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Vortex pairs in viscoelastic Couette-Taylor flow
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In experiments on dilute polymers between rotating cylinders Groisman and StejPbeg Rev. Lett78,
1460(1997] observed the formation of vortices that were not equidistantly spaced but rather paired up in what
they called “diwhirls.” We calculate these states within an Oldroyd-B model with parameters adapted to the
experiment and find good agreement with the observed characteristics of the diwhirls.
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Small amounts of polymers added to a fluid can changeeasonable to start from a model where the stress tensor is
the large scale flow behavior in surprising and unexpectedlivided into two parts, one containing the Newtonian prop-
ways, ranging from rod climbing in laminar vortex flow to erties of the solvent and the other the viscoelastic properties
drag reduction in fully developed turbulent shear flowsof the polymer[2]. The Newtonian part is characterized by
[1-4]. Some of these phenomena are fairly well understoodthe usual shear viscositys for the solvent. The polymer part
but others, in particular those involving more complicatedis described l:_)y a Maxwell model with a single relaxation
flows, still await explanation. On the route from simple lami- rate A and a viscosityr, . In most of the experimentg, is
nar flows to progressively more complicated flow topologiessmall, 7,/(7s+ 7,) = 0.074, and kept fixed. This then leaves
the Couette-Taylor cell stands out as a system particularlt Single polymer parameter, the relaxation rate
well suited for experimental and theoretical investigations. The experiments by Groisman and Steinberg are in a ge-
The flow between concentric cylinders is a closed shear flo@metry with fixed outer cylinder and rotating inner cylinder.
that has a rich bifurcation structure with many different flow With d the gap between the cylindefg, and(}; the radius
regimes already in the Newtonian cd&e-7]. Interestingly, ~and rotation frequency of the inner cylinder, respectively,
in the limit of large radii it goes over into plane Couette flow andp the density of the fluid, we can form a Reynolds num-
and some of the structures observed in curved Couette floRer Re=R;Q;dp/ 5, where n= s+ 7, is the total viscosity
survive in this limit[8,9]. A number of studies have been of polymer and solvent. The relaxation ratés made dimen-
devoted to various aspects of this viscoelastic Couette-Tayld#ionless by the advective time, giving the Deborah number
problem(e.g.,[10—15 and the review4]). De=AR;Q;/d. We denote the ratio between Deborah num-

A systematic study of the phase diagram of this system fober and Reynolds number by=De/Re.

a variety of polymer parameters was taken up recently by The equations of motion are given by

Groisman and Steinbeifd6—20. Using a special combina- . . . 1. 1.

tion of polymer and solvent they could scan a large range of du=—(u-Vyu—=Vp+-V.r, (N
parameters, almost from the Newtonian limit to the ex- P p

tremely elastic limit. In particular, they observed a state ofwherep is the hydrodynamic pressure anthe stress tensor.
highly localized vortex pairs that they called diwhifls7]. ~ The stress tensar has two contribution$2],

While there have been earlier observations of such states, T=T+ Ty, 2)
then named “tall Taylor cellsT10], they apparently have not ) , ) . . , -
been studied theoretically. It is our aim here to analyze theitvhich differ in their relation to the strain tens@=Vu
properties in an Oldroyd-B mod€]2] with parameters +(Vu)'. For the Newtonian solvent,= 7.S. For the poly-

adapted to the experiments at the Weizmann Institute. meric part, we take the constitutive equation
Groisman and Steinbef@0] give an extensive discussion Dr
of the physical forces and rheological properties that can Tp+)\D_tp: 7pS, 3

explain the elastic effects on the flow and the formation of
diwhirls. In a Newtonian fluid Taylor vortices form as a cen- With the upper convected derivative as time derivative,
trifugal instability of the purely azimuthal Couette flow. D7, . . ..
Polymers can drive an instability through their elastic prop- D—t=r9t7p+(UV)Tp—[Tp(VU)tHVU)Tp]- 4
erties, by a mechanism similar to the one that gives rise to o
the Weissenberg effegl]. This effect, usually demonstrated Of course, the flow is incompressibl¥,-u=0. Equations
with a rotating rod, is due to a combination of elasticity and(1)—(4) define the Oldroyd-B model.
curvature. The internal elasticity of the polymers opposes In all the numerical simulations and the stability analyses
any stretching and leads in the case of curved streamlines tbe flow was constrained to be axially symmetric. This limits
a force that is directed towards the center of curvature. Thithe extent to which time-dependent studies can be compared
force should also influence the vortices within a Couette-with experiment but the axially symmetric diwhirls, the main
Taylor system with its curved streamlingks]. aim of this work, are covered.

