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Waves in strongly magnetized relativistic plasmas: Generally covariant approach
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A dispersion relation for long waves in strongly magnetized multifluid plasma in a curved spacetime is
derived in a covariant form. A generally covariant form for the ray equations is obtained. The results are
applicable to ray propagation in relativistic plasmas in the vicinity of strongly gravitdbfagk hole$ or
rapidly rotating(pulsarg systems.
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Relativistic plasma in a superstrong magnetic field is arhis was recognized by Barnard and Arorng but after-
feature of a number of high-energy astrophysical systemwards consistently ignored in the studies of ray propagation
including pulsars and black hole magnetospheres. Such sytsee also Petrova and Lyubarsf8i and references thergin
tems also typically have rapid rotation and strong gravitadn the pulsar frame, the parameters of the plasma depend on
tional fields. In these cases, the use of a general relativisti¢ —{t, where ¢ is the azimuthal angle about the rotation
approach is either mandatofgis near the black holesr at  axis and() is the angular velocity. A time derivative is then
least useful in the case in which the field pattern in the pulsaef the form (@/9t)~(Qr)V, and the effects of time depen-
magnetosphere is assumed stationary in the rotating framdence may be significant. One way to treat this problem
The generation of plasma turbulence, the emission of radigould be to consider it in the rotating frame where the back-
waves, and the propagation of radio waves and other lowground parameters are time-independent. However, this
frequency disturbances through the magnetosphere are ugiiame is noninertial and formally this needs to be taken into
ally treated with no clear distinction made between the nonaccount through the metric tensor. The metric tensor can be
inertial (corotating frame and the inertial frames fixed to the approximated by its flat-space form only félr <1 (here
star or to the observer. In this approach, it is implicitly as-and hereafter the light velocity=1 for conveniencg and
sumed that wave solutions have the dependence-éxp)  this factor varies fromQr~10 %P near the surface of a
in all frames, although this is, strictly speaking, incorrect inneutron star rotating with periodl (10 3<P=1s) to unity
the observer’s frame where the parameters of the ambiemt the light cylinder.
medium depend on time. The dispersion relation for each In general, gravitating and/noninertial systems should be
natural wave mode of the system is obtained by using adescribed within the covariant approach of general relativity.
appropriate model for the waves. The long-wavelengthDerivation of the response tensor of the plasma is well-
(wavelength much larger than the particle gyroragliosy-  established in the special relativityee, e.g., Melrosgs] and
frequency(frequency much smaller than the gyrofrequency references thereinwithin the kinetic approach. It involves
limit suffices for most purposes, and the usual approach is tariting the linear response of the plasma in terms of the
use a kinetic equation in the plasma or pulsar frated4].  (Fourier-transformed 4-current j3(k) in terms of the
The standard WKB approach uses the eikonal expansiod-potential, A%(k): j2(k) =112°(k)A,(k). Here indices span
where all perturbationsexp(S/7), n~N/L~1/wT being a the range 0-3, with the metric tensof,=diag(1-1,—1,
small parameter\ is the typical wavelengtH, is the typical —1) in flat space time. Upon substituting the current into
inhomogeneity scale, anflis the typical time scale of non- Maxwell equations, one arrives at the equation of the kind
stationarity. The lowest order gives the dispersion relation,D,A°=0, whereD = gapk®— kak,—47Il,,. The tensor
which in the 3+1 method[5] is solved for the frequency  T13°(k) satisfiying k,I13°(k) =0=k,I13°(k) [charge conti-
=w(k,r,t), with the dependence on andt being due to nuity k,j?(k) =0 and gauge invariangeand the determinant
inhomogeneity and time dependence of the system, both aif D,y is identically zero. A covariant forn) (k) =0, of the
which are necessarily present in the presence of rotation ardlspersion equation is found by noting that the matrix of
a gravitational field. The four-dimensional dispersion relationcofactors oDy, is of the formD (k)k3kP. An alternative way
in a local inertial frame can be written in the fori(k,x) (used below is to construct invariant combinations by pro-
=0, whereD is a Lorentz invariant ank=(w/c,k), X  jecting onto a set of independent vectors. This theory repro-
=(ct,r) are 4-vector$6]. Herek,= 9S/9x®. Further consid- duces the conventional plasma dispersion theory in any spe-
eration of the wave propagation within the geometrical op<ific inertial frame.
tics approach also requires careful treatment of the difference Generally relativistic analysis usually requires determina-
between the inertial nonrotating frame and the noninertiation of wave properties in a frame that is not necessarily
rotating frame. In the former, the time dependence of thdlocally) inertial and is less elaborate. Breuer and Eh|8ils
background density and fields requires use of the completeutlined the derivation of the dispersion relation in the sim-
set of the geometrical optics equation where- w(k,r,t).  plest case of a cold electron plasma. However, no closed
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expression for the dispersion relation was provided thatnetric tensorg,,. Thus in the equations for perturbations,
could be useful for applications, and too severe restrictionsovariant derivatives can be replaced by ordinary partial de-
were imposed in the course of the derivati@uch as the rivatives.

