIectromagneth d|pqle moment
3 P; of particlei is then the product of its polarizability and of
the total local electric field. More precisely, the set of self-
_ KmHZ m- UH)- (1)  consistent linear equations is
I

L

In this expression, the two nondimensional paramekgss Pi=ap
=m?/d%kgT andK ,,y=Hd>3/m are used. They represent the
relative strengths of the moment—moment interaction to the
thermal energy, and of the magnetic moment to external'
field, respectively. Note that we prefer to use hKrgy in- -
stead of the more usual parametenH/kgT=K uKmT, G(r)=k3(A(Kr) 8,5~ B(Kr)u,up).

since the system under investigation is only subjected to

small values of the temperatule so K, takes reasonable In the latter expression, the functioss and B are [26]
finite values. A(X)=(x"t+ix"?2—x"3)exp(x), B(x)=(x"1+3ix ?

The system is stabilized so that electrostatic and van der 3x %) exp(x), andé, g is the Kronecker symbol applied to
Waals interactions between particles can be neglected whéhe two Cartesian coordinatesand 3. This constitutes the
compared to the magnetic forces. The aggregation scheme i@sic discrete dipolar approximation equatif2i,2g, in the
based on the diffusion-limited cluster aggregation processase of one electromagnetic dipole per particle. The equation
[19,20 developed for short-ranged interaction particle aggre{2) can be rewritten introducing the discrete polarization dis-
gation. When, during their motion, two particles are ontribution d;=P;/v,, and the tensor of effective optical sus-
neighboring nodes, they stick. In addition, we make the usuateptibility ;(i , as
assumption that sticking is irreversible due to the small tem-
perature of the system, and absence of any hydrodynamic
stress. An isolated particle will be considered as a cluster of = 4 Girid | =viE. ..
size 1. The Metropolis algorithii21] is used at each Monte %=Xo| Ene E 0pGrii)d; | = xiEine 3

Emc+§ é(n;)Pj), )
Bl

here the free-space Green tensor is given by
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We see that if one knows the solution of E), then the
susceptibility tensor of each particle can be calculated, and

the average valué)}) estimated for one aggregate. These
equations are solved by the efficient scattering-order method
[29]: inversion of the linear Eq.3) is formally expressed as

a series of terms corresponding, respectively, to the succes-
sive scattering order@he first term is the incident field, the
second is the single-scattering field, and s &ach higher-
order field is calculated using the previous-order field, until
series convergence is achieved.

We consider now a monodisperse collection of aggregates
of sizeN, all formed in the same physical conditions, and
will denote the volume concentration of the system. An elec-
tromagnetic plane wave propagating inside this medium will
have an oscillating electric field solution of the wave equa-

tion:
(@)
ni °E
VXVXE+ ? F— —/.LOVP(d>
& with (d) the average discrete polarization distributiondoe

particle of the system. Taking the Fourier transform allows
us to express the dispersion equation for the monochromatic
wave as a function of the average susceptibility tensor of one
particle[30,31]:

n?=n%(1+ »(x)). (4

We have supposed that the electromagnetic wave does not
interact with the static magnetic moments of the particles,
induced by the external magnetic field, such that the effective
refractive index for the system reflects only the geometrical
arrangement of the particles. Of course, averaging over a
large number of independent aggregates is needed to achieve
an accurate estimate of the refractive index of the system.

IV. MAGNETIZATION

In the absence of external magnetic field, the morphology
of aggregates of ferromagnetic particles is fractal, and char-
acterized by the fractal dimensiobD;=1.23 [32,17], for
large magnetic moments per particle. The dipolar magneto-
static interaction depending on both long-range and direc-
tional particle correlations, the average magnetization per
particle, M=|(1/N)X;m;|, reflects these particular long-
ranged fractal correlation83]. It should result in a broad
distribution of the local fieldgdue to all the dipolésinside
the aggregate. As a consequence, the effectiveness of the
external fieldH, in aligning a magnetic moment will vary
from position to position according to the strength of the
local field, and one can anticipate that the functidrvs H,
expected to be linear in the case of short-range interactions,
should not be so simple in the present case. Experimentally,
this function is known to have a gigantic slope at the zero

