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Bulk and shear viscosities in lattice Boltzmann equations
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Lattice Boltzmann equationé BE) are a useful tool for simulating the incompressible Navier-Stokes equa-
tions. However, LBE actually simulate @mpressiblebut usually isothermal fluid at some small but finite
Mach number. There has been recent interest in using LBE at larger, but still subsonic, Mach numbers, for
which the viscous terms in the resulting momentum equation depart appreciably from those in the compressible
Navier-Stokes equations. In particular, the isothermal constraint implies a nonzero “bulk” viscosity in addition
to the usual shear viscosity. This difficulty arises at the level of the isotheroméihuumBoltzmann equation
prior to discretization. A remedy is proposed, and tested in numerical experiments with decaying sound waves.
Conversely, an enhanced bulk viscosity is found useful for identifying or suppressing artifacts in under-
resolved simulations of supposedly incompressible shear flows.
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[. INTRODUCTION should also be a useful addition to nonisothermal lattice
Boltzmann schemes, or for simulating materials other than
Methods based on lattice Boltzmann equatidiBE) are  dilute monatomic gases. Sterling and Cliéhhave already
a promising alternative to conventional numerical methodgroposed a modified equilibrium distribution that included an
for simulating fluid flowg 1]. Lattice Boltzmann methods are adjustable effect resembling bulk viscosity. However, their
straightforward to implement and have proved especially efdeviatoric stress contained terms proportionaMa Their
fective at simulating flows in complicated geometries, andscheme thus approximates continuum equations that differ
for exploiting parallel computer architectures. They are mostrom the compressible Navier-Stokes equations, though they
commonly used to simulate incompressible flows througH!© coincide in the small Mach number limit. _
solving the compressible, isothermal Navier-Stokes equa- The compressible Navier-Stokes equations may be written
tions at small Mach numbers. The Mach number=M#cg in the form
is the ratio of the fluid speedto the sound speec,. When

the Mach number is small, temperature and density fluctua- dp+V-(pu)=0, (18
tions areO(Ma?) so the flow is approximately isothermal and
incompressible. d(pu)+V-(pl+puu)=V-do’, (1b)

The most common lattice Boltzmann scheme, which ex-
pands the exact Maxwell-Boltzmann equilibrium distribution where p, u, andp are the density, velocity, and thermody-
to second order in Mach number and uses a Bhatnaganamic pressure, respectively. Viscous effects appear via the
Gross-Krook(BGK) approximatior[2] to the collision term, deviatoric stressr’, sometimes denoted by [7], which is
contains a spurious term @(Ma®) [3] that limits its appli-  conventionally placed on the right hand side of Etp). In
cation to small Mach number flows. The spurious term maygeneral, the pressune is a function of the temperaturé
be eliminated by expanding the equilibrium distribution torepresenting internal energy, as well as density, so the two
higher order in Ma and using a more complicated latticeequations above must be supplemented by an evolution
[4,5]. However, the viscous stresses still differ BYMa?) equation for the temperatufg],
from what is normally meant by the “Navier-Stokes equa-
tions” because the bulk viscosity is nonzero. In particular, 2
the viscous stresses differ iy(Ma?) from those calculated (dtu-V)o+ 3 oV-u=-V-q. @
from the Boltzmann equation for a dilute monatomic gas.

This difference is particularly relevant to recent efforts thaty\,e nave writtend=kT. with k being Boltzmann's constant

have extended lattice Boltzmann schemes to finite, but stil(ljmd-l- the conventional temperature. The heat ftyis nor-

subsonic, Mach numbefd —6]. B _ mally taken to bej= —KV 6, where the thermal conductiv-
In this paper we propose a modified lattice Boltzmannity K may depend on both and 6.

scheme that allows t_he bglk viscqsity to be adjusted, an_d 0" on the assumptions that the deviatoric stress is linearly
be set equal to zero if desired. This allows an accurate simug, g jsatropically related to the local velocity gradient tensor

Iation.of compressible flovyg, though. still with an iso_them_]aIVu, and vanishes for rigid rotations, the deviatoric stress
equation of state. An ability to adjust the bulk viscosity must take the generic foriiv,9,1q
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We follow Chen and Doolefl] in using Greek indices for Enskog expansion, which seeks solutions that are slowly
vector components, reserving Roman indices for labelingzarying on the length and timescales associated with particle
discrete lattice vectors. Heggand u' are the first, or shear, collisions. However, the Navier-Stokes equations with more
and second, or bulk, dynamic viscosity coefficients, respecgeneral forms ofu, ', andK are often justified empirically
tively. These coefficients are material properties, and in genfor a much wider range of materials than dilute monatomic
eral will be functions of the local density and temperature,gases, such as liquidg,9,10,12,13
but it is worth emphasizing that E¢3) depends on the gra- In particular,u’ =0 for a dilute monatomic gas, which is
dient of the velocityu, and not on the gradient of the mo- one justification for writing Eq(3) in the form given, where
mentumpu. Fluids for which the deviatoric stress takes thisthe term proportional to the first viscosify has no trace.
form are often called Newtonian fluids. In particular, the Thus a nonzerg.' implies a deviation in material properties
fluid simulated by Sterling and Cher{§] lattice Boltzmann from those of a dilute monatomic gas. Physically, a material
scheme is not a Newtonian fluid for this reason. with u’ =0 is characterized by a lack of viscous dissipation
The topic of bulk viscosity is complicated by different under purely isotropic expansion or contraction. We note that
authors attaching different meanings to terms like “pressure”’u’=0 is required for mechanical stability. A nonzero value
and “bulk viscosity” [11]. We follow the conventions of for u’, along with modified values fop and K, has been
Landau and Lifshit49], since their terminology is compat- derived by ChoH 16,17 from the Bogoliubov-Born-Green-
ible with that normally used in the lattice Boltzmann litera- Kirkwood-Yvon hierarchy, which models nondilute gases
ture. They rewrite the Navier-Stokes momentum equatiorj8,14,17.

