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Simple model for a two-component gas flow in the presence of macroscopic scatterers
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The nonequilibrium state of a two-component gas mixture in the presence of macroscopic scatterers is
investigated. The general solution of a set of the kinetic equations is obtained in the operator form. The model
presentation of the collision operator is derived in the spirit of the Bhatnagar-Gross-Krook method. The
rigorous solution of a set of the derived model kinetic equations is found.
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I. INTRODUCTION II. EXACT CONSIDERATION OF THE KINETIC
PROBLEM

We aim to extend the simple and effectl\{e |d_ea of the Our first step is to solve a set of the kinetic equations in
Bhatnagar-Gross-Krookhereafter BGK approximation[1] o operator form. For the sake of simplicity we restrict our
to the consideration of nonequilibrium states of a many-consideration to the steady state of a two-component gas
component particle system in the presence of macrons. Thigixtyre. In order to formulate exactly the kinetic problem it
problem concerns a variety of physical applications such ag necessary to consider the Hilbert spafeé = 1,2) of the

th? kinetics Of. a p_honon-|mpur|ton system of a S'LmerﬂL“dmomentum functiong(ﬁi) with scalar products of the form
mixture of helium isotope$2—-5] and the phonon-electron

system in metal$§4,6,7], to mention a few.

The first successful attempt to extend the BGK method to  (h(p;),g(p;))i= —f f )
the analysis of a gas mixture is due to Mof8¢ Regretta-
bly, this model is restricted to the consideration of a mixture .
of classical gases and cannot strictly be applied to the abovdere, T is the temperaturep; and e; the momentum and
mentioned systems. Furthermore, the model of Mdirséts  energy of a particle of specieésdl’; the corresponding vol-
conventional formdoes not make it possible to consider the ume element of the momentum phase spag@ the equilib-
size effect in the many-component gas mixture. The samgum distribution function of the gas of thi¢h species, ang;
holds true for the model introduced by Sirovi@j and some  the moduli of the corresponding vectors. The prime denotes
other extensions of the BGK approatsee[1] and refer-  differentiation with respect to the argument, and the Boltz-
ences therein mann constant is set equal to 1.

The above arguments give a motivation for a refinement \We introduce further the Hilbert spac® of vectors
of the BGK approximation, namely, we are going to gener- , > =\t i e > }
alize this method in two different respects. First, we willllfn(;ll,‘)é(ﬁgpfgg mtt?e:[] zpcscg?naer:gﬁz?lr)ezggc(fis/zﬁ/. t_)rehe

| . . . f
. : calar product in the spaé® is defined by the equalit
of not only classical but also quantum gas mixtures. Secondg, P P y a y

we will adopt our method to the investigation of effects due

€j

?

h*(p)g(p)dli. (1)

to particle collisions with external scatterdraacrons. (#1(P1),¢1(P2)| d2(P1), @2(P2))
The results obtained in this paper imply no restrictions to _ - - - >
a particular particle statistics. The extension of the Lorentz =(41(P1), P2(P2))1F (€1(P2). €2(P2))2- (2

approximation to the case of a quantum gas mixture presents o : - _—
a nontrivial mathematical problem. Effects due to the gas A S€t Of kinetic equations describing a nonequilibrium
statistics bring specific features to the exact formulation oftate of the two-component system can be represented in the
the BGK approximation. This allows one to conclude that, afPerator form as
well as the above mentioned physical implications, the math-
ematical aspects of the problem considered are themselves of S11(9) +S1lg) +LIg)=[V) ()
interest.

The paper is organized as follows. Section Il presents thﬁ/here 19)=191.92)% [V)=|v1V1,0,V,), Vi=(a/dr)(e;
mathematical treatment of thg above described problem Ir]—Mi)/T+>2i/T' )Zi are the external forcesTi=asi/z95i is
the framework of the exact kinetic approach. In Sec. lll, &y,q yelocity of particles of speciés f; are the distribution
model for the interparticle collision operator is proposed to ) e () _1 ()
investigate the general solution of the kinetic equation. AlUNCtioNs, gi=[f o’ (e;/T)]"*(fi—f4’) are small correc-

model kinetic equation is solved in Sec. IV. A brief summary fions to the equilibrium distribution fU”CtiO”_S(i)’ and y;
is given in Sec. V. are the chemical potentials. The supersctigtenotes the

transposition, and all gradients and external forces are sup-
posed to be directed along tkzeaxis. We defined the colli-
*Email address: chervany@mpipks-dresden.mpg.de sion operators in Eq3) by