FIG. 2. Three aggregates of 64 monodisperse particles on feld.
two-dimensional triangular lattice, with density about 1%. The val- We can guess a generic form for the magnetization in
ues ofK,4 are(a) 0, (b) 0.05, and(c) 0.5, andK,7=10000. The small external fields with the following argument. Correla-
direction of the magnetic field is from the bottom to the top of the tion functions of fractal objects decrease as power laws. Such
page of the diagram. zero-field ferrofluid aggregates can then be considered as

(©
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FIG. 3. Double-logarithmic plot of the magnetization of two-
dimensional aggregates of sikle= 32 (crossesandN =64 (circles
as a function of the reduced in-plane magnetic fild,,. The
magnetization at saturation is denotield, and is equal to 1 with

our units. Each point is the average over 2000 and 1000 indepeRncident wave. This is the case, in particular, for magneto-
Qent clusters, respectively. The behavior for small values of the ﬁe"bptical dichroism of ferrofluid37] in the applied magnetic
is a power law with exponent 0.230.02, as shown by the line, fi|q Two directions for the polarization are then to be stud-
followed by the saturatioM/Mq=1 for the high fields. ied: when polarization is parallel to the applied field, or when
self-organized critical systemf34], since this criticality itis pe'rper.1di<_:ular'to it. Generally, the difference betw_een the
arises here without tuning of the driving parametgs]. ~ 'efractive indices is scaled by volume concentration in order
Another point which goes with the critical behavior of such to eliminate trivial Ilnear(fo_r small den_s|t|ebconcentrat|0n
objects, is thevi-finite-size scaling demonstrated numerically 9€Pendence. In the following calculations, we assumed that
in these kind of ferrofluid aggregatei86]: |My—M..| the magnetlc particles are homogeneously .const|tu'ted of
~N~%P1, Hence, applying a small external field to such aF&0a, with c_omplex refractive index,=2.2—i (_).58,_ in
structure is equivalent to applying this field to a critical mag-Vater (refractive indexn,=1.33) [13]. Each particle is a
netic systemat the critical point One can then expect the sphere of radiugs=4 nm, and the incident e_Iectromag.netlc
magnetization to be of the for ~H?, with a value of the Wave has a wavelengt=633 nm. We explained abov@
critical exponents larger than 1, and probably quite large. S€C- 1) how to compute the complex refractive indeof
We have in principle to shift the results by the zero-fieldthe slab. In principle, it could be a full 22 tensor, after
magnetization(but this correction is small as compared to Ed4), butitis found to be almost diagonal for any physical
the magnetization under fieldaccording to the complete COI’]dItIOI’IS3 we studiedoff-diagonal terms are found to be
formulaM y(H) — M (0)~HY2. In Fig. 3 is one example for about 10° times the dlagonal_terms in all our 5|mulat_|())ns
N=64 andN =232 aggregates at small volume concentration>%: W€ used only the two diagonal terms to describe the
(1% and 2%, respectively _opﬂeal properties of the slab for theand.L incident polar-
This power-law behavior is clear when the external fielg!Zations. _ . .
is not large enough to saturate the magnetization. Here we Often. tge quantity to measure is set equal to the differ-
find an exponent 0.280.02, corresponding to a valug  ©€Nce of 1A msteed of the d]fference of the refractive |nd.|—
=4.4+0.4, amazingly very close to the usual values of thisC€S: _We take this conventlon here, but bOth_ forms give
critical exponent for a number of second-order magnetid€adily the same result, sinckn is generally quite small.
phase transitions. Note also that it is definitely not equal td-19Ure 4 shows the result of the paramet&(1/n®)/v, re
the values= 3 derived for the mean-field theory. The behav- Scaléd by the volume concentration as a function of the
ior of the magnetization is clearly not linear with the mag- field parameteK . After a steep increase, one can see the
netic field, and gives a diverging magnetic susceptibility inSaturation due to perfect alignment of rodlike aggregates in
the zero field. The same kind of analysis, with the saméhe field. Th|_s behavior is qualitatively the same as measured
results and same exponents, can be done for the modulus B the experiment§31]. _
the averaged projection ® on the magnetic fielth. Since, _We should like to discuss now these results in more de-
by symmetry, this averaged projection is zero for zero fieldails Slnce. there is lack of analytical f|t for th|s kind of
this quantity acts just as an order parameter for the systenfUrve, precise agreement with the experiments is not so easy

FIG. 4. Plot of the imaginary part aA(1/n?)/v vs in-plane
applied magnetic field&,,, for 1000 two-dimensional aggregates
of sizeN=64.

with the external field as its conjugated field. to trust, especially because some adjustable parameters must
be handled. So, we propose below a scaling formula for the
V. LINEAR DICHROISM small-field behavior, which is the most interesting case.