(1b) in conservative form as Lattice Boltzmann equations are usually used to simulate
the incompressible Navier-Stokes equations, which follow
d(pu)+V-11=0, 4 from the compressible Navier-Stokes equations in the limit

of small Mach number, Ma|u|/cs—0, wherec; is the
sound speed. If we rewrite the continuity equatida) to
resemble the temperature equation,

where the tensofl=pl +puu— o' is the total momentum
flux. The total stressr=—pl+ ¢’ includes an additional
isotropic contribution from the thermodynamic presspre
The deviatoric stress is not necessarily traceless with these
definitions, Tro’ #0 in general, since the normal stress may
differ from the thermodynamic pressure.

(6i+u-V)p+pV-u=0, (6)

the terms proportional t&% -u in Egs. (6) and (2) are both

Ascording to Landau and Li_fShittg]’ the W_md “pres- O(Ma?). Thus an initial state with constant valuegand 6,
sure” means the thermodynamic pressure, givenpbyép will be preserved to an accuracy @(Ma?), ie., p(x,t)

for a perfect gas. The “bulk viscosity” or “second viscosity = po+ O(Ma) and 6(x,t) = 6, + O(Ma?). Most lattice Boltz-

coefficignt" mp_ltiplies any isotropic term in the dgviatorjc ann formulations in fact assume that the temperature is
stress in addition to the traceless term present in an 'de%]xactly constantd(x,t) = 6,, and adopt the isothermal equa-
monatomic gas. This differs from the convention used by N SRy

Batchelor[12] and Lamb[13], whose “pressure” is the me- tion of statep=cgp, with constant sound speet] [1,3].

chanical pressure, meaning minus one-third the trace of thglere Cs I the isothermal or Newtonian sound speed,

stress tensor, so the' term in Eq.(3) is absorbed into the =dp/ d1p3at|j:onstant tempﬁratut:el, rathrt]ar thhan.at (;]OnSta'lqt en-
“pressure.” Also Cercignaniil4] and Tritton[7] use the term  rOPY [13]. However, we show below that the isothermal as-

“bulk viscosity” for the combinationu’ — (2/3)u that mul- sumptiond= 6, changes the form of the deviatoric stress, as
tiplies V-u in Eq. (3). Thus dilute monatomic gases( well as the equation of state as intended. While this change is

=0) have negative bulk viscosity in this terminology. itself _O(Maz), it becomgs relevant when Iatt_iqe Boltzmann
To complicate matters further, expressions of the form equatlo_ns are used to s_lmulate flows in th_e f|_n_|te M‘?‘Ch num-
ber regime. Moreover, it appears to be significant in under-
(;BU;B: Il 1dgU,+ (p' + pl3)d,up] (5) resolv_ed lattice Boltzmann simulations of supposedly incom-
pressible flows.
sometimes appear in the literature, with the combination

,u'+,u/3 labeled the “bulk viscosity“[5]. This is only a Il. THE CONTINUUM BOLTZMANN EQUATION
correct rearrangement of E@) when the combined coeffi-
cient u’'—2u/3 is spatially uniform, i.e.,V(u'—2u/3) We consider the continuum Boltzmann BGK equation

=0. This holds for the particular case of an isothermal fluid[8,14,15,1T,

using the BGK approximation with collision timexp !, as

in Sec. V below, but does not hold in general. In the general

case, use of Eq(5) instead of Eq.(3) implies a spurious

generation of angular momentum via spatial gradients in the

viscosity coefficients. where f(x,&,t) is the single-particle distribution function,
Equations(1) and (2), with particular values fow, ',  and & the microscopic particle velocity. The original con-

and K, may be systematically derived from the continuumtinuum Boltzmann equation employed an integral operator

Boltzmann equation that describes a dilute gas of monatomion the right hand side, which models binary collisions in a

particles undergoing binary collisiof8,14,15. This deriva-  dilute monatomic gas. We have replaced this term by the

tion employs a multiple scales expansion, the ChapmanBGK approximatior 2], in which f relaxes towards an equi-

0tf+§~Vf=—%(f—f(°)), 7)
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librium distribution f(®) with a single relaxation time. The  plagues hydrodynamic turbulence. Only moments of the

