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Connecting the vulcanization transition to percolation
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The vulcanization transition is addressed via a minimal replica-field-theoretic model. The appropriate long-
wavelength behavior of the two- and three-point vertex functions is considered diagrammatically, to all orders
in perturbation theory, and identified with the corresponding quantities in the Houghton-Reeve-Wallace field-
theoretic approach to the percolation critical phenomenon. Hence, it is shown that percolation theory correctly
captures the critical phenomenology of the vulcanization transition associated with the liquid and critical states.
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[. INTRODUCTION AND OVERVIEW It is worth observing that the VT and the PT do, never-
theless, represent distinct physical phenomena. This is exem-
The vulcanization transitioithenceforth denoted \jTis plified, e.g., by the amorphous solid state that emerges at the
the generic equilibrium phase transition from a parent liquidVT, which does not have an evident counterpart in PT. An-
state of matter to an amorphous solid state, driven by théther point of distinction is revealed by the role of fluctua-
imposition of a sufficient density of permanent random con-ions in low-dimensional systems, which are expected to
straints between the constituents of the liquid. In the moshave qualitatively different impacts on the states emerging at
common setting of the VT, the constituents of the liquid arethe VT and the PT[13]. Yet another point of distinction
macromolecules, the locations of which provide the anneale@oncerns the nature of the degrees of freedom involved in the
random (i.e., thermally equilibrating variables. The con- description of the VT and the PT. The former arises in sys-
straints are commonly provided by covalent chemical bondéems having both quenched and equilibrating randomness,
(i.e., cross-link and impart quenched randomness upon thevhereas the latter takes place in systems involving just one
system. Over the past few years, a rather detailed descriptidiPe of randomnesgypically taken to be the quenched ran-
of the VT has been developed, ranging from a mean-fieldlomness see Ref[13].
theory of the emergent amorphous solid stateluding its After completion of the present work we learned of the
structural[1,2] and elastic propertigg], and its stabilityf4];  €legant work of Janssen and Ster{ul], conducted inde-
for reviews, see Refd5,6]) to the critical properties of the Pendently of and simultaneously with the present work,
VT itself [7]. which builds on earlier work on random resistor networks
The present paper aims to extend the description of thand percolation to arrive ainter alia, essentially the same
critical properties of the VT by exploring its relationship results as those contained in the present paper via a related
with the percolation transitiothenceforth denoted PT; for a approach.
review, see Ref8]). This relationship, which has long been
anticipated on physical grc_)unc[9,10], has recently fognd Il. MINIMAL MODEL OF THE VULCANIZATION
support both at the mean-field ledl,5], and beyond, via a TRANSITION
renormalization-group approadfi]. Specifically, it was re-
cently shown that the order-parameter correlator near the VT Our analysis is based upon a minimal model of the VT
(which probes for relative localization of particjeand its  that accounts for thermal fluctuations in the positions of the
physical analog in the PTviz., the connectedness functjon constituents of the parent liquid, short-range repulsions be-
are governed by the same critical exponents, at least to firdveen these constituents, and permanent random constraints
order in an expansion about the upper critical dimension &e.qg., resulting from cross-linkinghat explicitly reduce the
[7]. collection of configurations accessible to the constituents.
The central result of the present paper is the explicit reThis minimal model yields a rich mean-field picture of the
duction of certain basic critical properties of the VT to structure and elastic response of the amorphous solid state,
equivalent basic critical properties of the PT1]. As we the former aspect having been verified by the computer
shall see, this reduction can be accomplished via an exasimulations of Barsky and Plischk&5].
diagrammatic analysis of the complete perturbative expan- The minimal model for the VT can be builin the spirit
sion of the appropriate vertex functions of the VT. These aref the Landau-Wilson scheme for continuous phase transi-
shown to furnish, in the replica limit, precisely the field- tions) on the general basis of symmetry considerations and a
theoretic formulation of the PT due to Houghton, Reeve, andjradient expansiof2]. The appropriate order parame@r
Wallace[12] (which henceforth we shall refer to as HRW whose expectation value detects the emergence of the amor-
Hence, we establish that the critical properties of the VT angphous solid state, has been discussed elsewlidie The
the PT are identical, not just to first order but to all orders inquenched random constraints are accounted for via the rep-
the departure of the spatial dimensidfrom the upper criti- lica technigue, which incorporates the Deam-Edwards model
cal dimension. [17] for their statisticqviz., the statistics of the random con-
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straints are determined by the instantaneous correlations of ? k2
the unconstrained systgnThe additional replica associated
with the Deam-Edwards model leads to a situation in which I * B
one considers the—0 limit of a system of non butn+1 I I e LI
replicas. R | el
The resulting Landau-Wilson effective Hamiltonian takes MR | DI
the form of a cubic field theory involving the fiel@, the ~ cecceeeeecvceocccccceaan.
argument of this field lying in rf+1)-fold replicated S |
d-dimensional space: liiininfiniiiiiiiiilop
—
11 Ll g SSSSSSESEE]  FGESSSEES
S=Griz 2 ot R RIOMI o 5y SIS EREEEE] RIS EREEESE
XX k)RR Gi iy - SRS SR | SRR
ki kg ks <HRS SSSSSSSEN HOSSSSESESS
(2.2

