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Self-organized network of fractal-shaped components coupled through statistical interaction
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A dissipative dynamics is introduced to generate self-organized networks of interacting objects, which we
call coupled-fractal networks. The growth model is constructed based on a growth hypothesis in which the
growth rate of each object is a product of the probability of receiving source materials from faraway and the
probability of receiving adhesives from other grown objects, where each object grows to be a random fractal
if isolated, but connects with others if glued. The network is governed by the statistical interaction between
fractal-shaped components, which can only be identified in a statistical manner over ensembles. This interac-
tion is investigated using the degree of correlation between fractal-shaped components, enabling us to deter-
mine whether it is attractive or repulsive.
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[. INTRODUCTION in which complex connections between neurons are achieved
“automatically.” Only an overall structure of these connec-
Self-organizing phenomena are now recognized as contions is written in the genes. The growth of axons and den-
plex systems in which nonlinearity plays a significant roledrites is driven by a dissipative structure in the brain, conse-
such as pattern formation in physical, chemical, and biologiquently many synaptic connections are randomly created.
cal system$1—6]. The phrase “self organization” is used in Nonfunctional connections are destroyed, eliminating a large
various contexts, one of which is the notion of “hands-off” proportion of the original connections and resulting in a full-
production. This kind of self-organization phenomenon pro-grown brain[44]. In the primary visual cortex, there are
ceeds free of our intervention, resulting in striking patternsmany modules, each of which corresponds to a certain region
This notion is theoretica”y described by automata, i.e., dy_Of the retina. An orientation-sensitive neuron in the module
namic systems, possibly with random procedgesd). will become active only when a line in a particular orienta-
We recall self-assembled quantum dots of compoundion appears within its receptive fie[d5-47. The distribu-
semiconductors, in which InGaAs-based quantum dots arion of orientation-sensitive neurons has been analyzed in the
grown on an AlGa,_,As-based substrafd0-13. The lat- ~ context of seIf—organiz_gtior[48,4€ﬂ. When neurons have
tice constant of AlGa, _,As is significantly smaller than that been distributed on a silicon surface, dendrites or axons grow
of In,Ga,_,As, consequently the portion of J&a_,As ©n the silicon surface, resulting in a self-organized network
grown on the substrate has stress, the degree of which ifff neurong50-53. » _
creases as the size of the quantum dot increases. Therefore, e believe that self-organizing phenomena have potential
these quantum dots can only grow as large as the criticgiPPlications, for example, to electronics, where large-scale
size, which is dependent on the ratio of the two lattice conintégration of component devices, e.g., semiconductor-based
stants. The density of quantum dots may be limited for thelevices, has become increasingly difficult as the scope of
same reason, so quantum dots are self-assembled in a suBtegration increases. We have proposed a dissipative dy-
strate, as other nanostructures are self-assembled to form pA@Mics in which interacting objects grow, which can be ap-
terns[14—16. The use of coupled quantum dots is beingPlied to construct complex connections between component
investigated for application to future electronic deviggg—  devices[56]. These interacting objects, each of which takes
20]. There are several systems in which patterns are self2n the appearance of a fractal, are connected with each other
organized. Dynamic patterns associated with turbulence haJ@ form a so-called coupled-fractal network, which is similar
attracted much attentidi21-23 and self-organized patterns 0 & neuronal network. The growth rate of each component is
in chemical solutions have been much discusfa425.  Proportional to the probability that a source material reaches
Self-organized patterns have been analyzed based on t§€OWN objects from faraway, as in the dielectric-breakdown
Ginzburg-Landau equatiof26,27 and nonlinear dynamical Model[33]. The growth rate of th&th component is propor-
equations[28—31. Dendritic patterns, e.g., generated bytional to the probability that an adhesive reaches ktte N
diffusion-limited aggregatiofi32] and dielectric breakdown Ccomponent from other components. Thus, growth probability
[33], have been discussed in the context of fractal geometrig the product of these two probabilities—a component can
[34—39. A multiply-twisted helix may be realized in a self- 9row only when a source and an adhesive coexist near the
organized helical structure, as in prote[d§—43. component. The complex structure of the coupled.-.fr.actal net-
Let us turn to biological systems, e.g., the cerebral cortexVork is strongly dependent on these two probabilities.
This paper extends the previous results and presents
growth simulations of various networks, in which the statis-
*Fax: +81-45-338-5766. tical interaction between fractal-shaped components is im-
Email address: Ryuichi.Ugajin@jp.sony.com portant.
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Il. GROWTH MODEL