Maxwell-Boltzmann equilibrium distribution in three dimen- known equilibrium distributionf(®) and their derivatives in

sions is space and time are needed. In factpay be absorbed into
the collision timer and so set equal to unity in the formulas

qo__ P |§—ul? g Pelow
B (2770)3;2 20 )’ We pose a multiple scale expansion of bbémdt, but not
X, in powers ofe,
wherep, u, and 6 are the macroscopic density, velocity, and

temperature as above. We have scaled velocities so that the f=fO+efM+e2f@+... (12
isothermal sound speed,= Y2 The three macroscopic

guantities are defined via moments of the distribution func- =0y tedyt-,

tion f,

where we may think of, andt; as advective and diffusive

1 (viscous timescales, respectively. We impose the two solv-
— — —_ 112 ’
p—f fdg, pu—f §hds, po= 3[ |- ul*f dg, ability conditions
€)
where the integrals with respect are taken over all oR3. j f(n)dfzj gMdg=0, for n=12,.... (13

We observe that the equilibrium distributiéf?) depends on
the coordinatex andt only through thex andt dependence Thus the higher order ternf§"), £(2),... do notcontribute to
of p, u, and 6. the macroscopic density or momentum. These constraints,
For givenp, u, and 6, the Maxwell-Boltzmann distribu- which reflect local mass and momentum conservation under
tion is the distribution that minimizes the Boltzmann entropycollisions, lead to evolution equations for the macroscopic
functional H=[f In(f)dé. The simplified BGK collision quantities.
term on the right hand side of Eq7), like Boltzmann’s Substituting the expansior{42) into the rescaled Boltz-
original binary collision term, drives the distribution function mann equatior{11), we obtain
f towards a local Maxwell-Boltzmann equilibrium distribu-
tion f(©) while preserving the local density, momentum, and (8, + & V)FO=— lfu) (149
. t y
temperature(internal energy. Thus the three moment(®) 0 T
still hold if f is replaced byf(?). These properties are all that

are required to reproduce the Navier-Stokes equations. The (0) 1_ 1 2
momentum flux tensofl, and the equilibrium momentum ﬁtlf +(ato+§-V)f o ;f ! (14b
flux tensorII(®), are given by the complete second moment
tensors off and f(®) respectively, at O(1) andO(e). Taking the first two moments)(-)dé
and [(-)&d&, of Eq. (149 we obtain
H=f &&f dg, H(°)=f £&f© dg=0pl +puu. (10) G p+tV-(pu)=0, gy (pu)+V-M?=0, (15

The second moment tensor is not conserved by either theherep, u, and I are defined in Eq99) and (10). The
BGK or the Boltzmann binary collision term. In fact, it is the right hand sides vanish by virtue of the solvability conditions
differenceos”’ =11(®)—I1 that gives rise to a deviatoric stress, (13). These two equations are equivalent to the Euler equa-
and thus to viscous dissipation. tions for an inviscid fluid, namely Eq$la and (1b) with

o’ =0. Similarly, we obtain

A. Chapman-Enskog expansion f9t1.0: 0, f9t1(PU) V. IV=0, (16)

The Navier-Stokes equations may be derived from mo-
ments of the continuum Boltzmann equation in the limit of at next order ine, from the same two moments of Eq.4b)
slow variations in space and time via a Chapman-Enskog@nd the solvability conditions. Neglecting terms ®f €?),
expansior{8,15,17. The Chapman-Enskog expansion intro- Egs.(15) and(16) combine to give
duces a small parameteiinto the collision time, so that Eq.
(7) becomes dp+V-(pu)=0, d(pu)+V-(IIO+elIV)=0,
17

1
‘9tf+§'Vf:_6_T(f_f(o))- (11) which are equivalent to Eq$la and (4). The deviatoric
stresso”’ = — eII'V), to this order of approximation.

Thus spatial and temporal derivatives appear at lower order An equation for the first correction stre$™) follows
in e than the collision term. The parametemay be identi- from the second momert(- ) é£d¢ of Eq. (14a),
fied physically with the dimensionless mean free path, or 1
Knudsen number, but its purpose is to order the terms in an 0 0 _ 1
expansion that avoids thg mpoment closure problem, which atOH( )+V~(f geet! >d§) T ;H( - (18
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The third moment of the equilibrium distribution® is  additional term takes the expected foqs —KV 6, where

given by K= (5/2)u=(5/2)p 67 for the BGK approximation.
f §Q§B§7f(°)d§=puau3u7+ 0p(UaSgytUgSyetUyd,p), C. Isothermal approximation
(19 As discussed in the Introduction, most lattice Boltzmann

formulations take the temperature to be exactly constant,
and we can computétoﬂ(o) from the leading order time =4y, rather than allowing it to vary b@(Ma?) in response

derivatives ofp, u, andé, to a nonzero divergence - u. Thus the solvability condition
(21) for the temperature, which in fact represents conserva-
i 1= 0 (0pSapt pULUE) =y (0p) Sapt Uady (pUpg) tion of energy under collisions, is replaced by the constrain
0: 00.
T Ugdy (pUg) —UgUpdy p, (20) In this case the terms arising from 6 and V¢ in the

earlier calculation are missing, so now Ef8) simplifies to
so Eq.(18) in fact gives an explicit expression fal' in  [3,18,19
terms of the instantaneous valuesppu, 6 and their spatial
derivatives. )= —70p(d,upg+ dgu,). (25)