1063-651X/2001/648)/0312046)/$20.00 64 031204-1 ©2001 The American Physical Society



A. . CHERVANYOV
(én 0 83 §% (ﬁl 0)
Si= ~ |, Sp=| . . , L= ~
11 12 SOEC) 0 L,

0 Sp
Sigi=fWii(l;i15i1|5i215i3)[1if8)(pi)]7l

x[1=f P (p )1 QP JIL=F P(pi)]

x[gi(pi,) +0i(pi,) —gi(pi) —gi(p; ) ]dT; dT; dT,

@

Asf;)gi:f Wi p; 15j|5i115j1)[1if 1t
X[1=1 Qi )1 PppL1=f Pipy,)]
x[gi(pi,)—gi(py)]dl; dTdT,, 5

800, [ Wi B1.55.,.B,)[15 1 Pp))
x[1+£0(p )IF P (pp[1+F P(p; )]
x[g;(pj,)—g;(p)]dI,dl';dr; . (6)

ky _ ((pa|P1)1(P2l pz)z)*(kfl)/z
lef)=

[(e1(p)|er(p1))1(e2(p2)|ea(p2))p]~ K112
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Hereafter, the uppdlower) signs correspond to bosoffer-
mions, S; are the linearized collision operators of particles

of the same specie§]) andS{’ are the components of the
linearized operators of cross collisions that act in the spaces
R and®;, respectively, and; are the operators describing
the particle-macron collisions. In the framework of the Lor-
entz approximation the last operators ré¢ad]

Eigi=Nf W(pilpi,)La(pi,) —a(pi)]18(si(p)
—&i(p; ))dl';, (7)

whereN is the macron number density.

In order to inverse the collision operator in E@) we
proceed with an analysis of the kernels of the collision op-
erators introduced above. For the sake of brevity we associ-
ate with then-dimensional orthonormal bas{$¢;)}{_, the
projectorP of the form

PI{| d)}4] =§1 | i) il 8

Let us consider a set of vectors defined by

(Y1(61, 1)+ |YI|(01,¢1))<p2|p2>|§71p1 >
[2(2—1—=212) 7] Y| py, p)|l | (= DX Y102, 82) +1YT' (02, 02))(palpa)s P2/’

Ky _
le3)= lle1(p1).e2(p))|

((1]1)1(2]1),) "D
112,51l

€)=

whereY["(6;,¢;) (i=1,2) are the spherical harmonitkl]

expressed in terms of spherical coordinatgs 6, , ¢;) in the
momentum spaces. The double bracKgts-|| denote the

norm of the vector. Let us also note tHaf'|e?)=0.

(1157t
(—1* a1kt

9)

e1(P1){e2(P2)|e2(p2))s >
(=D  Le,(po)(er(py)les(p))s /)

> (1=0,1,2k=1,—1)

It should be stressed that the collision opera®ysand
S;, have kernels of different dimensions. The cross-collision
operatorS;, has five collision invariants due to the above
conservation laws in collisions of particles of different spe-

The set of vectors introduced above makes it possible taies. The operato8;; has ten independent collision invari-
find the kernels of the collision operators in an explicit form. ants: five for mutual collisions of the particles of each of the
The conservation laws in the cross collisions can be extwo species. Thus the corresponding conservation laws can

pressed as
Silel)=10), (10

with [=0,—1,1 corresponding to the conservation zfx,

andy components of the particle momenta, dr€3,4 cor-

be written as

Silel)=10). (11)

The set of vector$9) must be properly normalized to con-

responding to the conservation of energy and particle numbegtitute a basis in the null space of the oper&gr. This basis

density, respectively0)=|0,0)".

is found to be
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1 BecauseP, |V)=0, the second equality in Eq17) is ful-
|&510=leb, 1), |&)=—=—==—(e})x|e})),  filled trivially and can be omitted. According to the first
V2(1*(esley)) equality in Eq.(17) the vectorS;,)|g) must belong to the

kernel of projectorP,.