The Cotton—Mouton effect is a particular case of
Linear dichroism occurs when the imaginary part of themagneto-induced orientational linear dichroism appearing in
refractive index depends on the state of polarization of thesystems ofnonaggregatedmagnetic colloidal particles. A
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classical formula gives the small-field difference of refrac- I[A(1/n )/ V]
tive index between the two incideftand L polarizations, 2 . , o
under the forn{38] &P

A(1/n?)/vecH?2. 5) @@9

But this formula must be understood as the consequence of @§>@+++
two independent behaviors: the variationAqf1/n?) with the +ﬁr+
magnetization per particle, and the dependence of this mag- 4l
netization with the magnetic field. Let us be more precise h + ++
with this classical case: the magnetizatibhof each indi-
vidual colloidal particle is given by the Langevin function L
L(x)=coth(x) —1/x, for x=mH/kgT. In particular, for the —5_1 5 0 Y
small magnetic field$l, the magnetization is linear with the ' T (M)
field,

0.0

FIG. 5. Double-logarithmic plot of the imaginary part of
MocH (6) A(1/n?)/v vs the average magnetization per particle for two-
dimensional aggregates of sizB=32 (crosses and N=64
and parallel to it, leading to finite magnetic susceptibility. (circles, when in-plane magnetic field is applied. For each point,
The Cotton—Mouton formulé) can then be written as well 2000 and 1000 independent aggregates are used, respectively, for
with this magnetization per particle instead of the magneticverage. In this figure, magnetization has not been scaled by any
field. N-dependent factor in order to show that this plot could give direct
information about the typical size of the aggregates in the system.
A(1n?)/vcM?2, (7)
We have checked formul®) with numerical simulations,
The latter equation is more pertinent th@p in this context, and one typical result is shown in Fig. 5. The valueDgf is
since it connectd (1/n?)/ v to the magnetization per particle, found equal to 1.6 0.05 within an amazingly large range
which is directly responsible via the dipolar interaction, for of values ofM. It is definitely different from the value 2,
the alignment of the particles, hence for magneto-optical diexpected to hold for small compact particles.
chroism. But(5) is indeed more interesting for applications  Both results(8) and (9) can be combined to quantify the
since it connects two quantities easily measurable. relation between the difference in the imaginary parts of the
Let us consider now the case afigregatederrofluid. As  refractive index, and the applied magnetic field:
it has been argued in the preceding section, we expect the

m!
relation (6) to hold with an exponent different from 1: A(1n?)/vocHPm?,

M~ H e ®) From our simulations, we fin®,,/5=0.36x0.04, a value
very different from the classical value: 2, holding for nonag-

with 6=4.4+0.4. But Eq.(7) should change too, since it is 9regated colloidal particles.
essentially a consequence of the particular magnitamis
the orientation of the magnetization per particle. In the case

of aggregated ferrofluids, we have to take account of the | this work we have studied the magnetization and linear
collective orientation of the individual magnetic moment in- gichroism in models of low-density ferrofluids aggregated in
side the aggregate. For example, in one branch of such ag-\eak magnetic field. The field dependence of both proper-
gregate, these moments tend to align head-to-tail, and so thei¢s exhibit scaling behavior characterized by nontrivial
follow more or less the geometric shape of the branch, apower laws, reminiscent of the critical phenomena, and
least for the small external fields. Because the branches poigfhich originates from the fractal morphology of the clusters
in any direction and not only in the direction of the field, the anq the long-ranged nature of the dipolar interactions. This
magnitude of the aggregate magnetization could result in @pservation provides new formulas for this kind of magnetic
less pronounced effect of the dichroism. If we follow the material. Additionally, from a more fundamental point of
idea of the critical phenomenon, we deduce that the differyjey the definition of the exponeniand D, could be as
ence of refractive indeAn betweer|| and_L incident polar- important for these systems as the definition of the fractal
izations, being positive only for nonvanishing applied field, gimensionality for fractal growth models, and provide a

should be a singular quantity. Hence, we can assim@o  means of characterizing different classes of ferrofiuid
behave as a power law of the order paramehéj (like for  gystems.

any singular quantity at the critical point

VI. CONCLUSION
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