B. Consistent approach The deviatoric stresg’ = — eIl is still of the form (3)
with first viscosity coefficientu=erp6 as before, but now
there is a nonzero second viscosity coefficignt (2/3)u.
By direct calculation, THY)=—276pV -u, so the ana-
logue of Eq.(23) acquires a nonzero right hand side,

In the consistent approadi®,15], an evolution equation
for the temperatur® is obtained by imposing a third solv-
ability condition,

J |é—ul?f(Wdé=0, for n=1,2,..., (21) 3 3 1 "
ato(zpa +V~(§p0u +6pV'u=—E_TrH ,
which reflects conservation of the internal eneggyunder (26)
collisions. From the trace of Eq18) we obtain an energy
equation in the form which exactly cancels thépV -u forcing term. The internal
3 L . . L energy equation is now exactly satisfied #ipeing constant,
2 Lo Lo 2 B (61 since it then coincides with the continuity equatidm).
, 5 Op+ 2pu +(?y(2pu u,+ 2p0uy 27_HM.
(22) lIl. FROM CONTINUUM BOLTZMANN

The right hand side vanishes using the three solvability con- TO LATTICE BOLTZMANN

ditons (13) and (21) together with the identity|é—ul? Although lattice Boltzmann equations were first con-
=& £-2& u+u-u. The kinetic energy term (1/au? may  structed as empirical extensions of the earlier lattice gas au-
be eliminated using the continuity and momentum equationgomata[20] to continuous distribution functiofg1,22, they
leading to the internal energy equation may also be derived systematically by truncating the con-
tinuum Boltzmann equation in velocity spa@8—26. This
derivation determines several otherwise arbitrary constants
in the construction[18,26. A lattice Boltzmann equation
with a Coriolis force also arises naturally from the analogous
which is equivalent to the temperature equati@nwith K derivation in a rotating framg19].

3
=pbu|+6pV-u=0, (23

2

3
(9'[0 Epg +V.

=0, using the continuity equatiofia). As lattice Boltzmann equations are normally used to
Using this new equation, along with E@.5), to eliminate  simulate fluids at low Mach numbers, it is usual to exploit
the time derivatives in Eq.(20), we obtain[8,15] the small Mach number to expand the exact equilibrium dis-

tribution f(©) up to second order in the macroscopic velocity
2 u. Recall that we have scaled velocities so that Y2 is
4= —7'0<f9auﬁ+ dpUy— §5aﬁV'U)- (24 0O(1) so|u/=0(Ma)<1. We replace the exact Maxwell-
Boltzmann distribution(8) by

Thus the deviatoric stresa’ = — eIIY), is of the form(3) ¢ Eu?

with w=e76 and ' =0. The absence of the second viscous foO— a1 S8 Y T Sl o
effect, or the fact that Te’ =0, is a direct consequence of pw(g) 0 26> 260 (9, @7
internal energy conservation under collisions, as expressed

by the temperature solvability conditid@1). wherew(§) is the weight function
An equation for&tla, where thermal conduction appears,
may be found from thé£—u|? moment of Eq.(14b). The w(&)=(2m0) exp — £120). (28)
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The puuu term in the exact third moment££&f(Qdé as 4/9, i=0

calculated in Eq(19) above disappears whéff) is replaced B C_

by its truncated form(27). Thus the two deviatoric stresses wi=9 179, ' 12,34 (34)

calculated above each acquire an extra tefmV - (puuu) 1/36, 1=5,6,7,8,

[3]. Since this extra term i®(Ma®) it only becomes appre- ] o o )

ciable in the finite Mach number reginfig]. and the discrete equilibrium distributions functions are
With the expanded forni27) of the equilibrium distribu- 9 3

tion (9, the integrals appearing in EqQ), (10), and (19 FO—wip| 1+3&-u+ = (&-u)2— =12, (35)

are all of the form 2 2

Although the results follow from the construction via Gauss-
f pn(Hw(é)dg, 0=n=5, (290  ian quadratures, the required moments may be evaluated di-
rectly with the aid of identities such §48]

wherep,(£) denotes a polynomial of degreein the com- 8 8 1 8
ponents ofé. He and Luo[_23,24| realized, in_ the context of 2 w;& =0, E W, §i§:§|, E W &&E£=0. (36)
lattice Boltzmann equations, that these integrals may be  i=0 i=0 i=0

evaluated as sums using Gaussian quadrature formulas,

IV. FULLY DISCRETE LATTICE BOLTZMANN

N EQUATION
f pn<§>w(§>d§=i§0 wip(£). (30

To achieve a fully discrete lattice Boltzmann equation we
must approximate Eq31) in x andt. Integrating Eq.(31)
The pointsé; are known as quadrature points, and the coefalong a characteristic for a time intervat, we obtain
ficientsw; are the corresponding weigh®&7]. The numbeN

of quadrature points required depends on the maximum de- o 1rat
gree n of the polynomial, and the dimensiod of the & fix+ GALIFAD —Fi(x, )=~ — . fi(x+&st+s)
space.