A. Review of the dielectric-breakdown model N
. : : AyNe(r)=0. (7
Let us review the dielectric-breakdown model that pro-
vides a single fractal-shaped structure. We introduce twoaA coupled-fractal network is defined as a set of lattice sites,
dimensional square lattic which contains lattice sites  denoted byT, e S, which consists o, species, i.e.,
=(iq,i) e S. We define scalar potential fiele(r) in S

which obeys the Laplace equation: N¢
’ prce & To= U QY 8)
Ag(r)=0. (1) k=1
A fractal-shaped structure is defined as a set of lattice siteS°
denoted byT,, wheren=0,1,2,.... T, contains a single lat- n (k) _ o
tice siter(®. T, ; is a set of lattice sites to which a single Qn'NQy'=9 if j#k, ©

lattice site is added td,,, as discussed below.

Let ¢(r)=1 whenr belongs torl,,. On the other hand, let
¢(r)=0 when|r| approaches infinity. Under these boundary
conditions, equatioiil) can be solved.

The lattice site that will be added B, in order to con-
struct T, is selected from the set of lattice sites, ild,,,
whose elements are nearest to the lattice site§,in The
number of lattice sites i, is denoted byN,,. We define the
strength of the “electric field” for lattice sites,, in U, as

Em(a)={¢(rm)—1}“. )

whereQ{¥ represents thith component of ouN, species.
Q¥ contains single lattice sitR{® and T, is a set of
lattice sites in which a single lattice site is addedTtp, as
discussed below.

We take the boundary conditions

0 when|r|—w

¢N=11 whenreT, (109

for ¢(r) and the boundary conditions

Cy when |r|—w
#¥(r)={ 1 whenreQ} (12)
-1 whenreQ(k#l)

Now we select the lattice site that will be addedTp ac-
cording to the probability

P, ()= _En(a) @)  for yM(r) of eachk, whereC, is a parameter. Under these

E]N:f‘lEj(a) boundary conditions, Eq$4)—(7) can be solved.
The lattice site that will be added 6, in order to con-
This process yields a series ®f, each of which gives us a struct T,,; is selected from the sets of lattice sites, i.e.,
fractal-shaped structure. U, whose elements are nearest to the lattice sit&3\h.
Recall the diffusion-limited aggregation. Here, a sourceThe number of lattice sites i is denoted byN® . The

material attaches to a grown object only when the sourcgttice site that will be added 8, in order to construcT,, . ;
material reaches the object. The Laplace equation is the samg selected from the set of lattice sites

as the diffusion equation when there is no time dependence.

Therefore, the strength of the “electric field” is proportional N ®

to the amount of source material that will possibly attach to Un= U Uy, (12)
grown objects. Therefore, a grown object described by the K=t

dielectric-breakdown model whew=1 is the same as that

where the number of candidates is
described by diffusion-limited aggregation.

NC
B. Generating coupled-fractal networks Nn:kzl NRO. (13
Extending the above scheme for an isolated fractal-shaped
structure, we introduce a growth model of coupled-fractalNote that there may exist a site that is nearest to both the
networks. The above scheme is extended to include severtittice sites inQ! and those iQ{ .
species of components. The number of species is denoted by We define the strength of the electric field for lattice sites
N, . Along with scalar potential fielg(r) in S we introduce  r® (m=1,2,..N¥), in U® as
a scalar potential field for each componegt®(r),

JA(r),....NI(r), which obeys the Laplace equation ENa,B)=|p(r)—1|2|yP ) -1 (19
Ag(r)=0, (40 Now we select the lattice site that will be addedTtp ac-
cording to the probability
AyP(r)=0, (5)
1
k) — = ok
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FIG. 1. (Color) Growth sequence of the three-component network with3)=(0.5,1) on a 1024 1024 lattice when the number of
grown sites iga) n=10 000,(b) n=20000,(c) n=30 000, andd) n=40 000.

where fore, |p(r(¥)—1|* is proportional to the amount of source

material that may possibly reach grown objects. In the

Ne NG dielectric-breakdown model, the fractal dimension can be
A=, 5}k)(ga,,8). (16)  controlled by controllinge, as introduced in our model.
k=1j=1