FIG. 1. Decomposition of the space of replicated wave vectors.
o . . Off-axis wave vectors lie in the HRS; on-axisut off-origin) wave

The free-energy densitlyis (up to uninteresting factors that yactors Jie in the 1RS: the wave vector at the origin is the ORS.
we shall ignorg related to this Hamiltonian viaf
«lim,_on " In{/DQ exp(=S)}; the functional integral is |11 DEMONSTRATING THE EQUIVALENCE OF THE
taken over the independent component€lothat feature in  CRITICAL PROPERTIES OF THE VULCANIZATION AND
S. In S, the quantityr is the VT control parametemwhich, PERCOLATION TRANSITIONS
near the VT, is linearly related to the density of random
constraints(To ease comparison with the HRW field theory
of the PT, the coefficients and fields featuringSnare not We now explain the strategy that we shall use to relate the
defined exactly as they have been in our earlier wa.) VT and the PT. We shall focus on the replica limit of the
The symbol k denotes the replicated wave vector long-wavelength behavior of the two- and three-point vertex

{K°,k%, ... k™; the extended scalar productc is denoted  functionsI{?(k) andI'{)(k; k,) in the VT field theory. The
kO-c%+kt-ct+. .. +Kk".c". The specification HRS arises physical significance of (?)(k) as a probe of connectedness
from the following considerations. Consider the space of rephas been elucidated in RdfZ]. Now, the symmetry of the
licated wave vector&. We decompose this space into three VT field theory dictates that the only suitably invariant term
disjoint sets:(i) the higher-replica sectoHRS, which con- quadratic in the wave vectdk is k-k. Thus, in a long-
sists of thosek containing at least two nonzero-componentwavelength expansion fd7(?)(k), we have

vectorsk®; (i) the one-replica sectatRS, which consists of A A

thosek containing exactly one nonzero-component vectorl' P (k)=TI"?(0)

A. Overall strategy

k*; and (iii) the zero-replica sectodRS, which consists of n

the vectork=0. This decomposition is illustrated schemati- Lot > (ia ia)rgz)(kmak. Kt -
cally in Fig. 1 for the case of two replicas. It is especially (n+1)d &=o | dk* ok

straightforward to visualize this decomposition if the volume (3.13

of the system is kept finitéand periodic boundary conditions

are imposejl so that replicated plane waves with discrete, “A 4Bk k+..- (3.1b
equally spaced, replicated wave vectors provide the natural neon

complete set of functions. As the upper critical dimension for the VT is 6, and this is

The symbolXj . yrs indicates a summation over the rep- the dimension about which one may imagine expanding,
licated wave vectok, subject to the restriction thatlies in ~ general renormalizability considerations demand that just

HRS. This condition on the summation overis essential. these two vertex functiond (? andI"{) contain the primi-
Physically, it reflects the fact that no macroscopically inho-tive divergences, and do so via the constahgs B, and
mogeneous modgsuch as crystalline modeerder or fluc- C,=I'®(0,0) (see Ref[19]).