) (E—P[|£3),|€D]) €3 The operator on the left side of E¢L5) can be inverted
|&3)= \/<e2|(E— P[|§l) |§l)])|e2> ' uniquely. This follows from the fact that the latter presents a
3 3/x154 3 sum of the negative operators of the forla<Pj;)S;;(E
Ll 5 —Pj;). Thus, the general solution of the kinetic equat{@n
1£2)= (E—P[]£3).1£4).1€3)])[€2) (17  canbe witten in the form
47— 2 T\ [0\ (2 2\’
E-P /
V(egl( [1&3),1€2).1€5)]) |ed) l9)=190)+19") (18

k _ .
so that(¢|&m) = 6"0, wheres " is the Kronecker symbol yith an arbitrary vectolg,) belonging to the subspace asso-
andE is the unity operator. _ ciated with the projectoP; and
The vectorg¢j )\, form the basis of the kernel of opera-
tor S;,. This allows one to introduce the projectors

2
l9")= 21 (E—Py)SH(E—Py)+(E-P))

4 4
Pi= 2, [EN(&], Pu=Pit 2, €] (13 -1
><L(E—P|_)> (E—Py)|V). (19
into the kernels of the operato&, andS;;, respectively.

The structure of the kernel of operatbrmerits a few The exact solutiori18),(19) of the kinetic problem can be
comments. In the framework of the Lorentz approximationysed for analysis of the steady nonequilibrium states of the
[10], the particle-macron collisions lead to a change in thewo-component gas mixture. Two further comments are im-
direction of particle motion so that their energy remains unportant. First, the solutiori18) has no restrictions on the
changed. The energy conservation law in the particle-macroparticle energy-momentum relation. That is, it can be applied
collisions is reflected by thé factor in Eq.(7). Hence, the to quasiparticle gas mixtures also. Second, the redik
collision operatord; act only on the polar and azimuthal takes into account different dimensionalities of the kernels of
components of an arbitrary function of the momentum. Thusthe operatorsS,;, and S;;. It gives the correct limits when
any vector ofR formed by the angle independent functions certain types of collision are neglected.
belongs to the kernel df. The basis of the kernel &f can be The term|gy) in Eq. (18) presents the solution of the
obtained by applying the Gram-Schmidt proced[t&] to  homogeneous equatidi8) with |V)=0. The term|g’) ex-
the set of vectors constituted by monomials of the formpresses a particular solution of the nonhomogeneous equa-
{|p1,004,]0,p5) }5_o. For our purposes, however, it is tion (3). It should be emphasized that this latter term must
enough to introduce the project®, into the kernel ofL  also fulfill equality (16). In order to illustrate that, let us
associated with the above basis by means of forni@la  consider the hydrodynamic limit=0 (P =E). For brevity
Relations of further importance are we also setX;=0. In this case, conditior{16) reduces to

P15 V)=0. In explicit form this reads

4
PlEPlzPL:Ig3 |§|1><§|l|a

9 & Je
=3 | p=f{dr,=o. (20)
4 ar =1 r9p|
P,=(Py;— Py P|_=|23 |E2)(£2). (14  Equality (20) yields nothing but the condition of mechanical

equilibrium in aclosedparticle system: the total pressure
must be constant all over its volume. The presence of ma-
rons makes a particle system unclosed. Condit{26)
breaks down due to particle-macron collisions. In order to
Bbtain the condition describing the steady state of a system
in this case one has to analyze the solufi®®) with L#0.

The projectors derived above can be conveniently used t
solve the kinetic equatiof8) in operator form. Projecting the

jectorse—P4, PJ(E—P,), P,, andP; one finds, respec-
tively,

2 IIl. AMODEL FOR THE COLLISION OPERATOR

2‘1 (E=P1)Sy(E=Py)+(E-PL(E=Py) ||g) Our next step is to derive a model representation for the

collision operators to analyze the soluti#8) in physically
=(E=Pp|V), (15 explicit terms. In order to be physically reliable, our model
has to reflect the following essential features of true collision
PiAE—PL(E=P.)|g)=P1(E—-P)|V), (16) operators.(1) The model collision operators must satisfy
conditions(10) and(11) expressing the conservation laws in
P,SiAE—P1)|g)=P,|V), P4|V)=0. (17)  the collisions(2) Linearized collision operators must be self-
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adjoint. (3) The H theorem[10] must be satisfied. The relation(27) is particularly simple for the momentum
According to the first two conditions the collision opera- independent frequencies, and v,;. It reads
tors must satisfy the relations