Only the values of the distribution function at the quadra- — fi(o)(x+ &s,t+s)ds.

ture points& need to be evolved ix andt, since these
values are sufficient to evaluate the required moments using
Eqg. (30). Thus the continuum Boltzmann equatitf) may
be replaced by the lattice Boltzmann equation,

(37)

The integral may be approximated by the trapezium rule with
second order accuracy, thus

1 (0) : At
afi+ & Vi=—_(fi—fi") for i=0,...N, (3D fi(x+ EALLEAD = Fi(x,1) = — S-[fi(x+ AL+ AL

_£(0)
where f,(x,t)=wif(x,&,t)/w(&) [compare Egs(27) and fi(x+ §ALI+AD
(35], and the macroscopic quantities of density, momentum, _ £(0)
X +1(x,1) =7 (x1)]
and momentum flux are now given by
+0O(At3). (38)

N N N
p=2 fi, pu=2 &f, M=2 &&fi. (32  Unfortunately, f©(x+ £At,t+At) is not known indepen-
=0 =0 =0 dently of the seff;(x+ &At,t+At), so Eq.(38) appears to
yield a system of coupled nonlinear algebraic equations for
Two dimensional, nine speed lattice Boltzmann equation the f; at timet+At. However, the system may be rendered

fully explicit by a change of variablg49,28. Introducing a
The most common quadrature formula in two dimensions v exp y g & 8 g

(D=2) uses nine quadrature points, leading to the so-calleg/fferent set of distribution functions; , defined by
nine speed lattice Boltzmann modd},3,18. If we take the

temperatured=1/3, the quadrature points lie on an integer f_i(xlt)zfi(xlt)_i_ E[fi(xlt)_fi(o)()(’t)]’ (39)
lattice, 27

(0,0), i=0 the above schem@8) is algebraically equivalent to the fully
£=1{ (sin{(i—1)m/2],cog(i— 1) m/2]), i—1234 explicit scheme

V2(sin([2i — 1) w/4],co$ (2i — 1) w/4]), i=5,6,(73,§). F(x+ EALE+AL) — Fi(x,1)
The corresponding weight factors are = m[fi(x’t)_f(o)(xvt)]- (40)
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The macroscopic density, momentum, and momentum flux - w1 "
are readily reconstructed from moments of the I = 6pl + puu+ 2u 3 (TrIE=Hl. (44)
_ N Since TAIM=—26p7V-u from Eq. (25), the combined
P=i220 fi, pu=2, &fi, momentum flux tensor becomes
(41) N=M12+ 1Y = gpl + puu— o, (45)
N
At = At _ o _ _
1+ >r szo E&fi+ Z—TH( . whereg’ is the full deviatoric stress as in E). The ratio
=

©'lu appearing in Eq(43) may be an arbitrary function of

. L . . the local densityp.
This formulation is equivalent to the usual construction  agq Tr1(®) jtself depends on TH® via Eq. (44), the trace

based on a Taylor expansion of the discrete equa@@n of Eq. (42) rearranges to give
which observes that second order accuracy may be achieved

with what looks like only a first order approximation to Eq.
(31), by replacing the relaxation time with 7+ At/2 [1].
However, the variables often denotgdappearing in the dis-
crete system are actually thein our notation, so the non-
equilibrium momentum fludI® in the fully discrete system which is the expression we used in conjunction with &@)

! 1 -
i_gﬂwnmzﬁH—D@—w%

1+ —+D
T 2u

(46)

(40) is given by to computef(?) in terms off; . We note that in three dimen-
sions with no bulk viscosityD=3 and u'=0, the coeffi-

T ) (L) cient on the left hand side of E(6) is saved from vanish-

H(l)Im, (42)  ing by theAt/(27) term. Thus it is possible to simulate flows

with Tr ¢’ =0 using this scheme.

This alteration to the equilibrium strefE® also changes
the perturbation stresH), because Eq18) for II) con-
tains the term-7d; 11 However, the new term ifl® is

only O(7), one order smaller than the other terms, so the

If the Chapman-Enskog analysis of Sec. Il is applied tohew term inll¥ is O(7%). This new term is also one order
the Boltzmann equation with Boltzmann's original binary Smaller than the other terms I8"), and is thus comparable
collision operator instead of the BGK approximation, we findwith the so-called Burnett terms involving?) that arise at
that the dynamic viscosity is independent of density, and a higher order in the Chapman-Enskog expansion of the con-
function of temperature only. This surprising result, subsetinuum Boltzmann equatiofi4,15. Since we aim to recover
quently verified experimentally, was one of the first suc-the Navier-Stokes equations with modified bulk viscosity by
cesses of classical kinetic thedry/7]. To reproduce this us- truncating the Chapman-Enskog expansionCdtr), it is
ing the BGK approximation it is necessary to make theconsistent to neglect bot(®) and the nEWrzﬁtOVU term
collision timescaler inversely proportional to the local den- i 111, We show in Sec. VIl below that deviations from the
sity, 7<p %, and thus a function of position. The analysis of intended Navier-Stokes behavior at finitare no worse than

Sec. IV is unchanged, apart frombeing a functionz(x,t)  for the unmodified lattice Boltzmann equation.
instead of a constant.

rather than bylT— 1) as in the continuous system.