tuate critically in the vicinity of the VT, such modes being Having identified the quantities central to a
stabilized by the excluded-volume interactions. Mathemati+renormalization-group analysis of the VT, we shall establish
cally, this condition reduces the symmetry of the theory fromthat these quantities are identical, in the replica limit, to the
one that contains the rotation group in replicatedcorresponding quantities in percolation theory. To do this we
(n+1)d-dimensional space to one that contains only rotashall make use of a convenient representation of the critical
tionswithin each individual replica, along with the permuta- properties of percolation theory, viz., the HRW field-theory
tion of the replicas. representatiofil2]. So that we know what we need to make
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contact with, we pause to give a brief account of this HRWconvenient to work with the continuum of wave vectdrs.,
representation, the Landau-Wilson Hamiltonian for which isto take the thermodynamic limitather than the discrete lat-
given by tice of them. In order to be able to take this limit, we reex-
press summations over HRS wave vectors in terms of un-
constrained summations oven- 1)d-dimensional wave
vectors, together with further unconstrained summations
over d-dimensional wave vector&@nd certain trivial addi-

, (3.2 tional terms. To do this, we note that for a generic function

F(k) we have

H= f ddx[%(v¢)2—%(vl//)2+%fo( d*— ¢

g
+§(¢+ N

where ¢ is an ordinary field bui) is a ghost field. As HRW
have shown, provided one enforces the rule trdy graphs Z F(k)= 2
that are connected by lines are includedthe two- and  keHRs k
three-pointg vertex functions are identicébrder by order in
perturbation theory in the coupling constagjt to those of S5
the one-statéi.e., percolation limit of the Potts model. We
mention, in passing, that this HRW representation consists of
fields residing ord-dimensional space, and does not neces- n
sitate the taking of a replic@r Pottg limit. However, it does => {1—( > D Sk I 5;43,0)
require the additional rule by which certain diagrams are k q )
excluded by hand.

Our strategy is as follows. Consider the standard Feyn- +n5&,6}F(R) (3.3b
man diagram expansion for the two- and three-point vertex
functions of the VT field theory in powers of the coupling
constantg in the Hamiltonian(2.1).

F(k) (3.3a

(i) To deal with the constraint that the internal wave vec- ZZ F(k)— ZO > F(0,...,09%0,...)
tors in the resulting diagrams reside in the HRS, we relax k “TFa
this constraint on summations over internal wave vectors but A
; - ! . +nF(0), (3.309
compensate for this by making appropriate subtractions of
terms.

! ) which effects the reexpression of the summations just de-
(i) Next, we observe that all diagrams for the two- andgqriped. Note that, as it always comes with the factoihe

three-point vertex functions can be organized into two catss, - term will vanish in the replica limit, and can therefore be

egories: those in which there is at least one route betweeghte)y ignored. We shall refer to the wave vectors included in
every pair of external points via propagators having uncon

ed hich ool 4 di the termX =, aslower-replica-sector(LRS) wave vectors.
strained wave vectorgvhich we callfreely connected dia- /3 these steps one can relax a constrained summation over

grams; and the remaining diagrams, in which there is atypg wave vectors, instead freely summing over all repli-

least one pair of external points between which no pathgaeq wave vectors, provided one compensates by augment-
exist consisting solely of propagators having unconstralneq,Ig the summand with the factor

wave vectorgwhich we callfreely unconnected diagrams

Having made this categorization, we show that the appropri- n

ate version of wave-vector c_or?servation renders the free]y 1-> > kg 11 S0 (3.9)

unconnected diagrams negligible in the thermodynamic a=0 q B(# )

limit, leaving us with a representation that is already remi-

niscent of the HRW approach. How does this constraint relaxation manifest itself in the
(iii ) At this stage we have reduced the construction of thesetting of Feynman diagram computations? One simply aug-

two- and three-point vertex functions to the computation ofments every internal propagatd’*1G,(k) with a factor

freely connected diagrams only. Next, via a straightforward(3.4):

combinatorial analysis, we show that, in the replica limit,

only a small class of diagrams survive.

(iv) Finally, we explain how, again in the replica limit, the 1 1‘% % 5ka,qﬁ(1;[a) k6,0
values of the remaining diagrams are precisely those occuGO(R)E — — (3.59
ring in the HRW prescription for percolation. rot+k-k rot+k-k
We now set about implementing this strategy.
1 1 &
. . . . — S - 2 2 Sou Sepo.
B. Relaxing the constraint to higher replica sector fotk-k rotk-k o5 k ,qﬁ(l;[a) kB,0

wave vectors (3.5b

In the VT field theory the internal wave vectors occurring
in the Feynman diagrams are constrained to lie in the HRSHow this decomposition is expressed diagrammatically is
In order to perform summations over these wave vectors, it ishown in Fig. 2.
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replica O

k :
==[H} ====- replica 1

FIG. 2. Decomposition of a HRS propagatandicated byH)

into an unconstrained propagat¢the unadorned line less a p / )
LRS propagatofindicated byL). 8 replica 2