absence of ion currentGedalin and Oiberma[i0] analyzed Using the usual WKB technique, we assume that all vari-
magnetohydrodynamical waves in a curved space time. Elaables xexp(S/n) with S, =k,, kbka,b<ka, and the pres-
sasser and Popé¢lL1] derived a local dispersion relation for a ence of the small parameter<1 ensures the usual eikonal
nonmagnetized plasma in thet3 form using a covariant expansion. Then the equations for the perturbations take the
approach. Generally covariant geometrical optics has beefollowing form in the lowest ordefwe omit subscrips for
developed for the ray propagation in the vacu(see, e.g., convenience

Stephani[12]) and in a formal way for gravitational and

sound wave$13]. In the present paper, we present a concise ka(Snu2+nsu®)=0, (6)
derivation of the dispersion relation for a strongly magne-
tized multifluid plasma and a general relativistic formalism ik, 6T2P=q( Su,F2P+ u,5F2P), @)

for the geometric optics treatment of the propagation of

waves in an arbitrary medium, with a particular application b [€FP b aeb . bea
to rapidly rotating systems. OT=| —— +c7|dnuiuP+(e+p)(uiou™+u”ou’)
We start with the decomposition of the Maxwell tensor.

Let U2 be a global unit timelike vectof-velocity): U2U —c?ong?, (8

=1. Then one can spliE2® for the background system into

the electric and magnetic fields as folloy]: wherec?=dp/dn andéu,-u?=0. It is worth noting that the

transition to ordinary derivatives, that is, neglect of the affin-

E2=Faby,, B2=¢2PC9F, Uy, (1) ity (Cristoffel symbol$ in the lower order, is mandatory for

the WKB approximation. The affinity enters in the higher-
1 order equations for ray propagati¢see below. The system
Fab= (EayP— Ebya)+ Eeabcd(UCBd_UdBC)' 2 (6)—=(8) with the corresponding Maxwell equations for the
field perturbation can be solved in the general case. Here we
are interested in the strong magnetic-field approximation
where e,pcq is the completely antisymmetric tensafy;,3  where one can formally s@&?=—B,B®—. In this case,
=lg|. We call the plasma magnetized if there exist®  the analysis simplifies greatly. One hagF2°= su,F2°=0
such thatE®=0. This condition may be fulfilled only in part and it is easy to show that one can write
of the space. It is worth mentioning that, in genet#,does
not have to coincide with the plasma velocitf. Breuer and u?=y(U%+ovb®), ou®=su(vU?+b?), 9
Ehlers [9] and Gedalin and Oibermafi0]). For conve- o
nience, we define the unit vectd®=B2\—B%B, with ~ Wherev=u/y and _72=1+ u?. Strong magnetization often
bib,=—1. means plas.ma. anlsc_)troppi#pu, where L and|| refer to
Dispersion theory in a multifluid plasma hydrodynamicsthe magnetic-field direction. In pulsar magnetosphepes,
model can be treated in the following generally covariant=0- It can be showr{10] that in this caseT’=eu’u®

manner. The equations for the plasma dynamics are +pb2b® andc?=dp;/dn. Equation(6) immediately gives
n(Wv —Kj)
(Nu?).,=0, T8 =quugFa®, ) __ htWv =8y
sHs);a s:b— UsUsh Ol YW= KHU) u, (10
dab _ b__ H
P Fapc=0, Fiy=—4mj? 4 Wwhere we introduced the notatiohi= kaU?, Kj=—kab? It

is clear thatW andK| are the frequency and parallel compo-
ja=3 a 5 nent of the wave vectofwith respect to the magnetic figld
"= S AsNsUs » O the locally inertial frame defined by the velocity?. Sub-

stituting Eq.(10) into Eq. (8) and further into Eq(7), one

wheres denotes plasma species and a semicolon stands fgets after multiplication by,,
the covariant derivative. The energy-momentum tensor of an )
ideal fluid is T2°=(e+p)uduP—pg?®. The set (3)—(5) Su=— iq(W—Kjp) (U by 5F20)

