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Dynamics of solitons and quasisolitons of the cubic third-order nonlinear Schro¨dinger equation
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The dynamics of soliton and quasisoliton solutions of the cubic third-order nonlinear Schro¨dinger equation
is studied. Regular solitons exist due to a balance between the nonlinear terms and~linear! third-order disper-
sion; they are not important at smalla3 (a3 is the coefficient in the third derivative term! and vanish ata3

→0. The most essential, at smalla3, is a quasisoliton emitting resonant radiation~resonantly radiating soliton!.
Its relationship with the other~steady! quasisoliton, called embedded soliton, is studied analytically and also in
numerical experiments. It is demonstrated that the resonantly radiating solitons emerge in the course of
nonlinear evolution, which shows their physical significance.
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I. INTRODUCTION

Equations describing soliton processes are usually
tained by certain approximating procedures affecting non
earity and dispersion. Now, in extensive studies of ultraf
processes, the classical approximations often appear t
insufficient and higher-order effects become of importan
A typical example is high speed systems like nonlinear tra
mission lines in the femtosecond regime for soliton comm
nications, etc. For such systems soliton solutions in class
sense do not generally exist. Only for very specific choi
of parameters one can find localized solutions. Instead
regular solitons there may appear nonlocal steady or~and!
unsteady solitonlike structures~which may be called qua
sisolitons!. These may, however, have significant importan
for the nonlinear dynamics.

In this paper we study wave dynamics described by
extended third-order cubic nonlinear Schro¨dinger ~NLS!
equation

i ]TC1
1

2
]X

2C1uCu2C1 ia1uCu2]XC1 ia2C]XuCu2

1 ia3]X
3C50 ~1!

@with real coefficientsan(1<n<3)#. This equation de-
scribes, in general, the slow evolution of the wave envel
in nonlinear highly dispersive systems. It plays an import
role in many nonlinear problems, in particular, in nonline
fiber optics@1,2#. In that connectionT denotes the distanc
along the fiber, whileX is related to the retarded time. Th
second term describes the group velocity dispersion~which
we have chosen to be anomalous in the present case!, the
third term designates the self-phase modulation~related to
the nonlinear frequency shift!, the fourth term relates to th
self-steepening effects, the fifth term is so-called Ram
term relating to the self-frequency shift, and the sixth te
describes the third-order dispersion effect. Equation~1! re-
duces to the standard cubic NLS equation fora15a25a3
50, which is integrable. The ‘‘extra’’ terms become of im
portance for ultrashort~e.g., in femtosecond range! pulses.
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Equation~1! has regular soliton solutions@3–5#, vanish-
ing at uXu→0. In particular cases, Eq.~1! may have exactN
soliton solutions@4# or even be integrable@5#. An important
feature of the solutions describing regular solitons is t
they are degenerating ata3→0 ~and finite ua1u1ua2u),
which substantially reduces their physical importance. Th
numerical investigation ata1,2;a3;1 where done, e.g., in
Ref. @6# ~see also references therein!

There also exist some solutions to Eq.~1!, describing qua-
sisolitons. One of them is a steady solution looking like
soliton-type pulse embedded into a small amplitude pla
wave~a soliton on plane wave pedestal!. We call itembedded
soliton ~ES!, using the word proposed in a different conte
in Ref. @7#. Apart from that, Eq.~1! has other types of qua
sisoliton solutions that describe solitonlike pulses perm
nently emitting resonantly generated radiation@see, e.g.,
Refs. @8–12# for the particular case ata15a250 and
@13,14# for the full Eq. ~1!#. We will call them resonantly
radiating solitons~RRS!; they are unsteady because of loss
caused by the radiation. The lifetime of radiating soliton
sufficiently large ifa3 is small enough and, naturally, on
can speak about the soliton only in this quasisteady c
~However, at long times, the losses caused by the radia
become essential for applications@2#.! At a3→0, the RRS
turns into the regular soliton of Eq.~1! without the third
derivative.

There is an interesting and important connection betw
the two types of quasisolitons, ES and RRS, and we dem
strate it in numerical simulations. We will also study the ro
of solitons and quasisolitons in the nonlinear processes
scribed by Eq.~1!. In particular, the regular solitons and RR
compete between themselves in nonlinear processes. A
as the regular solitons disappear ata3→0 and the RRS have
short lifetimes at largea3, it is clear that at largea3 the
regular solitons are more important while the RRS may p
a decisive role at sufficiently smalla3. The most interesting
case is, of course, smalla3, because the third derivative term
emerges as the result of an expansion.~The effect of next,
fourth derivative, term can be seen in Refs.@13,14#; at cer-
tain relationship between the coefficients before third a
©2001 The American Physical Society14-1
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fourth derivatives there can be no radiation at all whic
naturally, may happen also when other high-order terms
taken into account.!