. ) . . FIG. 4. Schematic illustration of a piece of a diagram in the VT

In this manner, each HRS internal line in a Feynman diasie|q theory obtained by cutting LRS lines in a freely unconnected
gram can be_ decomp_osed into an unco_nstralned |nterna_| IIr"aiagram. Note that the wave vectiorflowing through the external
less a LRS Interna! line. Thus, the varlous_ vertex funCt'Onspoint lies in the HRS. The shaded circle represents any way to
can be eXpre,SSGd ',n terms of Feynman dlagrams Composggnnect the exhibited lines using the cubic interaction vertex, un-
of unconstrained lines together with LRS internal lines..qnstrained propagators, and LRS propagators.
Note, for future reference, that physically meaningful vertex
functions have external wave vectors in the HRS. C. Elimination of freely unconnected diagrams

We illustrate this decomposition for the case of a simple  \ye remind the reader that in the HRW theory for the two-
diagram in Fig. 3. More generally, we arrive at the following 5 three-points field (i.e., the physicalvertex functions,
modified Feynman rules for the VT field theory. _ . one is instructed to remove, by hand, those diagrams in

(i) Write down all diagrams arising from the original \hich there is at least one pair of external points between
theory. In these diagrams all wave vectors are constrained .-k no paths exist consisting solely éffield propagators.
the_HRS. . . _ . The corresponding diagrams in the VT theory are those in

(i) Replace each diagram with the collection of diagrams hichy there is at least one pair of external points between
obtained by allowing each internal line to carry either annich no paths exist consisting solely of propagators having
unconstrained replicated wave vector or a LRS wave Vectopnconsirained wave vectors, ie., freely unconnected dia-
(Thus, a diagram wittt. intemnal lines spawns a total of2 4 ams \We now show that these freely unconnected diagrams
diagrams). Identically valued diagrams can be represented byt ihe \/T theory automatically vanish in the thermodynamic
a single diagram, together with a suitable combinatorial facy; it
tor @ee, €.g., the factor of 2 in Fig).3 : ) To do this, consider a generic VT theory diagram for the

(i) Provide a factor of-1 for each LRS internal line. 5 or three-point vertex functions. Observe that freely un-

_At this stage we observe that the combinatorics of OUt.onnected diagrams have the following property: as there
diagrammatic expansion coincides with those of the HRW,ists g pair of external points not connected by a path of

expansion, provided one identifies the internal unconstraineg,.onstrained internal lines, there must exist at least one

and LRS lines of the VT theory with, respectively, the cor-gcheme of cutting solely LRS internal lines that causes the
responding internalp and ¢ lines of the HRW representa- giagram to separate into disconnected pieces with the exter-

tion. , nal points shared among the pieces. As we are considering
We have, however, yet to show that the diagrams removefy two- and three-point vertex functions, at least one of

by hand in the HRW theory can be safely omitted from they,ese pieces involves only a single HRS external point, along
VT theory, and that the numerical values of theplica lim- ity 3 number of cut LRS lines. A schematic illustration of
its of) the VT diagrams are identical to those of the HRW g ;o piece is shown in Fig. 4.

diagrams. We shall establish these facts in the following sub- | ot ;s examine the consequences of applying wave-vector

ions. . . . -
sections conservation to this piece, noting that the wave vedtor

flowing in through the external point must lie in the HRS,
whereas the wave vectors flowing out through the remaining
(i.e., cud lines lie in the LRS. Now, according to the VT field
theory, wave-vector conservation requires that the incoming
HRS wave vectok be equal, replica by replica, to the sum

of the outgoing (h=2,3, . ..) LRSwave vectors flowing in
a given replica, i.e., that