On the other hand, the scalar fiedd¥(r) presents the
_ probability that an adhesive reaches ktle component from
OncerY is selected, the site is added @),, soQ{};  other components. This probability is proportional to
(j #k) remains the same &3’ . This process yields a series |y (r®)—1]# where parameterd is introduced. The
of T,, each of which gives us a coupled-fractal network. growth rate may depend on how long the source material and
The scalar fields(r) presents the probability that a source adhesives can stay near the surface of grown objects. Thus,
material reaches grown objects from faraway. This is as irour hypothesis of growth probability is the product of these
the original dielectric-breakdown model where the growthtwo probabilities—a component can grow only when a
rate is proportional to the strength of the electric field. Theresource and an adhesive coexist near the component. Note
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that an adhesive from thieth component cannot only reach
near components but also be propagated faraway. Therefors
the rate of losing adhesives can be controlled by controlling
the parameteC.

I1l. NETWORK GROWTH SIMULATION
A. Typical coupled-fractal networks

Our model requires several parameters to be given. The
size of the square lattices is not important if it is large
enough. Though there is no length scale in the dielectric-
breakdown model, our model has a length parameter tha
determines the distance between fractal-shaped structure
Note that the length parameter does not influence the shap
of the structure, which depends on the paramdierg). The
effect of changind«a, B) will be discussed in Sec. Il B. Let
us note thatC, may affect the shape of grown objects. This
will be discussed in Sec. llIC. Here we show a typical
coupled-fractal network witha=0.5, =1, and C,=0,
which takes on the appearance of a neuronal network. Notg
that in this section growth simulations are performed on a
square lattice of 10241024.

Figure 1 shows the growth sequence of the three-
component networkN.=3, where three initial point&R{"
=(409,409); R{Y=(615,409); andR{’=(512,615) are
given. Note that the component shown by the red points is
QM| the component shown by the light-blue point€i$)
and the component shown by the yellow pointsQ?’.
When n=10000, these three components are disconnecte
to yield individual fractal-shaped structures, as shown in Fig.
1(a). Whenn=20 000, connections are formed betweg{
and Q® and betweerQ!" and Q% but Q{?’ and Q{®
remain disconnected, as shown in Figh)l When n
=30000, we see that the three components become co
nected, forming a network. Figure(d) shows a three-
component network whem=40 000, in which multiple con-
nections are created among the three components.

Figure 2a) shows four-component netwoik.=4 when
n=30000, where four initial pointR{"=(409,409),R{?
=(615,409), R{=(409,615), andR{"=(615,615) are
given. The first componer®{" is shown by the red points,
the second compone@ﬁz) is shown by the light-blue points, FIG. 2. (Colon (a) Four-component network whem=30 000
the third componen®{®) is shown by the yellow points, and and (b) five-component network whem=40000 with (,g)
the fourth componen@'* is shown by the purple points. =(0.5.1) on a 10241024 lattice.

The first component is connected to the second component

and the third component, but not to the fourth component. ) @ ) _

On the other hand, the second component is connected to tRét to the right. Note tha®,™ shown by the light-blue points
fourth component, just as it is to the first component. Theis connected taQ%" shown by the purple points. On the
connections among these components resemble the synaptither hanngl) shown by the red points is not connected to
connections among neurons in a neuronal network. Q! shown by the yellow points. Recall that the growth rate

Figure 2b) shows a five-component netwolk =5 when s a product of the probability of receiving source materials
n=40000, where five initial pointRél):(358,358),R§)2) from faraway and the probability of receiving adhesives
=(666,358), R{*)=(358,666), R{"=(666,666), andR{>  from other grown objects. If source materials never reach the
=(512,512) are given. The fifth compone@f’) is shown grown objects, there is no possibility that the network will
by the white points, while the other components are showigrow. Because a connection betwe{f’ andQ"") has been
using the same colors as in FigaR The fifth component, made in an early stage of the growth sequence, source ma-
shown by the white points in the figure, grows to the left butterials cannot reach the fifth compone®{f®) from the right-
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FIG. 3. (Color) Three-component networks with variotig 8) on a 512512 lattice whem=10 000.(«, B) are taken to béa) (0.4, 1,
(b) (0.5, 1, and(c) (0.6, 1.

hand side. On the other hand, the fifth component can growow an adhesive from other components attaches to the sur-
toward the left-hand side because source materials can reatdce of grown objects, s@ influences the relation between
from that direction. As is seen in Fig(l®, an arm of the fifth  components. Now let us examine hawand g affect the

component stretches through the space betw@gh and shape of coupled-fractal networks. Note that growth simula-
tions in this and the rest of Sec. Il are performed on a square

