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Power-law scaling in Beard-Marangoni convection at large Prandtl numbers
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Benard-Marangoni convection at large Prandtl numbers is found to exhibit steadiurbulent behavior in
numerical experiments over a very wide range of Marangoni numbers Ma far away from the primary instability
threshold. A phenomenological theory, taking into account the different character of thermal boundary layers at
the bottom and at the free surface, is developed. It predicts a power-law scaling for the nondimensional
velocity (Peclet numbérand heat fluXNusselt numberof the form Pe-Ma?3, Nu~Ma?®. This prediction is
in good agreement with two-dimensional direct numerical simulations up te 3/2x 10°.
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. INTRODUCTION V.v=0, (1b)

Turbulent Rayleigh-Beard convectior{1] has been ex- 8T+ (v-V)T=V?T, (10
plored over a wide range of Rayleigh numbers Ra and
Prandtl number®, thanks to the comprehensive joint effort v,=v,=0, T=1 (at z=0), (1d)
of experimenta[2-6], analytical[7,8], and two-dimensional
[9] and three-dimensionfl.0] numerical studies. In particu- v,=0, d,T=-1, Ju=—MasT (atz=1).
lar, the development of experimental techniques for handling (1e)

substances such as He org3# the vicinity of their critical
points has permitted one to analyze convection at larg
Prandtl number$§6] in great detail.

In contrast to buoyancy-driven Rayleigh+Bed convec-
tion, the understanding of surface-tension-drivemnade-
Marangoni convectiofll] is relatively poor. In spite of its
widespread occurence in materials processjig] and
chemical engineering13], phenomenological models pre-
dicting the scaling of the Nusselt number Nu on the Ma-
rangoni number Ma have only recently begun to app&4}.
The present paper focuses on such scaling behavior it i . .
Benard-Marangoni convection in large-Prandtl-number fluids The instability of the basic state=0, T=1-z occurs

employing both two-dimensional numerical simulations andabove Ma~ 7.9'6 for a wave numbgkcwl.99 [15]. Since
boundary layer analyses. In contrast to Rayleignd con- the he_at flux is prescribed, convection reduces the tempera-
vection. the simulations do not show a transition to time-t4re difference across the layer. Therefore, the Nusselt num-

dependent or turbulent flow even at Ma more than 400(Per is defined as

times the critical value. For such high values of Ma, the heat Nu=1/AT, )

transport in thegllaminap simulations shows scaling on Ma.

The exponent is in good agreement with the resultMa”®  \hereAT denotes the mean temperature difference between

derived from a boundary layer analysis of the temperaturgne bottom and the free surface.

field. We solve systentl) numerically using a streamfunction-

vorticity based, pseudospectral Fourier-Chebyshev method.

The scheme is similar to that presented in R&6]. In order

to ensure high resolution with a moderate number of modes,
We consider a one-layer approximation for two- W€ consider a single basic cell of lendth-2a/k. . _

dimensional Beard-Marangoni convectiofil5]. The heat The goal of the simulations was to determine the behavior

flux densityq at the free surface is prescribed. The nondi-Of Benard-Marangoni convection in the limit of large Peclet

mensional computational model in the domaia#<1, with ~ and small Reynolds numbers, i.e., in the case of strong forc-

periodic boundary conditions ir, comprises the following N9 by the instability mechanism but with sufficiently large
dimensionless equations and boundary conditions: Prandtl numbers to render the convective terms in the

Navier-Stokes equations negligible. Therefore, we have cho-
sen to consider the limit of infinite Prandtl number. The ne-
P Y ov+(v-V)V]=—Vp+ V2, (1a glect of nonlinear terms reduces the computational load in

Equationq1) are based on the layer thicknekas the unit of
?ength,dzlx as the unit of time, andjd/\ as the unit of
temperature, wheré denotes the heat conductivity of the
fluid. Velocity v=v,e,+v,€, and temperaturé depend orx
andz only. The Prandtl numbeP = v/« represents the ratio
of kinematic viscosity and thermal diffusivity. The Ma-
rangoni number is defined as Mayqd?/\ pvk, wherep de-
notes the density of the fluid ang=—do/dT is the (nega-
tive) derivative of the surface tension with respect to the
mperature.