FIG. 3. Decomposition of the one-loop diagram for the two-
point vertex function. On the right-hand side of this equation, the
first and second diagrams are freely connected diagrams, and the
third is a freely unconnected diagram. wherea,,a,, ... indicate the replicas through which wave

m
ke=2>, 6¥%p, (fore=0,12...,n) (3.6
i=1
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vectorsp;,p,, ... flow. As a consequence, because the in- Now, the computation of any contributing diagram in-
coming wave vector lies in the HRS, the outgoing LRS wavevolves summations over a number of independent KRS
vectors must flow out through more than one replica. This igtherwise unconstraingdvave vectors as well as summa-
the key observation, as the following example, depicted irfions over the replicas through which these wave vectors
Fig. 4 reveals. Here, there are six outgoing LRS lines, twdlow. These latter summations over replicas can be decom-
with wave vectors flowing in replica 0, one with wave vector posed as follows:

flowing in replica 1, and three with wave vectors flowing in

replica 2. For replica 0, wave-vector conservation rels 2 F

=p,+p,, so that, e.g.p; determines,. Similarly, for rep-  a.ag,...q 12

lica 1, wave-vector conservation reakfs=ps, so thatps is

determined. More generally, as this special case exemplifies, — z + Z

the number of independent outgoing LRS wave vectors is ap.az, ..., a  ag,ap, ..., a

reduced by at leastwo (rather thanone that total wave- allequal two distinct

vector conservation demandsmply because of the fact that

the outgoing LRS wave vectors must flow out through more + > e 2 Fajay, . ap (3.8
than one replica. This, in turn, means that in the uncut dia- e et RN

gram there are fewer independent wave vectors to be

summed over than the number of loop wave vectors sug- ) ) _ o
gested by simple topological counting. As a result, additionalVN€reFa, «,. ... o, IS @ generic function of thereplica in-
denominators ofV"™! remain, even after the summations dices. Said equivalently, the summation can be decomposed
over independent wave vectors in the uncut diagram are rento: terms in which all wave vectors flow through a com-
placed by their thermodynamic-limit integrals, which rendersmon replica; those in which the wave vectors flow through
the corresponding freely unconnected diagram negligible. two distinct replicas; etc.

As a concrete example of the foregoing argument, we Now let us make use of this decomposition. gy and
compute the third diagram on the right-hand side of theC, in Eq. (3.1b the external wave vector is zef@9], and
equation depicted in Fig. 3. In this diagram, both of the in-therefore the summanal,a2 _____ o is invariant under per-
ternal lines lie in the LRS, and the diagram does (it  mutations of the replicag20]. Thus, in the first term of the
simple wave-vector conservatipoontribute unless the ex- decompositionF is constanfi.e. independent of thécom-
ternal wave vectok has nonzerad-vector components in mon) value of the replica argumertsand hence this term
precisely two replicage.g., replicas 1 and)2In this case, the contributes G+ 1)Fg, . o In the replica limit, this be-

diagram makes the contribution comesFqo . o As for the second term, let us further de-
compose it into partitionings of the set of replica indices into
2VTHIG (K VN TIG,(k?) (gV—2(MT1))2 two subsets, the replica indices in each subset having a com-
o 2y—200+1) N 5 mon value. In each such partitionifgis constant, and thus
=297V Go(k™)Go(k?). (3.7) each partitioning contributesn¢-1)nF, which vanishes in

the replica limit. By continuing with this decomposition tac-
On the right-hand side, one denominatorf"* will com- tic via tripartitioning, tetrapartitioning, etc., we establish that
bine with the Kroneckes function to maintain overall wave-  all of the terms on the right-hand side of H§.8) except the
vector conservatiofvia a Diracé function in the thermody- first vanish in the replica limit.
namic limit); the otherV""! denominator(which, in usual We next consider the coefficieBt,. As mentioned above,
cases, would combine with the summation over a loop waveymmetry considerations dictate that each diagram contrib-
vector to produce an integjaimakes this diagram vanish. uting to the two-point vertex function has the small-wave-
This special case exemplifies the general emergence, in thector expansion
VT setting, of the central aspect of the HRW formulation,
viz., the removal of thep unconnected diagrams. AR, g