Q. .
lattice of 512<512.

Figure 3 shows the effect of changing on the three-
component network, wherg=1. Three initial pointsR{"

As noted previously, the shape of grown objects, i.e.,=(204,204), R?=(308,204), andR{’=(256,308) are
coupled-fractal networks, is strongly dependent on the pagiven andn= 10000 sites are grown. Figurél shows the
rameterg«a, B). Becauser determines how a source material three-component network with=0.5, the shape of which is
from faraway reaches the surface of grown objeetaffects  similar to that in Fig. 1. As compared to the above example,
the entire network structure. On the other hg8determines i.e., a coupled-fractal network witha(B)=(0.5,1), let us

B. The effect of changinga and B
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FIG. 4. (Color) Three-component networks with variotg, 8) on a 514512 lattice whem=10000.(«, B) are taken to béa) (0.6,
1.2), (b) (0.6, 0.8, and(c) (0.4, 0.8.

consider the three-component network with=0.4 in Fig.  network with (¢,8)=(0.6,1.2) is shown in Fig. 4). As
3(a) and the three-component network with=0.6 in Fig. compared to Fig. @), when3=1 components strongly in-
3(c). Whena is small, the structure of the networks is dense,teract with each other, growing toward each other. On the
as is seen in Fig.(3). On the other hand, whea is large, other hand, in Fig. @) when 8=0.8, connections between
each component grows toward the outside, as is seen in Figopmponents are weak and the interaction between compo-
3(c). Recall that when an isolated fractal is grown, the fractalnents is repulsive. In Fig.(d), we show a three-component
dimension decreases asincreases. Whem is almost zero, network with («,8)=(0.4,0.8), in whicha is smaller than
a condensed ball is obtained. This is consistent with the terthat in Fig. 4b). The poor quality of connections is same as
dency of the entire structure of coupled-fractal networks. in Fig. 4b) though the small value o makes the entire
When B changes, the relation between componentsstructure denser. Let us sum up the effects of changiagd
changes. Figure 4 shows the effect of changh@n the B. As « increases, the entire structure becomes more ex-
three-component network. Conditions except the values ofended. Conversely, asg decreases the structure becomes
(a, B) are the same as those in Fig. 3. The three-componemtenser. AsgB increases, the components move closer, i.e.,
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FIG. 5. (Color) Three-component networks witlw(8) = (0.5,1) on a 51X 512 lattice whem= 10 000.C, is taken to bga) —0.2, (b)

—0.6, and(c) —1.

there is an attractive force between fractal-shaped compaway because the slope describing the difference bet@gen

nents.

C. The effect of C,#0

In this section we consider the parame@y, which de-
termines the boundary value gf¥(r). Recall thaty(r)
takes 1 whemr is one of the grown sites of theh compo-
nent, i.e.,QW, and thaty®(r) takes—1 whenr is one of

the grown sites other than the sites of tki& component.

The slope describing the difference between “1” and 1”
drives the diffusion of adhesives from whegé¥(r) takes
—1 to wherey(r) takes 1.C,, which is between-1 and

and —1 drives the diffusion of adhesives from the grown
sites other than the sites of tlk¢h component to faraway.
Note that the slope describing the difference between 1 and
Cy drives the diffusion of adhesives from faraway to #ib
component in the present model.

Figure 5 shows the three-component network with
(a,B)=(0.5,1), whereC, is taken to be-0.2 in Fig. 5a),
—0.6 in Fig. 8b), and—1 in Fig. 5c). Figure 6 shows the
three-component network withy(8) =(0.5,1), whereC, is
taken to be 0.2 in Fig. @), 0.6 in Fig. &b), and 1 in Fig.
6(c). Note that the initial points are the same as those in Fig.
3, where growth simulations are performed on a square lat-

1, determines what amount of adhesives will propagate fartice of 512<512. AsC, decreases from zero, the coupled-
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FIG. 6. (Color) Three-component networks witl(8) =(0.5,1) on a 51X 512 lattice whem=10 000.C, is taken to bea) 0.2, (b) 0.6,
and(c) 1.