Il. MATHEMATICAL MODEL
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TABLE I. Simulation parameters and dab, andN, denote the 1.0
number of collocation points. The quantity)(0)—(T)(0.5) is an z
estimate of the thickness of the thermal boundary layer at the bot-
tom. (a) 05 |- B
20 X 3{0

Ma Ny u
0.0
1.0x10* 512 65 5.46&10° 3.98 0.222 00
2.0x10" 512 65 8.7K410" 4.71 0.188 10 f
4.0<10° 1024 129 1.4&10° 5.56 0.160 z
8.0x10" 1024 129 2.2%10° 6.56 0.137
1.6x10° 1024 129 3.5%10° 7.72 0.117 (b) os
3.2x10° 2048 129 57%10° 9.08 0.100

the simulations considerably. The applicability of this limit 10
for high-Prandtl-number Berd-Marangoni convection was z

already demonstrated in a number of theoretical and numeri

cal studieg17,18. For our case, the computational results (C) ©°5

for infinite P and P= 100, which is a typical value for sili-

cone oils, match closely up to values of MaC®, i.e., for

more than three decades above the onset of instability. Tabl 0.0
| shows the simulation results and the numerical parameter: 10
used. With three-dimensional simulations, such high values
of Ma are currently not accessible.
(d)y os
Il RESULTS
An unexpected observation in all our numerical simula- 0.0~

tions was the complete absence of time-dependent flows ana

the reproducible evolution toward robust stationary rolls FIG. 1. Isotherm§(a) and(b)] and streamlineB(c) and(d)] for
(shown in Fig. } from arbitrary initial conditions. Although P=c and Ma=10" [(a) and(c)] and Ma=3.2x 10° [(b) and (d)].

Ma exceeded Maby more than three orders of magnitude,

no temporal change was observed in the boundary layefent horizontal averages, are particularly striking. The
structure of the temperature figl#ligs 1@ and ¥b)] and in  streamline pattern in the bulk remains approximately the
the streamline$Fig 1(c) and Xd)]. In contrast, in Rayleigh- same. Strong velocity gradients occur only at the downflow
Benard convection between free-slip boundaries, the floweg|ons of the free surface. The spatial rms velogitgi.e.,
becomes time-dependent at-R&x 10* [19], which is about  the Pelet number is shown as function of Ma in Fig.(8).

10? times the critical value for onset of convection. Although Our numerical results are very well fitted by

our observations do not exclude the possibility of instability

and time-dependent behavior at even larger Ma, this scenario u~Ma%€8 ®)
does not seem very likely.

One heuristic argument supporting this view is based on 4 et
the coupling between temperature and flow fields. In 00 L Yy /\? 1
Rayleigh-Baard convection, the buoyancy term couples the ’ / [
temperature and velocity distributions throughout the fluid. 08 Do i i
In Benard-Marangoni convection, the equations for velocity 07 | oo -

. . \ ¢ Ma=10000
and temperature decouple in the bulk. Only the Marangoni ;¢ | , N N Ma_00000 -
boundary condition at the free surface transmits information : e Ma=40000
on the temperature distribution to the velocity field. This may? %° [ P T Ma-80000 ]
be a severe limitation for the occurence of instabilities of the ~ 0.4 ! P Maras0000 |
steady rolls. Moreover, the lateral temperature gradients a 03 | ' {' ' 4
the free surface do not grow sufficiently fast to support the ., | NG ]
hydrothermal wave instability20]. A final answer on this B
issue requires a linear stability analysis of the roll solutions. 01 r = ]

The absence of secondary bifurcations simplifies the 00 s~ "0 085 090 095 7100
analysis of the asymptotic state. Figure 1 shows that, upor T

increasing the Marangoni number, thermal boundary layers
form around an isothermal core in the center of the rolls. FIG. 2. Vertical profiles of the horizontally averaged tempera-

Vertical temperature profiles plotted in Fig. 2, which repre-ture(T) for P=c.
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10° . where w=d,v,— d,v, denotes the vorticity. The integral on
the left hand side is evaluated at the free surfasd. We

g shall now estimate the terms in the energy budbet as-

sumed to be of order unity, and is not taken into account any

further. The right hand side is then justu?. On the left hand

side we assume that the velocity at the free surface us

We then have to estimate the surface temperature difference

across the roll. As for inertial convectidi6], we assume

that it is of the same order as the temperature dkdp,,

0 P=100 across the free surface thermal boundary layer. Putting these
Int. estimates into Eq(5) yields

(a)

