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Vortex pairs in viscoelastic Couette-Taylor flow
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In experiments on dilute polymers between rotating cylinders Groisman and Steinberg@Phys. Rev. Lett.78,
1460~1997!# observed the formation of vortices that were not equidistantly spaced but rather paired up in what
they called ‘‘diwhirls.’’ We calculate these states within an Oldroyd-B model with parameters adapted to the
experiment and find good agreement with the observed characteristics of the diwhirls.
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Small amounts of polymers added to a fluid can cha
the large scale flow behavior in surprising and unexpec
ways, ranging from rod climbing in laminar vortex flow t
drag reduction in fully developed turbulent shear flo
@1–4#. Some of these phenomena are fairly well understo
but others, in particular those involving more complicat
flows, still await explanation. On the route from simple lam
nar flows to progressively more complicated flow topolog
the Couette-Taylor cell stands out as a system particul
well suited for experimental and theoretical investigatio
The flow between concentric cylinders is a closed shear fl
that has a rich bifurcation structure with many different flo
regimes already in the Newtonian case@5–7#. Interestingly,
in the limit of large radii it goes over into plane Couette flo
and some of the structures observed in curved Couette
survive in this limit @8,9#. A number of studies have bee
devoted to various aspects of this viscoelastic Couette-Ta
problem~e.g.,@10–15# and the review@4#!.

A systematic study of the phase diagram of this system
a variety of polymer parameters was taken up recently
Groisman and Steinberg@16–20#. Using a special combina
tion of polymer and solvent they could scan a large range
parameters, almost from the Newtonian limit to the e
tremely elastic limit. In particular, they observed a state
highly localized vortex pairs that they called diwhirls@17#.
While there have been earlier observations of such sta
then named ‘‘tall Taylor cells’’@10#, they apparently have no
been studied theoretically. It is our aim here to analyze th
properties in an Oldroyd-B model@2# with parameters
adapted to the experiments at the Weizmann Institute.

Groisman and Steinberg@20# give an extensive discussio
of the physical forces and rheological properties that
explain the elastic effects on the flow and the formation
diwhirls. In a Newtonian fluid Taylor vortices form as a ce
trifugal instability of the purely azimuthal Couette flow
Polymers can drive an instability through their elastic pro
erties, by a mechanism similar to the one that gives rise
the Weissenberg effect@1#. This effect, usually demonstrate
with a rotating rod, is due to a combination of elasticity a
curvature. The internal elasticity of the polymers oppo
any stretching and leads in the case of curved streamline
a force that is directed towards the center of curvature. T
force should also influence the vortices within a Coue
Taylor system with its curved streamlines@15#.

Within this picture and with the information on the pro
erties of the fluids used by Groisman and Steinberg it se
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reasonable to start from a model where the stress tens
divided into two parts, one containing the Newtonian pro
erties of the solvent and the other the viscoelastic proper
of the polymer@2#. The Newtonian part is characterized b
the usual shear viscosityhs for the solvent. The polymer par
is described by a Maxwell model with a single relaxati
ratel and a viscosityhp . In most of the experimentshp is
small,hp /(hs1hp)50.074, and kept fixed. This then leave
a single polymer parameter, the relaxation ratel.

The experiments by Groisman and Steinberg are in a
ometry with fixed outer cylinder and rotating inner cylinde
With d the gap between the cylinders,Ri andV i the radius
and rotation frequency of the inner cylinder, respective
andr the density of the fluid, we can form a Reynolds num
ber Re5RiV idr/h, whereh5hs1hp is the total viscosity
of polymer and solvent. The relaxation ratel is made dimen-
sionless by the advective time, giving the Deborah num
De5lRiV i /d. We denote the ratio between Deborah nu
ber and Reynolds number byk5De/Re.

The equations of motion are given by

] tuW 52~uW •¹W !uW 2
1

r
¹W p1

1

r
¹W •t, ~1!

wherep is the hydrodynamic pressure andt the stress tensor
The stress tensort has two contributions@2#,

t5ts1tp , ~2!

which differ in their relation to the strain tensorS5¹W uW

1(¹W uW )T. For the Newtonian solvent,ts5hsS. For the poly-
meric part, we take the constitutive equation

tp1l
Dtp

Dt
5hpS, ~3!

with the upper convected derivative as time derivative,

Dtp

Dt
5] ttp1~uW ¹W !tp2@tp~¹W uW ! t1~¹W uW !tp#. ~4!