fractal networks become extended and the degree of courhus, all components grow toward each other, resulting in a
pling becomes less, as is seen in Fig. 5. This is because modense coupled-fractal network.
adhesives come from faraway wh€p has a negative value,

just as the source material comes from faraway. Therefore, IV. STATISTICAL INTERACTION BETWEEN
each component grows independently and extends to far- FRACTAL-SHAPED COMPONENTS
away. As the value o€, approaches-1, a repulsive force )

between components becomes apparent. On the other hand, A. Correlation between components

as Cy increases from zero, the coupled-fractal networks be- \We have considered a variety of networks and noted the
come denser and the degree of coupling becomes more printeraction between fractal-shaped components. However, if
nounced, as is seen in Fig. 6. A% increases up to 1, only a single grown network is available there is no way to

#®(r) when|r|—o approacheg/¥(r) whenre Q" , so  determine whether this network has been influenced by some
there is no possibility of receiving adhesives from farawaykind of interaction between fractal-shaped components or
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not. We can determine the effect of interaction between
fractal-shaped components if we extract the universal featurq
of the interaction by investigating an ensemble of grown
networks. When a growth sequence is referred to as having
“classical trajectory” in dynamics, an ensemble average of
grown samples, as in the functional integral of statistical
field theorieg[57], possibly enables us to define “statistical

interaction” between fractal-shaped compond®8—60.
Let us consider a series of growth simulationsNpf= 2

coupled-fractal networks using sequences of random num-

bers. When a coupled-fractal network is grown usingtia

sequence of random numbers, the network is denoted b

T,(p) such that

NC
Ta(p)= U Q¥(p). (17)
=1

k=

Let the number of elements iQ!(p) be denoted by

My kp- The center of mass of thkth species in thepth
sample is

(K) — 1
wi(p) =1 r (18)
kP reQ¥(p)
so we introduce
1 M
wid=— > wh(p), (19
M p:]_

which is the average of the center of mass forkttespecies.
The mean distance between the centers oktheand thd th
components is

DY = Wi~ wi). 20
It is useful to introduce a correlation function betwekth
andlth components

M
1
Gl =51 2 X (p)- % (p), @D
Mp=l
where
1
W= S rw). @
nkpreq(p)

The degree of correlation between tkiln and thelth com-
ponents

(k1)
(k1) _ n

Xn
/G%k’k)Gl(ql'l)

(23

FIG. 7. (Color) four samples of a two-component coupled-
fractal networkTgo(p) When (a,8)=(0.4,0.6).

of the kth component may be different from{® , resulting

in deviationx{(p). Because the correlation functigs{?

is measured by the inner product of the deviation of the first
component and the deviation of the second component, it
takes a positive value when the deviation of the first compo-
nent has almost the same direction as the deviation of the
second component. On the other haB{f. takes a negative
value when the directions are opposite. The degree of corre-
lation x(*? is dimensionless becaugd¥ is the square of
the deviation of th&kth component. If a deviation from the
average, i.ex{¥(p), is thought of as a movement of tkéh
component, in an analogy with dynamical systenp§;?
takes a positive value when the first component moves to the
left and the second component moves also to the left, for
example.

B. Numerical evaluation of an ensemble

We have performed a series of growth simulationdNgf
=2 coupled-fractal networks usiniyl =500 sequences of
random numbers on 261201 square lattices, whef@ =0
is taken. The first component is initiated from{"
=(185,100) and the second component is initiated from
r{¥=(217,100). Four samples of the coupled-fractal net-
works T,(p)(p=1,2,3,4) withn=800 are shown in Fig. 7
when («,8)=(0.6,0.8). Note that only 144141 square lat-
tices out of the 20% 201 square lattices are shown in Fig. 7.
Although we find differences between these four samples

will be evaluated to determine how the statistical interactiomue to different random sequences during growth’ we can

proceeds.

recognize the universal feature characterizeddyg).

Let us consider the physical interpretation of the above To measure the correlation between fractal-shaped com-

quantity y ()

whenN.=2. The center of th&th component
w{¥ is averaged over the whole ensemble. When we concen-
trate on thepth sample out of the whole ensemble, the center

ponents we evaluated

D(n)=D{? (24
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FIG. 8. The mean distance between the centers of fractal-shaped FIG. 9. The degree of correlation between fractal-shaped com-
components of &.=2 network with variouse when(a) 8=0.6, ponents of a\.=2 network with variouse when (a) 8=0.6, (b)