V. DENSITY DEPENDENT VISCOSITIES

VII. NUMERICAL EXPERIMENTS

VI. ADJUSTABLE BULK VISCOSITY . .
We performed numerical experiments to measure the bulk

We modify the bulk viscosity coefficient in the isothermal viscosity of the two dimensional nine speed lattice Boltz-
lattice Boltzmann equation by redefining the equilibrium dis-mann model with the modified equilibrium distribution ap-

tribution functions pearing in Eq(43). We also investigated the effect of vary-
ing bulk viscosity on a nominally incompressible but under-
o Eu (&u)? |u)? resolved simulation of a Kelvin-Helmholtz instability. Both
fi( ):PWi< 1+ 'R + Y 2—0) sets of experiments were performed using periodic boundary
conditions.
u' 1) (1&2-Do) )
Wi(ﬂ_ §) 262 (Tr®), (43 A. Sound waves

We measured the bulk viscosity from the rate of decay of
The number of spatial dimensions 5 which appears via sound waves in numerical experiments. For flows of the
Tri=D. Thesef(?) are functions of{f,,....fy} throughu  form p=po+p’(x,t) andu=u’(x,t)%, with p’ andu’ both
andp as before, and now also throughITf") as calculated small, the linearized form of the Navier-Stokes equations
in Eq. (46) below. The 1£, and&£€ moments of Eq(43) are  (1a) and (1b) that govern sound waves may be reduced to
unchanged, while thé& moment becomes [13]
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1.15 mately 33 significant digits, so more oscillations could be
v'=(2B)v followed before the sound wave decayed to the level of nu-
merical rounding error.

The independent variable in Fig. 1 is the Knudsen number
Kn=Ma/Re=7/v3. Introducing dimensionless variables in
which the simulation domain is of length 1, it is convenient
to choose the time unit so that a typical fluid velocity is of
magnitude 1. The sound speed is then 1/Ma, and the particle
speeds are’3/Ma or \/6/Ma. The Reynolds number is de-
fined as Re1/v, using the effective viscosity and unit
length and velocity scales, so Ma/Re/c;.

The measured effective viscosities are close to their in-
tended values, indicated By,/7=~1 in Fig. 1, for various
values of the ratia’’/v provided the Knudsen number is not

1.1}

1.05}p

095

(4/3) v + v’ (measured / intended)

09Ff too large, in the sense that Ma/R8.03 for a 1% error, and
Ma/Re<0.01 for a 0.1% error. The curve = (2/3)v corre-
L sponds to the unmodified nine speed lattice Boltzmann
085 5.05 01 015 o0 scheme, so the deviations introduced by the modified bulk

Ma/Re viscosity at finite Knudsen number are no worse than those
already present.

FIG. 1. Ratio of measured to intended effective viscosity The curvesin Fig. 1 are all parabolic for smallSince we
(4/3)v+ v’ for sound waves, plotted against Knudsen numberhaye divided byr in computing the ratio of the measured to
Kn=Ma/Re=v3. The unmodified nine speed lattice Boltzmann intended decay rate, this implies that the deviations in the
scheme is equivalent to’ =(2/3)» (uppermost solid ling measured decay rate are due to the super-Burnett corrections
at O(7%) in the Chapman-Enskog expansipts]. This is
confirmed analytically in the Appendix. The Burnett correc-
tion at O(7?), the first correction beyond Navier-Stokes, is
dispersive and so only alters the frequency, not the decay
wherev=ulpo andv'=u'/p, are the kinematic shear and rate. This correction has been found by Qian and ZI2s}
bulk viscosities, respectively. This equation has solutions ofor the unmodified nine speed lattice Boltzmann scheme. It
the formu(x,t) <exp(kx+ot) providedo satisfies the disper- differs from the Burnett correction to the continuum Boltz-
sion relation[13] mann equation because t§& moment of the truncated equi-

librium (27) differs from the £* of the original Maxwell-

Boltzmann equilibrium(8).

For the purposes of simulating nearly incompressible

(48  flows, the lattice Boltzmann scheme may be made accurate

for arbitrarily large?, corresponding to arbitrarily small
For small amplitude waves the nonlinear terms present in thReynolds numbers, by making the Mach number sufficiently
lattice Boltzmann simulation are negligible, including the small. This is equivalent to taking sufficiently small
O(Ma®) nonlinear correctionV - (puuu) to the deviatoric  timesteps, by comparison with the timescale set by the fluid
stress. This was verified by observing that the numerical SOgelocity and the lattice spacing, but not by comparison with
lutions decayed exponentially as predicted by the lineathe timescale of evolving sound waves. Demonstrating cor-
theory. Sound waves in a hexagonal six speed lattice Boltzect viscous dissipation of sound waves is thus quite a
mann scheme were studied previously[80], but with an  strenuous test because the lattice Boltzmann scheme is in-

emphasis on nonlinear steepening at finite amplitude. tended to simulate motions that evolve on timescales much
Viscous dissipation of sound waves depends upon thgynger than the periods of sound waves.