Of course, the flow is incompressible,¹W •uW 50. Equations
~1!–~4! define the Oldroyd-B model.

In all the numerical simulations and the stability analys
the flow was constrained to be axially symmetric. This lim
the extent to which time-dependent studies can be comp
with experiment but the axially symmetric diwhirls, the ma
aim of this work, are covered.

For the full numerical simulations the equations are d
cretized on a staggered grid@21,22# where the positions of
©2001 The American Physical Society01-1
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velocity points and pressure points are shifted by half a g
size in order to avoid oscillatory solutions. Centered diff
ences for the derivatives provide second order accuracy
semi-implicit Crank-Nicholson scheme with iterative sol
tion of the nonlinear equations was used for time integrat
@21#. Since Eq.~3! is of first order in the derivatives, a
additional termb¹2t was added in order to suppress osc
latory numerical instabilities. This artificial viscosity dam
ens wavelengths of the order of the grid size and has on
neglible effect on the flow structures that typically exte
over several grid points.

The calculations were carried out for a system w
hp /h50.074 andRi /Ro50.708, whereh5hs1hp is the
total viscosity of the solution andRo the radius of the oute
cylinder, in correspondence with the experiment@16#. The
resolution of the spatial grid was 26 points in radial directi
and 200 points in axial direction. This corresponds to a c
inder height of 8d. We used periodic boundary conditions
axial direction. The calculations were started with Coue
flow plus a disturbance of varying amplitude at fixed para
eters Re andk.

The radially symmetric Couette profile is not affected
the polymers and remains in the laminar flow state. Its s
bility properties, however, are changed. Following t
method of Kupferman@13# we represent the linearized equ
tions on a grid and study the resulting generalized eigenv
problem. For the values of the experimental apparatus
the ratio hp /h50.074, we obtain the stability boundar
shown in Fig. 1. There are three regions, separated by c
in the stability border~upper curve!. In each region a differ-
ent state is formed in the bifurcation: Taylor vortex flo
~TVF! for small k,0.11, or oscillatory states for largerk,

FIG. 1. Stability diagram ink-Re space. The squares indicate the line
stability border between Couette flow and an oscillatory secondary fl
The stars refer to stationary diwhirl states obtained from a finite pertu
tion. The triangles represent decaying diwhirls, so that below this line
Couette flow is globaly stable. The dashed lines are lines of constant D
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but of two different wave numbers. These oscillating sta
have been found before in numerical studies of viscoela
Couette-Taylor flow with an axial symmetry@12,23,24#.

In agreement with the experiments@16#, the critical Rey-
nolds number is a bit lower than the Newtonian one, Recr,N
581.0, fork,0.1. The rapid drop in critical Reynolds num
ber for k.0.23 agrees with the experimental data, too, b
the numerical simulations show a transition to an orde
oscillation, whereas the experiment shows disordered os
lations, presumably due to three-dimensional~3D! instabili-
ties. As elasticity becomes more important the critical wa
number increases considerably. In the intermediate reg
the 2D stability curve and the type of transition are ve
different from the experimental observations. This issue
perhaps related to the 3D instabilities that were observe
the calculations of Sureshkumaret al. @25# on a pure Max-
well fluid.

However, in the experiment axially symmetric structur
emerge out of the three-dimensional flow as the Reyno
number is lowered. These states are best characterize
pairs of counter-rotating vortices with a narrow distance
tween their centers of vorticity and a larger spacing betw
the pairs. The interaction between the pairs is weak and
spacing between them is fairly irregular. When they first a
pear they oscillate relative to each other but become stat
ary as Re is further decreased. These stationary vortex p
are the diwhirls@17#. They are axisymmetric and should b
accessible to numerical study in our 2D model even thou
they arise out of a nonaxisymmetric flow.

Since the bifurcation to the formation of diwhirls is obv
ously subcritical we adopt in our numerical simulations t
experimental protocol by first raising the Reynolds numb
above the stability line and then lowering it slowly. The e
periments show that the intermediate state is 3D so that
formation of diwhirls as observed in the 2D simulation is n
physically relevant. But as in the experiments the diwhi
persist below the linear instability line: the transition
strongly subcritical. Figure 1 shows the stability diagram
the k-Re plane. All the stable and the decaying states w
obtained by direct numerical simulation of the full equatio
and following the time evolution until the diwhirls eithe
stabilized or decayed.