(b) =0.8, and(c) B=1. B=0.8, and(c) B=1.
and When n is_ between 100 and 2094(n) keeps a positive
value, which depends om, showing the existence of an
X(n):Xgl,Z) (25) attractive force. In this region of the growth sequence,

fractal-shaped components are still separated, but they inter-
act attractively. Whem becomes larger than 20§(n) be-
comes dependent an Whene is large,x(n) decreases as
increases. Becaugdn) is sufficiently small or takes a nega-
tive value, the network grows accompanied by a repulsive
force. On the other handy(n) increases as increases,
V§hen a is small. Becausg/(n) grows rapidly, the network
becomes condensed. Whetp is close to 0.5¢(n) remains
'E small value on the order of 0.2 and is almost independent
%f n, where the network grows with a weak but stable attrac-

AS 'Efl mcreashes, thg value di{_(n)trk])ecomctes smalfler I&tlts . tive force. These networks take on the appearance of neurons
small enough, again suggesting the existence of an attractivg, , siicon surfacé50—55.

force.

Let us turn toy(n) in Fig. 9, which measures the degree
of correlation between fractal-shaped components. Whsn
small on the order of 10y(n) is almost zero or less than Everything we have discussed so far is caused by the
zero, showing that each component grows independentlynterplay between the entire structure of grown objects and

over M =500 samples of th&.;=2 network. Let us show
D(n) in Fig. 8 andy(n) in Fig. 9 with variousa when (a)
B=0.6, (b) 8=0.8, and(c) B=1 in Figs. 8 and 9. As the
network grows, i.e., am increasesP(n) decreases whea

is small enough, suggesting the existence of an attracti
force. On the other hand, whed is large enoughD(n)
increases as increases. When this happens, each compone

V. DISCUSSION AND SUMMARY
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the interaction between components. Let us compareeceiving adhesives from other grown objects, i.e.,
coupled-fractal networks with interacting electrons in a|y®(r(¥)—1|#. Therefore« controls the entire structure of
guantum dof61—-66. Because electrons interact in a confin- coupled-fractal networks angl controls the relation between

ing potential, there are two major parameters, one of whicltomponents. There is still another parametr, which de-

is the strength of the confining potential, and the other is théermines the boundary value af¥(r). When a=0.5, 8
strength of electron-electron interaction. In our growth=1, and C =0, the coupled-fractal network takes on the
model of coupled-fractal networksy controls the entire appearance of a neuronal network, in which “synaptic” con-
structure, so there is an analogy with the confining potentianections are randomly distributed. Asincreases, the entire

of quantum dots. On the other hang@lcontrols the relation structure of coupled-fractal networks becomes more ex-
between components, so there is an analogy with electrofended. Conversely, as decreases, it becomes denser/As
electron interaction. The number of specisis analogous ~Increases, the .relatlon between components becomes closer,
to the number of electrons in a quantum dot. As the quanturh®- an “attractive force” between components seems to ap-
states of multiple electrons in a quantum dot are controlled®®a"- Conversely, ag decreases, a “repulsive force” be-

by controlling these two parameters, various networks of in{WEen components seems to app&aralso controls the in-

teracting fractal-shaped objects are created when the mogdiraction between components. o .
parameters are changed. This interaction, which can only be identified in a statis-

The growth of dendrites of a neuron may not be accylical manner over ensembles, was investigated using the de-
rately described by the diffusion-limited mechanism of 9"€€ of correlation betwgen these fractal-shaped components.
source material§67]. Although the growth of actual neu- The degree of correlation between fractal-shaped compo-
ronal networks is different from the growth represented byn€Nts, averaged over the ensemblevbf500 samples, de-
our model, there is a physical system in which complex conlermined whether the interaction is gttracnve or repulsw_e.
nections can be self-organized as described by our model. ¥/nen model parameters are appropriate, the network taking
realized, component devices, e.g., consisting of couple@" the appearance of a neuron_ali network is characterized by
quantum dots, can be wired using the dynamics of organic th_e degree of correlation remaining almost the same over a
inorganic source materials—a self-organized phenomenon.Wide range of growth.

We have performed growth simulations of coupled-fractal
networks, which have been proposed in order to produce
self-organized patterns of interacting objects. The model is The author is grateful to C. Ishimoto, M. Ohnishi, T.
based on a hypothesis in which the growth rate of each obHirata, Y. Watanabe, H. Matsumura, A. Ishibashi, Y. Mori,
ject is a product of the probability of receiving source mate-and S. Watanabe for fruitful discussions and thanks Y.
rials from faraway, i.e.l,¢(r§,'§’)— 1|¢, and the probability of ~Kuroki and S. Hirata for the computer-aided figures.
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