combinationv=(4/3)v+ v’ of the shear and bulk viscosi-
ties, which we refer to as the effective viscosity. In Fig. 1 we o
plot the ratiov,,,/7 of the measured effective viscosy, to B. Doubly periodic shear layers

its intended valu&, for varying™ and several fixed ratios Minion and Brown[31] studied the performance of vari-
v'[v of bulk to shear viscosities. The measuzred \Z/a!LZJes Wergus numerical schemes in under-resolved simulations of the
computed from the decay of the eneifgit) =u“+c5p’“ by 2D incompressible Navier-Stokes equations. Their initial

a least squares fit of a straight line to the logarithrE().  conditions corresponded to a perturbed shear layer,
The energy in fact decays in an oscillatory fashion, because

viscous dissipation is proportional to the oscillatory instanta- tanffk(y—1/4)], ys<1/2
neous fluid velocity, but a simple straight line fit proved ad- Ux= tanifk(3/4—y)], y>1/2,
equate. The initial conditions werau=0 and p=1

+10 8sin(2mx), using 64 lattice points. Simulations with

larger values ofv used 128 bit arithmetic, with approxi- u,=aosin2m(x+1/4)],

axxtu: (47)

B 4
JU=Cgdyu+ §V+ v’

2 k2 1/2

cZ

N
§V+EV TIKCq

g=—

1 4 !
- §V+V

(49
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FIG. 2. Contours of vorticity at=1 from the unmodified nine 1
speed lattice Boltzmann equation on a ¥2®8 grid with Ma
=0.04 and Re-10000. Compare Fig. 8 if81]. The contour inter-
val is Aw=6.

in the doubly periodic domain€x, y<1. The parametek : : : :
controls the width of the shear layers, afithe magnitude of T R AR Feeeeeee SRREREERR B
the initial perturbation. The shear layer is expected to roll up : : : :
due to a Kelvin-Helmholtz instability excited by thHe(o)
perturbation inu, . With k=80, §=0.05, and a Reynolds
number Re=» '=10000, the thinning shear layer between
the two rolling up vortices becomes under-resolved on a
128x 128 grid. Minion and Browr{31] found that conven-
tional numerical schemes using centered differences became 0.2
unstable for this under-resolved flow, whereas the “robust”
or “upwind” schemes that actively suppress grid-scale oscil-
lations all produced two spurious secondary vortices at the : : : :
thinnest points of the two shear layers. 0 0.2 0.4 06 0.8 1
Figure 2 shows that two spurious vortices are generated (b) X
by the nine speed lattice Boltzmann equation with unmodi-
fied bulk viscosity. The vorticityw = dyuy,— dyU, was com-
puted from the velocities, and u, at grid points by spec-
trally accurate differentiation. The shear layers becom
under-resolved at= 0.6, see top of Fig. 3, due to stretching
as the two large vorticies roll up. This stretching is associate
with a nonzero numerical divergencE,-u#0, at the two
halfway points where the spurious vortices form, as shown in
the lower half of Fig. 3. The numerical divergence is due to _ _ ) o
a lack of spatial resolution, and not to an insufficiently smallthe formation of spurious vortices as shown in Fig. 5. In-
Mach number, since it was almost unchanged by reducingreasing the bulk viscosity further to’=100x produced
the Mach number from 0.04 to 0.01. Moreover, the diver-no further visible changes. This is all consistent with the
gence computed from TIY) was almost indistinguishable Spurious vortices being caused by an apparent divergence in
from that computed by spectrally differentiating andu, . the thin shear layers when they become too narrow to be
Figure 4 shows that removing the bulk viscosij#/,=0, resolved by the grid. The enhanced bulk viscosity acts to
increases the strength of the spurious vortices compared wittmooth out the flow at just those points where there is an
the unmodified lattice Boltzmann equation. Conversely, enapparent divergence, but leaves the rest of the flow almost
hancing the bulk viscosity tp.’ =10 x successfully prevents unaffected.

>

FIG. 3. Numerical vorticity(a) and divergenceV-u (b) at t
=0.6 with parameters as in Fig. 2. The divergence was computed
Jboth spectrally fronu, and from TAIM using Eq.(25). The peak
divergence is 6% of the peak vorticity, and does not diminish as the
ach number is reduced from 0.04 to 0.01. Compare with Fig. 7 in
1]. The contour intervals are 6 and 0.5, respectively.
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(4/3) v + v’ (measured / intended)