Within this picture and with the information on the prop-  For the full numerical simulations the equations are dis-
erties of the fluids used by Groisman and Steinberg it seemsretized on a staggered gri@1,22 where the positions of
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but of two different wave numbers. These oscillating states
have been found before in numerical studies of viscoelastic
Couette-Taylor flow with an axial symmetf{2,23,24.

In agreement with the experimerjts6], the critical Rey-
nolds number is a bit lower than the Newtonian one, Re
=81.0, fork<<0.1. The rapid drop in critical Reynolds num-
ber for k>0.23 agrees with the experimental data, too, but
the numerical simulations show a transition to an ordered
oscillation, whereas the experiment shows disordered oscil-
lations, presumably due to three-dimensiot&) instabili-
ties. As elasticity becomes more important the critical wave
number increases considerably. In the intermediate region
the 2D stability curve and the type of transition are very
different from the experimental observations. This issue is
perhaps related to the 3D instabilities that were observed in
the calculations of Sureshkumat al. [25] on a pure Max-
well fluid.

However, in the experiment axially symmetric structures

70 emerge out of the three-dimensional flow as the Reynolds
0.10 0.15 0.20 0.25 number is lowered. These states are best characterized as
¥ pairs of counter-rotating vortices with a narrow distance be-

FIG. 1. Stability diagram inc-Re space. The squares indicate the linear tWeen their centers of vorticity and a larger spacing between
stability border between Couette flow and an oscillatory secondary flowthe pairs. The interaction between the pairs is weak and the
The stars refer to stationary diwhirl states obtained from a finite perturbaspacing between them is fairly irregular. When they first ap-
tion. The triaﬁgles represent decaying diwhi_rls, S0 thgt below this line thepear they oscillate relative to each other but become station-
Couette flow is globaly stable. The dashed lines are lines of constant De. ary as Re is further decreased. These stationary vortex pairs

are the diwhirlg17]. They are axisymmetric and should be
velocity points and pressure points are shifted by half a gricaccessible to numerical study in our 2D model even though
size in order to avoid oscillatory solutions. Centered differ-they arise out of a nonaxisymmetric flow.
ences for the derivatives provide second order accuracy. A Since the bifurcation to the formation of diwhirls is obvi-
semi-implicit Crank-Nicholson scheme with iterative solu- ously subcritical we adopt in our numerical simulations the
tion of the nonlinear equations was used for time integratiorexperimental protocol by first raising the Reynolds number
[21]. Since Eq.(3) is of first order in the derivatives, an above the stability line and then lowering it slowly. The ex-
additional termBV?r was added in order to suppress oscil- periments show that the intermediate state is 3D so that the
latory numerical instabilities. This artificial viscosity damp- formation of diwhirls as observed in the 2D simulation is not
ens wavelengths of the order of the grid size and has only physically relevant. But as in the experiments the diwhirls
neglible effect on the flow structures that typically extendpersist below the linear instability line: the transition is
over several grid points. strongly subcritical. Figure 1 shows the stability diagram in

The calculations were carried out for a system withthe x-Re plane. All the stable and the decaying states were
7p/17=0.074 andR;/R,=0.708, wheren= ns+ 7, is the  obtained by direct numerical simulation of the full equations
total viscosity of the solution anR, the radius of the outer and following the time evolution until the diwhirls either
cylinder, in correspondence with the experim¢h6]. The  stabilized or decayed.
resolution of the spatial grid was 26 points in radial direction The actual shape of the diwhirls is compared to ordinary
and 200 points in axial direction. This corresponds to a cyl-TVF in Fig. 2. While in TVF the vortices are almost sym-
inder height of &. We used periodic boundary conditions in metric, the diwhirls show a strong asymmetry between in-
axial direction. The calculations were started with Couetteflow and outflow. The region where fluid moves towards the
flow plus a disturbance of varying amplitude at fixed param-4nner cylinder(on the left-hand-side of the framés rather
eters Re and. small and has a size of about 8.7The outflow region in-