Silg)=(E-Py)SH(E-Py)lg) (i=1,2. (21) Vuffﬁdeanf9sz (28

Within linear theory, the average effect of collisions reducesy, the case of Maxwell distribution functiorfsg) equality
to a change in the distribution function by a small amount(28) reduces to the relation used [ig].

proportional to the correctioly). The coefficients of propor- ~ \we conclude this section with further simplification of the

tionality, the so-called collision frequenci¢s,10], qualita-  oqel (22). Because the model operatdi22) present the
tively describe the effect of collisions. Extending the idea ofgperators of multiplication, the collision operatsi,+ S;,

this _°°.m”?°”'y used trick we a_\pprpximafql and Sy, b_y_ +L maps the subspace 9 associated wittyd( ;) harmon-
multiplication operators by taking into account conditions;s jnt jtself. It allows one to look for a particular solution

(21). This results in the model |g’) of the kinetic equatiorf3) in the subspace correspond-
ing to the same harmonic as that to which the ve¢tor

Sii=(E=Py)vyi(E=Py)  (i=12) (22) belongs. The corresponding nonhomogeneous equation for
- _ - _ |g’) reads
Where V11— d|ag{_ Vi1, — sz} and V1= d|ag{_ Vioy — sz}
are diagonal matrices with real elements. 2\ 2
Let us emphasize that the collision frequencigsmust [( E-> |e'0>(e'o|) vll( E—> |eb)yeb| | +(E—|ed)

be positive. This follows from thél theorem written in the =1 =1

form
(et} lebyelly+ 3 "n_

(0]t S =0. 23 (egl) viA E—leg){(eg)) + v [[97)=(V) (29

Condition (23) can be derived by taking the time derivative Wheref/deiag{— ViL,— Vo)

of the system entropy The explicit forms for the particle-macron collision fre-
quencies_,v,_ are defined by the cross sections of particle
scattering by macrons. For a classical gas of particles with
the masam; this readq10]

2
S=—|Zl [fiInf,=(1=f)In(1=f)]dl"}, (24

and linearizing the result with respect |@). Pi
i iti ViL= T0—="UiL»
According to condition23) the model operators must be i /_ZmiT I

negative and, consequently, the above mentioned parameters
must satisfyr;;>0. Let us also note that the equals sign in >T
(23) holds if (and only if the vectorlg) belongs to the kernel v, = 27N A /_j [1—Py(cosa)]oi(p; ,a)sinada
of the operatoiS;;+ Sy,. m;
Another restriction related to the valuesgf arises from (30
their physical nature, namely, the frequencigsandv,, are

not independent. Indeed, according to E6.and (6) the where o(p; ,a)Sinada are the differential scattering cross
following equality holds: sections of the quasiparticles of the speciasdP,(cosa) is

the Legendre polynomial of the first order.
_ ) _ . The model presentation of the collision operat@?)
f wy, f &) dT1=J woif §7dI, (25  makes it possible to obtain observable physical results avoid-
ing exact consideration of the nonessential details of the in-
where terparticle intera_ction. It allows one to investigate e>_<p|icitly
the effect of particle-macron collisions on the formation of a
_ . e . _ steady nonequilibrium state of a gas mixture.
wmm=dempm%mer%erl
) ) IV. THE RIGOROUS SOLUTION OF THE MODEL
x[1=f 8)(pi2)]f 8')(pj1) KINETIC EQUATION IN THE STATIONARY CASE

x[1=f{(p;,)]dI dr; dT. . (26) The model kinetic equatiof29) can be trivially reduced
to a set of linear equations in the moments of the distribution
Applying the relation(25) for the true collision integrals to functions. For the sake of simplicity we facilitate the solution
its model presentatiot22) one finds of Eq. (29) by further considering that the frequencies are
momentum independent. Then the set of veciefs,|e3)
presents an irreducible group with respect to multiplication

(1)’ — (2)' N
f vipf g dly f vafo” dly. 27 by the operators;; . Thus we can write
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R 2 . gas using the result83) and(35). For the sake of simplicity
vilehy= >, «MDjeM,  kMD=(eMp;|eh). (31)  we neglect the phonon-macron collisions,(=0) and con-

m=1 sider thatv, >vq4,v1, to ensure the Knudsen regime. We
also use the simple evaluati¢®0) for v, and putu,=0,
g,=Cp, for a phonon gas. The classical Boltzmdphonon)
gas is regarded as specie$2] in the general formulas.