H — H i 0 0.05 0.1 0.15 0.2
0 0.2 04 0.6 0.8 1 Ma/Re

FIG. 6. Ratio of measured to intended effective viscosity
FIG. 4. Vorticity contours at=1. Stronger spurious vortices (4/3)v+v’ for sound waves, plotted against Knudsen number
form in the absence of bulk viscosity,’=0. The contour interval Kn=Ma/Re=17/v3. Solid lines are from numerical experiments with
is Aw=6. decaying sound waves, as in Fig. 1, and the circles are from the
eigenvalue formulation in the Appendix. The dashed lines are the
In a well-resolved 258 256 simulations the vorticity was O(+°) behavior from a small approximation to the eigenvalues.
independent of the bulk viscosity, with a fractional variation The unmodified nine speed lattice Boltzmann scheme is equivalent
of 107 ° for 0= '/ w=<100, and showed the expected secondo »' =(2/3)v (uppermost curve
order convergence in Mach number based on simulations
with Ma=0.01, 0.02, and 0.04. Although there was still
some discrepancy in the two main vortices between th
128x 128 simulations with enhanced bulk viscosity and the
256X 256 simulations, most likely due to a slight shift in

osition of the vortex filaments, the discrepancy in the
tretched shear layers was almost entirely eliminated.

VIIl. CONCLUSION

1

The usual derivation of lattice Boltzmann equations in-
volves replacing the temperature evolution equation in the
Chapman-Enskog expansion by an isothermal assumption.
This introduces a bulk viscosity’=2u/3 into the devia-
toric stress that is not present with a consistent treatment of
the temperature. However the bulk viscosity’s contribution to
the deviatoric stress is readily adjusted, or removed alto-
gether, by adding a term proportional to the local fluid diver-
gence to the discrete equilibrium distribution. This diver-
gence is available at each lattice point from the
nonequilibrium parts of the distribution functions. Numerical
experiments confirm that sound waves experience the correct
dissipation due to the intended bulk and shear viscosities.
Deviations from the intended behavior due to a finite mean
free path, i.e., a finite Knudsen number, are no worse than in
the unmodified lattice Boltzmann equation. An enhanced

i A bulk viscosity of the order of 18 u'/u=<100 succeeded in
0 0.2 0.4 0.6 08 1 suppressing spurious vortices created by an under-resolved
nominally incompressible flow at high Reynolds number.

FIG. 5. Vorticity contours at=1. An enhanced bulk viscosity, | his same modification could presumably be applied to other
w' =10u, prevents the excessive thinning that leads to the formalattice Boltzmann schemes, such as the 17 speed scheme in

tion of spurious vortices. An even larger bulk viscosity, [5]. Sensitivity to varying bulk viscosity may be a useful aid
=100u, produced indistinguishable results. The contour interval isto identifying spurious features in under-resolved simulations
Aw=6. of the kind found by Minion and Browf31].
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APPENDIX: ANALYTICAL TREATMENT OF DECAYING
SOUND WAVES

The viscous decay of sound waves may also be formu
lated as a linear eigenvalue problem of the kind considere

PHYSICAL REVIEW E 64 031203

The resulting X 9 matrix eigenvalue problem is not ana-
Iytically tractable, but a numerical evaluation of the eigen-
values gives excellent agreement with the measured decay

Sate of sound waves in the time dependent system, as shown

in Fig. 6. This analysis also confirms that the deviations from
the intended viscosity seen in Fig. 1 are functiong ohly,
and thus of the combined parameter Ma/Re. The parabolic
behavior of the relative decay rate for smallas shown in
Fig. 1, may be captured through a perturbation expansion of
H1e eigenvalues, which may be found exactly fet 0, car-

ed up toO(7%). These results are shown as dotted lines in

in [32]. This resembles previous treatments of sound wavegig 6. As usual, the higher order effects leading to the Bur-

using the linearized continuum Boltzmann equafi&d,17].
We assume a distribution function of the form

f_i(X,t):Fi(O)+hieikx+”t, (A1)

whereF (% is the equilibrium distribution for a rest state with

nett and super-Burnett equations improve the agreement for
small 7, at least in a periodic domain where the question of
boundary conditions for the higher order differential opera-
tors is straightforward, but do not provide a useful descrip-
tion for 7=0(1) [15,32.

In the purely one dimensional case, using the three speeds

density po, and theh; are small unknown constants. This ¢&={—-1,0,14 and weightsw;={1/6,2/3,1/, respectively,
describes a small amplitude sound wave with complex frethe resulting eigenvalue problem for the modified system

guencyo and wave numbek propagating in the direction.
The linearized fully discrete lattice Boltzmann equat{df)

with f{%) given by Eq.(43), then reduces to an eigenvalue

problem of the form

hieikciAx+0At:hi_,y[hi_(fi(o)_lzi(o))], (A2)

for o and the eigenvectoh;. The constanty=At/(7
+At/2). The termf(9—F© is a function of{h,...,hg}
because(?) depends om=po+=h; and pu=3&h;. This
function may be taken to be linear when thgare suffi-
ciently small.

(40) is identical to that for the unmodified system with the
same effective viscosity (4/3%v'. The matrix is

3=y yQ/2 —yQ
3 2y 3—vy 2y : (A3)
—yIQ  yl(2Q) (3—v)/Q

where ) =exp(27i/M) for a lattice with M points, andy
=At/(7+At/2) as in Eq{(A2). Thus the finiter behavior of

the three speed one dimensional scheme with variable bulk
viscosity is precisely the same as for the unmodified scheme
with the same effective viscosity.
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