P infinite ]

10* 10° MaA T pU~ U2 (6)

In order to determin@dT,,,, we first estimate the thickness
diop Of the free surface boundary layer. The horizontal ve-
locity is of order u throughout the free surface thermal
boundary layer. From the boundary conditigyT=—1 at
z=1 and the estimaté,,,~u~"? it follows that

(b)

O N 00w O
T

Nu ATop~u~ 2 )

Using Egs.(6) and(7), we obtain the scaling law

L 4 P infinite

4 O P=100 ]
Int. u~Ma*?, ®)
3104 10° where the exponent is in excellent agreement with the nu-
Ma merical value of 0.68 in Eq(3).

For the Nusselt number defined in EE), the total tem-

FIG. 3. Power-law scaling ofa) the rms velocityu (i.e., the perature difference

Peclet numbey and(b) the Nusselt number Nu on Ma. The straight
lines (power laws interpolate the values for Mal.6x10° and
Ma=3.2x 10° (P=0<). Data forP=100 are very close to the val-
ues for infiniteP.

AT=ATiopt ATyor 9)

must be estimated, whereT,,; denotes the temperature dif-
ference across the bottom boundary layer. In contrast to the
free surfacey, is zero atz=0. Across a distancefrom the
bottom,v, rises to values of order (except near the bound-
aries between roljsAs noted in Ref[7], sufficiently close to
Nu~Ma?2* (4)  the bottom and away from the lateral roll boundaries we can
approximate the velocity field by a linear profig=zul,
v,~0(zv,). With this assumption, the boundary layer equa-
gon for the temperature at the bottom becomes

For Nu as a function of M@Fig. 3(b)], a power-law fit is not
as exact, but still rather good. We obtain

from our numerical data.

The observed scaling exponents can be explained by
simple phenomenological model. The derivation of the
model is very similar to that presented in Rgf6] for iner-

tial Benard-Marangoni convection. We shall not take the de- i ) . .
tailed flow structure such as corner regions of the rolls, into! "€ ength scalé is determined by the streamfunction dis-

account. A more refined approach including these detailfiPution only, which is insensitive to changing Mef. Figs.

could be guided by the models of Robef®l] for two-  1(¢) and Xd)]. From Eq.(10), the thickness, of the ther-

dimensional Rayleigh-Beard convection at infinite Prandtl Mal boundary layer can be estimated either by dimensional

number. analysis or by using the similarity solution in the varialjle
The cornerstone of the model is the kinetic-energy budget™ z/(Ix/u)*® given in Ref.[7]. We find

For steady convection, energy input through the Marangoni

(uz/l)a,T=42T. (10)

. LT . . . 13
effect is equal to dissipation through viscosity. For a single Fpor~u (11
roll cell located in the interval &x=<L/2, we have the exact
relation Since the heat flux at the top and bottom must be the same,

the mean slope of the temperature profilezat0 must be
equal to—1. Consequently,

fuz L
—Ma d de=f f dxd 5
o X 0Jo ¥ z © ATpo~u" 18 (12
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We see that, for large, the contribution from the bottom
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steady laminar convection breaks down at a Reynolds num-

boundary layer dominateST. The Nusselt number therefore ber Re, we can estimate the corresponding threshold Ma

scales withu'’®. Using Eq.(8), we end up with the relation

Nu~Ma?°. (13

using Eq.(8). The result is

Ma,~ P32, (14)

The constant slope of 1 of the mean temperature profile at In our simulations Wi_thP=1_00 thi_s thre_shold was never
the top and bottom is obvious from Fig. 2, as well as theexceeded, whereas in a simulation with=10 and Ma
increasing difference in thickness between the top and bot=1.6x 10° the flow turned out to be time dependent.

tom boundary layers. For the scaling of Nu on Ma, the de-

viation of our numerical exponent 0.24f. Eq.(4)] from the

Experimental measurements of Nu over a wide range of
Ma in Benard-Marangoni convection at larg&have so far

theoretical value of 2/9 is largely due to the contribution ofnot been made. The experiments of Ecletral. [22] reached
AT,p. To eliminate this effect, we consider the quantity Ma~10Ma;, but for the silicone oil-air systems consider-

(T(x,z=0)—T(x,z=1/2)) given in Table |, wherg() de-
notes the average with respectxoThis quantity is a good
measure ofAT,,, for sufficiently large Ma. The theoretical
scaling exponent foA Ty, on Ma is —2/9. A power-law fit
of the simulation data gives 0.228, which is considerably
closer to the theoretical value than the exponent for Nu.