The radially symmetric Couette profile is not affected bycreases in width from 2dat «=0.15 to 2.4 at xk=0.18.
the polymers and remains in the laminar flow state. Its staThe numbers quoted {17] are an inflow region of 0 and
bility properties, however, are changed. Following thean outflow region of 2.8.
method of Kupfermaf13] we represent the linearized equa-  Groisman and Steinberfd7—2Q have characterized the
tions on a grid and study the resulting generalized eigenvalueortices by the radial velocity measured along the middle of
problem. For the values of the experimental apparatus anthe cell in axial direction and by the axial velocity profile
the ratio ,/7=0.074, we obtain the stability boundary near the inner cylinder. Results from our simulation are
shown in Fig. 1. There are three regions, separated by cusgdown in Figs. 3 and 4. From Fig. 3 (9] one can read off
in the stability bordefupper curve In each region a differ- a ratio of maximal ouflow velocity to maximal inflow veloc-
ent state is formed in the bifurcation: Taylor vortex flow ity of about 0.7/5.5-0.13 for states with various elasticities
(TVF) for small k<0.11, or oscillatory states for large, in a system with different geometry and different ratig/ .
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FIG. 3. Normalized diwhirl profilesi, vs z for Re=84.0 and differenk.
The strong inflow does not change with increasing elasticity and the size of
the inflow region is about OdZ The outflow increases witk, from 2.0d at
x=0.15to 2.4 at k=0.18. The small vortices on both sides of the diwhirl
are inertial effectsz is measured in gap sizes

00 R S , : T Within the fgll numerical simulations we can glso stud_y
the time evolution of the system. In the intermediate elastic-
i ‘ ity region that is numerically accessible here the interaction
between the diwhirls is still noticeable. This is particularly
HlJ , clear from the sequence shown in Fig. 5, where a simulation
| is started with an initial condition that would evolve into the
Hl Taylor vortex state in the Newtonian case. Soon slight dif-
Y ' fgrences between the vo_rtices are amplified and one vortex
B N d!sappears. Th(_-3 Weaken_mg of a second vortex and its final
~ disappearance is shown in a set of frames in Fig. 5. The state

Pt - — " with three vortices does not change much as the integration
continues. Lowering the Reynolds number a little bit and
following the time evolution more than three times as long as
for the previous sequence finally produces a state with three
symmetrically placed diwhirls. This state then looks very
much like the tall Taylor vortices observed by Beavers and
Joseph in a polyacrylamid solutiga0].

The favorable comparison between the experimental and
numerical characterization of the diwhirls suggests that the
Oldroyd-B model should provide a good starting point for an
exploration of the full phase diagrafi9,20, at least for

(@) (b) intermediate elasticity. For higher elasticity parameters the
FIG. 2. Comparison between a typical vortex pair in T} and a
diwhirl (b) visualized by the streamfunction. The latter shows a strong 107
asymmetry between inflow and outflow, the inflow being concentrated in a
very small region between the vortices. The inner cylinder is on the left- o5+ | A== r=d2 ||
hand-side. _
. : . . . . I 00 < e
For our simulation Fig. 3 gives the ratio of about 0.2 with a > VS
strong dependence or. The distance between maximum
and minimum is about 0d compared to the experimental 057
0.4d. The flow structures are rather stable and not much
affected by variations inc and Re. Increasing the elasticity -1.000 20 5 50 50

reduces the maximal outflow and smooths the oscillations in
u, . These spatial oscillations are an inertial effect, connected
with the formation of small vortices at that distance. The FIG. 4. Axial velocity profilesu, vs z for Re=81.0 and«=0.14 at
modulations also appear in the axial velocity profi(&sg. dis_tances of one-qua@er and (_)ne-_half gap width measureq from the inner
4), which differ in this respect from the measured ofieig cylinder. The reversal in flow direction between the two profiles shows that
! . . . ’ the center of the vortices is not in the middle of the gap and that the profiles
4 of [17]). The mos_t likely eXplanat'O_n for the difference are taken on different sides of the cent#ris is already indicated by the
between our numerics and the experiments are the small@&ctor field in Fig. 2. The maximum value fou, in our units is 0.0139 for

values of Deborah number accessible in the numerics. r=d/4 and 0.0034 for+d/2.

z
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FIG. 5. Evolution of Taylor vortices into diwhirls
visualized by the stream function. The parameters are
xk=0.15, 7,/7=0.074, 3=0.0035, andL=8d. The
Reynolds number is Re81.5 for the first five frames
and Re=80.0 for the last one. The initial stata) is an
eigensolution of the linearized system. Within 600 time
units four vortices of different strength have form@gl
The next two frames show the elimination of one more
vortex at times 80@c) and 1000(d). Further rearrange-
ments are slow, framée) being at time 1600. For the
final frame, the Reynolds number was slightly lowered
to Re=80.0 and the system was integrated for another
5000 time steps. Fram@) appears to be a stationary
and symmetric arrangement of three diwhirls.
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