2 2
IVY+ > D kileb)(eblg’) The condition
i=11=1

(32 (p1/91)1=0

Using the latter equalities we represent E2p) in the form

-1

2
|g'>:<i21 vyt

wherex; :E'zle'(i’j)(l_ 535]25'2)' ensuring the absence of particle mass flow can be expressed
o : () —
Multiplying equality (32) by the bra vectorgeo|(1=1,2) xplicitly in the form of the relation between temperature

. . . (<)
onle c’ienves the set of coupled equations in the momentgnd gas number density gradients. Using &) one finds
(eplg’). After some elementary algebra one finds

after a significant simplification

2
(eplgy=A"1 V| 1~ 2—1 Kim’?im) 4 Epy VT
m= V(nBﬁ)+§F?=O (36)
2
Vi D kimmm|  (Li=12; i) (33 _ _ _
m=1 where ng is the particle number density, Eyp,

=(4m°T/15)(T/27hc)? is the energy of the phonon gas per

unit volume andc is the sound velocity.

1 The first summand in Eq36) presents the gradient of the

leb), conventional Knudsen paramef{di0]. The second term de-
scribes the effect of the phonon drag on the formation of the
Knudsen steady state in a classical gas. According to Eq.
(36), the phonon drag leads to an effective increase in gas

V). (34 number density gradient equilibrating the phonon contribu-

tion to the gas thermal diffusion.

2 2
whereA=1—27_ ki + k7, X=X~ X1:X02X= K, 1),

2
77m|:<eom|(2:l v+

2

1
V)= (ey| ( 241 v+

The momentg33) are to be substituted in expressi@L).

The result reads V. CONCLUSIONS
, R 4 2 | The steady nonequilibrium state of a two-component gas
lg")= Z’l viit v V)+A 2’1 o) mixture in the presence of macroscopic scatterers was inves-

tigated. An analysis of the solvability of the kinetic equation
was performed. The solution of the kinetic equation was pre-
(i=12; i#l). sented as the sum of the particular solution of the nonhomo-
geneous equation and the general solution of the correspond-
(35 ing homogeneous one. A set of projectt8) to the kernel
of the collision operators was introduced. It allowed us to
The result(35) presents the general solution of the kinetic pptain the particular solution of the operator kinetic equation.
problem(3) in the framework of approximatiot22). It ex-  As a result, the general soluti¢h8),(19) of the kinetic prob-
presses the corrections to the equilibrium distribution funciem (3) was obtained in the operator form.
tions in te’\rmSAOf the matrix elemen¢31),(34) Because the A model presentatiomzz) was derived for the interpar-
operatorsvy;, v, are presented in the form of diagonal ma- ticle collision operators. This presentation is based on the
trices, the explicit expressions for the above matrix elementform of the exact solutiori18),(19) obtained and the essen-
can be written down trivially. tial features of the true collision operator reflected in the
Let us emphasize that the resul8) and(33) imply no  model. The proposed model of the collision operator allows
restrictions to the kind of particle statistics. They can strictlyit to introduce the collision frequencies self-consistently. The
be applied to gases of fermions and bosons and to their bexact relations between the cross-collision frequen@és
nary mixtures. In addition the results obtained allow one to(27) were obtained and used in the model.
extend the framework of the conventional Lorentz approxi- The rigorous solutior{35) of the model kinetic equation
mation [10] to consideration of diffusion of mixtures of (29) was obtained. The moment83) of the distribution
guantum gases. functions were calculated. The results obtained are valid for
In order to give insight into physical applications of the any kind of particle statistics and arbitrary relations between
presented mathematical formalism we will now consider ahe collision frequencies. They describe an effect of diffusion
simple illustrative example. Let us investigate the phonorof a quantum gas mixture in the presence of macroscopic
contribution to the Knudsen effect in a classit@bltzmann scatterers.

2
21 KimVmt k(Vi7ii =V, 7Ii|))

m=

X
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