. . aMb '
should be completed with the equation of state. In what fol- n[ w(W-— K”v)z—cZ(Wu— K”)Z]
lows, we assume the adiabatic state equation wittp(n) (11
andde=[(e+p)/nldn.

The above equations describe global plasma flmmd,  Whereu=(e+ p)/n. The obtainedn andsu should be used
accretion flow as well as waves. Let the waves be describedor the current calculationsj?= 3 q(Sngud+ngoul). We
in terms of perturbed quantitien, 5u?, SF2°. In what fol-  introduce the 4-vector potenti&l® such thatoFaP=i(k®AP
lows, we consider the perturbations in the WKB limit, that is, —kPA%) and we apply the Lorentz gaudggA®=0. Further
the wavelength is assumed to be much smaller than the typéalculations are straightforward and after some not lengthy
cal length of the inhomogeneity, including variations of thealgebra give the dispersion relation

027401-2



BRIEF REPORTS PHYSICAL REVIEW E 64 027401

D(k)= kaka—(WZ—Kﬁ) equations to the propagation of wave packets. For the func-
tional form of D given in Eq.(12), one has
4q2n
X = Wgs = . dx® gD D
s Vel ms(W—Kpg)2—c2(Wos—K))?] = 2kat opU —a—K”b ' (16)
- " aKt_ D aDkU°+ ﬁDkbC (17)
for a wave polarized in thé&) -b, plane: U,A%#0, b,A? dr S OWTETA T Ky e

#0. The other dispersion relatiok,k®= 0, describes vacu-
umlike waves polarized so that,A?=b,A*=0. The disper-
sion relation(12) looks exactly like the dispersion relation in
the flat space with the substitutien— W, kj— K. The met-
rcs gap is hidden in the definition oV andK| .

We proceed further to the derivation of general relativistic

equations for ray propagation given the dispersion equation: g hoarization vector of the wave is determined by the

in the formD (k,x), where the dependence @nncludes the 1,5 \ave dispersion theory at each point along the ray.
(noninertia) effects of rotation. To this end, I_et us represent aEquations for the wave amplitude transport are obtained by
wave packet in the forngsee, e.g., Bernstein and Friedland expanding the amplitudesn, ou, A%, and the eikona in
[15) powers of the small parameter(see, e.g., Breuer and Ehlers
[9] and Bernstein and Friedland5]). We do not give them
— | A ik, b 4 here.
A fAb(k)eXp(Ika )\/@d . 13 One important example of a system in which the above
) _ _ _ formalism may be applied is a pulsar magnetosphere. Let
wherek;, should satisfy the dispersion relati@(k,x)=0.  t r ,z be the cylindrical coordinates in the rotatifgulsay
Let us assume tha, has a sharp maximum &t=kq. Then  frame, andt’,r’,¢’,z' be the corresponding coordinates in
Eq. (13 <can be written as follows: A, the nonrotatingobserver’s frame. The coordinate transfor-
= expko® S A expiaxd)\]gld*g, where q=k—k, is mationist’=t, r'=r, z’=z, and ¢’ = ¢+ Qt. The corre-
small. A|0ng the rayxazxa()\), the phasmaxa should be Sponding metric tensor in the’loninertia} pulsar frame is
stationary, so that the equation for the propagation of thé14] gy=(1—Q%?), gyu=—Qr% g,,=-r? and g,
maximum is obtained by differentiating the phase with re-=9,,= — 1, with the other components equal to zero. We use
spect to the affine parameterand equating to zero, which this metric inside the light cylindef2r <1. In the observer’s
givesq,(dx3/d\)=0. On the other hand, expanding the dis- frame, the field pattern is commonly assumed to be rigidly

persion relation ned,,, one hagy,(dD/dk,)=0. Sinceq,  rotating[16] so that all plasma and field parameters depend
is arbitrary, one finds on ¢—QOt. As a result, the locally defined wave frequency