The actual shape of the diwhirls is compared to ordin
TVF in Fig. 2. While in TVF the vortices are almost sym
metric, the diwhirls show a strong asymmetry between
flow and outflow. The region where fluid moves towards t
inner cylinder~on the left-hand-side of the frame! is rather
small and has a size of about 0.7d. The outflow region in-
creases in width from 2.0d at k50.15 to 2.4d at k50.18.
The numbers quoted in@17# are an inflow region of 0.5d and
an outflow region of 2.5d.

Groisman and Steinberg@17–20# have characterized th
vortices by the radial velocity measured along the middle
the cell in axial direction and by the axial velocity profi
near the inner cylinder. Results from our simulation a
shown in Figs. 3 and 4. From Fig. 3 of@19# one can read off
a ratio of maximal ouflow velocity to maximal inflow veloc
ity of about 0.7/5.5'0.13 for states with various elasticitie
in a system with different geometry and different ratiohp /h.
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For our simulation Fig. 3 gives the ratio of about 0.2 with
strong dependence onk. The distance between maximu
and minimum is about 0.6d compared to the experimenta
0.4d. The flow structures are rather stable and not mu
affected by variations ink and Re. Increasing the elasticit
reduces the maximal outflow and smooths the oscillation
ur . These spatial oscillations are an inertial effect, connec
with the formation of small vortices at that distance. T
modulations also appear in the axial velocity profiles~Fig.
4!, which differ in this respect from the measured ones~Fig.
4 of @17#!. The most likely explanation for the differenc
between our numerics and the experiments are the sm
values of Deborah number accessible in the numerics.

FIG. 2. Comparison between a typical vortex pair in TVF~a! and a
diwhirl ~b! visualized by the streamfunction. The latter shows a stro
asymmetry between inflow and outflow, the inflow being concentrated
very small region between the vortices. The inner cylinder is on the l
hand-side.
02730
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Within the full numerical simulations we can also stud
the time evolution of the system. In the intermediate elas
ity region that is numerically accessible here the interact
between the diwhirls is still noticeable. This is particular
clear from the sequence shown in Fig. 5, where a simula
is started with an initial condition that would evolve into th
Taylor vortex state in the Newtonian case. Soon slight d
ferences between the vortices are amplified and one vo
disappears. The weakening of a second vortex and its fi
disappearance is shown in a set of frames in Fig. 5. The s
with three vortices does not change much as the integra
continues. Lowering the Reynolds number a little bit a
following the time evolution more than three times as long
for the previous sequence finally produces a state with th
symmetrically placed diwhirls. This state then looks ve
much like the tall Taylor vortices observed by Beavers a
Joseph in a polyacrylamid solution@10#.

The favorable comparison between the experimental
numerical characterization of the diwhirls suggests that
Oldroyd-B model should provide a good starting point for
exploration of the full phase diagram@19,20#, at least for
intermediate elasticity. For higher elasticity parameters

g
a
t-

FIG. 3. Normalized diwhirl profilesur vs z for Re584.0 and differentk.
The strong inflow does not change with increasing elasticity and the siz
the inflow region is about 0.7d. The outflow increases withk, from 2.0d at
k50.15 to 2.4d at k50.18. The small vortices on both sides of the diwh
are inertial effects.z is measured in gap sizesd.

FIG. 4. Axial velocity profilesuz vs z for Re581.0 andk50.14 at
distances of one-quarter and one-half gap width measured from the i
cylinder. The reversal in flow direction between the two profiles shows
the center of the vortices is not in the middle of the gap and that the pro
are taken on different sides of the center~this is already indicated by the
vector field in Fig. 2!. The maximum value foruz in our units is 0.0139 for
r5d/4 and 0.0034 for r5d/2.
1-3
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BRIEF REPORTS PHYSICAL REVIEW E 64 027301
FIG. 5. Evolution of Taylor vortices into diwhirls
visualized by the stream function. The parameters
k50.15, hp /h50.074, b50.0035, andL58d. The
Reynolds number is Re581.5 for the first five frames
and Re580.0 for the last one. The initial state~a! is an
eigensolution of the linearized system. Within 600 tim
units four vortices of different strength have formed~b!.
The next two frames show the elimination of one mo
vortex at times 800~c! and 1000~d!. Further rearrange-
ments are slow, frame~e! being at time 1600. For the
final frame, the Reynolds number was slightly lowere
to Re580.0 and the system was integrated for anoth
5000 time steps. Frame~f! appears to be a stationar
and symmetric arrangement of three diwhirls.
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shear rates between the vortices increase considerably
nonlinear viscoelastic models have to be used~see, e.g., Ku-
mar and Graham@26#!.
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