nY+BI YKkt (3.9
D. Replica sums and their decomposition in the replica limit

Now that we have demonstrated that only the freely conWhere A" and B{"® are the contributions ta\, and B,
nected VT field theory diagrams contribute, we make affom the diagram in question. We exploit tiikarger than
closer examination of these diagrams for the relevant caségandatedl(n+1)d-dimensional rotational invariance of the
of the two- and three-point vertex functions. We begin byterms retained in this small-wave-vector expansion by choos-
noting that each diagram of the original thedwyhich has ing k to be rotated into a single replicék,0, ... ,0}. (Al-
only HRS internal linep exhibits the full symmetry of the though it has, until this stage, been vital to ensure khigs
VT field theory, viz., invariance under separateinthe HRS, e.g., in order to eliminate the freely unconnected
d-dimensional rotations in each replica and permutations ofjiagrams, one is now at liberty to ignore this requirenent.
the replicas. Therefore, the small-wave-vector expansion ofye repeat the tactic just used for the analysigpandC,,,
I'®(k) given in Eq.(3.1b remains valid, diagram by dia- with the slight elaboration needed to accommodate the fact
gram. that the(suitably rotategl external wave vectofk,0, . .. 0}
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breaks the permutation symmetry group frétp,., down to (s—1)! -
P, - In this way, we see that the only contributions that sur——AAs=j oStttk k)
vive the replica limit are from thell-equal partition and, (ro+k-k) 7
furthermore, from the case in which all of the independent n
LRS wave vectors lie in replica zero. :J o5 te o[ e ok K
T a=0
E. Feynman integrals and their reduction to HRW integrals
in the replica limit

Having shown that the topology and combinatorics of the (for s=1.2,...), (3.10

VT field-theory diagrams foA,,, B,,, andC, coincide with

those of the HRW field-theory diagrams, the task that re- _

mains is to show that, for every diagram contributing to thesevhere the Schwinger parameierranges between 0 and.
coefficients, the actualalue of the corresponding Feynman Observe that Eq(3.10 presents the propagator in a form
integral reduces, in the replica limit, to the appropriate HRwthat is very conveniently factorized on the replica index.
value. That this is so can most straightforwardly be seen by Let us begin with a concrete example. In the thermody-
employing the Schwinger representati@1i] of the powers namic limit, the diagram depicted in Fig. 5 contributesitp

of the propagator, viz., a term proportional to

g’ f d™ Dk d9p Gy (k) 2Go(p)2Go(k+p)?

n
_ g4f LI ddp 010503 e—(al+02+a3)rOe—(01+a3)k°- koe—(az+a3)p- pe—zosko- P H ddke @~ (o1t o)k k*

01003 a=1

n
= g4f ddk© ddp 010,073 e (a1t ot ag)rog= (ot Ug)ko-koe—(02+ 73)P-Pa~ 2a3k°-p( J' d% e—(01+03)k'k>

010203

n—0
N g4f ddk ddp 10,073 e—(l)'1+0'2+(r3)r0e—((r1+0'3)k-ke—(u'2+(r3)p-pe—20’3k~p

010203

~g* [ d% &% Go(k)?Gol)Golk ) (3.1

This limiting value ispreciselythat occurring for the corre- replica indices, we see that the Feynman integral, in the rep-
sponding diagram in the HRW field theory for the PT. lica limit, is identical to that in the HRW approach. Hence,
The tactic that we have just employed, viz., the use of théhe VT presents not only the same coefficiefgsandC, of
Schwinger representation to decouple the replicas from on#e two- and three-point vertex functions as does the HRW
another, provides easy and explicit access to the replica limiiepresentation, but also the same coeffic@nt
and, hence, to the precise correspondence with the HRW
prescription. It can straightforwardly be invoked not only for IV. CONCLUDING REMARKS
all diagrams that contribute to the coefficiedsand(by the
same procedujeC,,, but also for the coefficier8,, .
When considering diagrams contributing Ag and C,,,
we saw that what survived were terms in which all internal
LRS wave vectors flowed in a commadibut otherwise
arbitrary) replica. Now, as we considé,,, there is a slight
complication arising from the presence of an external wave
vector, which spoils the fullP,,; permutation symmetry.
However, this external wave vector has been chosen to lie in
replica zero and, as we have shown above, the only surviving
contribution is the one in which all internal LRS wave vec-
tors also flow in replica zero. Then, via the Schwinger rep- FIG. 5. A two-loop diagram used to exemplify the decoupling of
resentation of the propagators, and via factorization on théhe replicas using the Schwinger representation.

Let us summarize what is presented in this paper. We have
addressed the vulcanization transition via a minimal field-
theoretic model. This model is built from an order parameter
whose argument is then(-1)-fold replication of ordinary
d-dimensional spac¢The structure of this theory should be
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contrasted with that of more familiar replica field theories, inpercolation transition. Hence, percolation theory correctly
which it is the (interna) componentsof the field that are captures the critical phenomenology of the liquid and critical
replicated rather than thexternal argument] We have con- states of vulcanized matter.

sidered appropriate long-wavelength aspects of the two- and

three-p0|_nt vertex fL_lnCt|ons fqr this r_node_l, to _aII orders_ in ACKNOWLEDGMENTS
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