(in the observer’s framds not a constant of motion but is a
dx@ 4D function oft. Ray propagation may be treated in the inertial
aN ok (14  frame, taking into account the changes of the background
a conditions witht. Alternatively, one may treat the propaga-
tion in the rotating frame, in which there is inhomogeneity
%but no time dependence. While the two approaches are
physically equivalent, the use of the rotating frame with
=const along the ray is attractive, albeit at the expense of
introducing a nontrivial metric tensor.
In the pulsar framel)®= (g, ¥%0,0,0) is a global timelike
velocity field, U,U?=1. It can be shown that the corre-
%:_£ (15) sponding E?=0, so that this velocity field satisfies the
dx oxd’ “magnetized plasma” conditions. Since the metric is time-
independent, perturbations have the formexd—iwt
Affinity (Cristoffel symbol$ enters Eq.(15) implicitly via ~ +iS(r,#,2)], with w=const. The local frequencies in the ob-
partial derivatives of the terms containing metrigg,.  Server's(primed and pulsar frames are related by = w
Equation(15) reproduces the ray equation in vaculgky, ~ —Ke{2, which is merely but the Doppler shift. While is
=0 for D=g?%k_k,. Equationg14) and(15) are the gener- constant along the ray sind@ is time-independent in the
ally covariant generalization of the well-known equations forpulsar framew’ should change with the change lof . In
geometrical optics in a dispersive medium with spatial ancPrder to see what might be the effect of the rotation, let us
temporal inhomogeneitj15]. Similar equations were given consider the low-frequencyV*<4mng?/»®, Alfven wave.
by Breuer and Ehlerf9] and Ehlers and Prasanfi8] using  In this case, Eq(12) gives W?=Kf for the Alfven wave,
Hamiltonian interpretation ob (k,x). The above derivation which can be rewritten a®=k-by1—Q?r2. Thus, dw/ar
shows in the most transparent way the relation of the rayncludes a term related t@\/g,/ar, in addition to those re-

whereD ,=dD/dx?® with WandK| constant. In Eq(17), the

first term describes the effects of the plasma parameter inho-
mogeneity, the second term is due to the noninertiality of the
frame (it vanishes in the nonrotating observer’s franoe
space-time curvature, and the last term is due to the change
in the orientation of the magnetic field.

where we used the freedom to choose the multiplier for th
affine parameter. UsingD/d\=0 along the ray, one has
(0D/dky) (dky/dN) + (0D/ox*)(dx?/d\)=0. After substi-
tuting Eq.(14), we arrive at the second equation for the ray
propagation in the following form:
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lated to the change of the magnetic-field directiorin the  frame appears in the additional termikg /dr) ,q= —U%/b"
observer’s frame, this corresponds to a rotating magnetie- — 0?r/b"(1—02?r?)*2 which may be substantial. A de-
field, b=Db(r,t). If k=(w,k;,k4,0), then using Eqg16) and  tailed analysis of the ray propagation in the rotating frame
(17) one finally finds will be presented elsewhere.
To conclude, we provide a closed expression for the dis-

de/dr=b?/b’, dt/dr=U%b’, (18) persion relation for low-frequency long-wavelength waves in
a relativistic multifluid plasma in a strong magnetic field. We
also present a generally covariant form of the equations of
geometrical optics for waves in an arbitrary dispersive me-
dium and apply it to the magnetized plasma. We discuss a
particular application of the proposed theory to rapidly rotat-
ing systems such as pulsars.

dk, /dr=—[WUS =K (kb +ksb ) /K b",
dky/dr=—(kb",+ksb%)/b". (19)

Equation(18) shows that the ray follows the field line in the

rotating frame. In the nonrotating frame because of the time
dependent transformationd(b’/dr)=(b¢—QUf’,)/br. The This research was supported in part by the Israel Science
last term disappears whegy,=1, that is, whenQlr is ne-  Foundation under Grant No. 170/00-1, and in part by a grant
glected. In the equation fdg, , the effect of the noninertial from the Australian Research Council.
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