IV. DISCUSSION AND CONCLUSIONS

A prerequisite for the applicability of the=« results for
finite P is that the Reynolds numberP, i.e., the velocity in

able further progress is unlikely. A more promising candidate
for large values of Ma may be gear its critical point, but
the feasibility of such experiments requires further analysis.
Concentration-driven Marangoni convection at a high
Schmidt numbefthe analog o), which is governed by the
same basic equations, could also be considered as an option.
In conclusion, we have shown that two-dimensional
Benard-Marangoni convection at larderemains steady up
to very large values of Ma. The asymptotic state is charac-
terized by laminar boundary layers, which are of different
type at the top and bottom. Velocity and heat transport are

viscous units, remains small compared with unity. Otherwisecontrolled by the upper and lower thermal boundary layer,

the convective term in Eq(la will affect the streamline

respectively. We find a good agreement between our numeri-

pattern, and, together with the time derivative, will eventu-cal results and the power laws predicted by a phenomenolo-
ally cause hydrodynamic instabilities. If we assume thatgial model.

[1] E.D. Siggia, Annu. Rev. Fluid Mecl26, 137 (1994.

[2] J.J. Niemela, L. Skrbek, K.R. Sreenivasan, and R.J. Donnelly,

Nature(London 404, 837 (2000.

[3] J.A. Glazier, T. Segawa, A. Naert, and M. Sano, Nafluen-
don) 398 307 (1999.

[4] X. Chavanne, F. ChillaB. Castaing, B. Heral, B. Chabaud,
and J. Chaussy, Phys. Rev. Létf, 3648(1997).

[5] S. Cioni, S. Ciliberto, and J. Sommeria, J. Fluid Me8B5,
111(1997.

[6] S. Ashkenazi and V. Steinberg, Phys. Rev. L&B8, 3641
(1999.

[7] B.l. Shraiman and E.D. Siggia, Phys. Rev42 3650(1990.

[8] S. Grossmann and D. Lohse, J. Fluid Medh@7, 27 (2000.

[9] E.E. DeLuca, J. Werne, R. Rosner, and F. Cattaneo, Phys. Rev.

Lett. 64, 2370(1990.

[10] R.M. Kerr, J. Fluid Mech310, 139 (1996.

[11] S.H. Davis, Annu. Rev. Fluid Mech.9, 403 (1987).

[12] J. SzekelyFluid Flow Phenomena in Metals Processi(ica-
demic Press, New York, 1979

[13] D.A. Edwards, H. Brenner, and D. T. Wasamterfacial Trans-

port Processes and RheologButterworth-Heinemann, Bos-

ton, 199).

[14] A. Pumir and L. Blumenfeld, Phys. Rev. &, R4528(1996.

[15] J.R.A. Pearson, J. Fluid Mech, 489 (1958.

[16] T. Boeck and A. Thess, J. Fluid MecB50, 149 (1997).

[17] M. Bestehorn, Phys. Rev. &3(5), 3622(1993.

[18] A. Thess and S. Orszag, J. Fluid Me@83 201 (1995.

[19] L.H. Kellogg and C.A. Stewart, Phys. Fluids321374(1991).

[20] Instability of the upper thermal boundary layer with respect to

hydrothermal waves can occur if the corresponding Marangoni

number Mg, (characterizing the horizontal temperature gra-

dient at the free surfageexceeds a finite thresholM.K.

Smith and S.H. Davis, J. Fluid Mechi32, 119 (1983]. We

estimate Ma,, by Mo~ yAT opd0/Lpvk With ATg/L

corresponding to the horizontal temperature gradient. From the

boundary-layer scalings, it then follows that Ma-u~% i.e.,

the upper boundary layer cannot become unstable.

[21] G.O. Roberts, Geophys. Astrophys. Fluid D¢2, 235(1979.

[22] K. Eckert, M. Bestehorn, and A. Thess, J. Fluid Me8bhs§,
155(1998.

027303-4