The paper is organized as follows. In Sec. I we descr
important properties of Eq.~1!, which are used below. In
particular, we discuss regular soliton solutions@3#, Galilean
transformations and conservation laws@13,14#. The embed-
ded solitons are studied in Sec. III. As we have already m
tioned, the ES consists of a steady solitonlike pulse on
plane wave background. This structure is rather commo
different nonlinear highly dispersive systems@9–20#. At a3

→0, the plane wave disappears and the pulse turns in
regular soliton of Eq.~1! at a350. The plane wave ampli
tude, increasing witha3, may become unstable at sufficient
large a3 due to the modulational instability. Considerin
smalla3, we show that the pulse part of ES is rather close
the pulse in RRS and the wave number of the plane w
coincides with the wave number of resonantly emitted rad
tion ~by the RRS!. Next, we introduce thecutoff operation,
cutting off both wave wings from the ES~Sec. IV!. Then we
see that the remained solitonlike pulse is transformed into
RRS, emitting radiation only inone direction, according to
the direction of the group velocity of resonant radiation. T
resonant radiation disappears ata156a3. In this case, con-
sidered in Sec. V, we show that Eq.~1! can be transformed
by means of the Galilean transformation, to the comp
modified Korteweg-de Vries~MKdV ! equation. At particular
initial conditions, it is reduced to the real MKdV equatio
which is integrable and therefore hasN-soliton solutions
@22#. This does not mean the complete integrability of Eq.~1!
at a156a3, because the reduction to the real MKdV equ
tion is possible only for particular initial conditions. On th
other hand the Painleve´ analysis@21# of the above mentioned
complexMKdV equation shows that it possesses the Pa
levé property at 6a35a152a2. This is just the case whe
Eq. ~1! is integrable@5#. If a250, we arrive at the case
considered by Hirota@4# who has shown the existence
complexN-soliton solutions. In Sec. VI, we consider the ca
a1Þ6a3. Solving numerically the initial value problem, w
show that, at sufficiently smalla3, the initial disturbances
decay into RRS. This indicates that the RRS are impor
physical objects playing a significant role in nonlinear d
namics. In Sec. VII, a summary of obtained results is giv
In Appendix A, the modulational instability of a plane wav
described by Eq.~1!, is considered; it is helpful in the stud
of the stability of embedded solitons. In Appendix B w
investigate analytically, by means of conservation laws,
evolution of RRS caused by the radiation. This analysis is
agreement with numerical results described in Secs. IV
VI.

II. IMPORTANT PROPERTIES OF EQ. „1…

A. Exact soliton solutions

First, we discuss the exact soliton solutions of Eq.~1!.
They can be written in the form
02661
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Cs5a sech@b~X2VsT!#eikX2 ivT, ~2a!

a25
6a3

a112a2
b2 ~a2.0!, ~2b!

Vs5k23a3k21a3b2, ~2c!

v5
1

2
k22a3k32

126a3k

2
b2, ~2d!

k5
a112a226a3

12a2a3
. ~2e!

In fact, these are the soliton solutions found by Potasek
Tabor@3# ~with corrected misprints!. We will call Eqs.~2a–e!
Potasek-Tabor~PT! soliton solutions. Ata350, PT solitons
do not exist; this signifies that their existence is a result o
balance between the nonlinear terms and the linear th
order dispersive term. Ifa2Þ0, from Eq.~2e! it follows that
k is a fixed number, uniquely determined by the coefficie
of Eq. ~1!. However, the solitons~2! exist even ata250
provided that

a156a3 . ~3!

In this casek can bearbitrary, because Eq.~2e! follows
from the equation 12a2a3k5a126a312a2.

In case~3! and a250, Eq. ~1! is the so called Hirota
equation that can be transformed to the complex modi
Korteweg-de Vries equation, which hasN-soliton solutions
@4#. For the Hirota soliton, from Eq.~2b! it follows

b5a. ~4!

In the other particular case, 6a35a152a2, Eq. ~1! is inte-
grable @5#. ~See also Sec. V.! Some results for solitons~2!
with a2Þ0 were reported in Ref.@6# ~see also reference
therein!. In particular, it was shown numerically that the
emerge in a solution of the initial value problem. Howev
this result was obtained ata15a351; at smalla3, as it will
be shown below, they cannot compete with RRS.

Apart from the solution~2a–e!, describing ‘‘bright’’ soli-
tons, which was called in Ref.@3# sech family, Potasek and
Tabor have also found tanh family that will not be discuss
here.~Some generalizations, with both sech and tanh ter
are derived in Ref.@27# by means of rather tedious algebr
the results of this paper are mostly contained in Ref.@3#, and
the generalizations@27#, which are valid for very specific
choices of the parameters, can be obtained by the much
pler approach of Potasek and Tabor.! The results of Ref.@3#
are repeated also in some other papers~e.g.,@23#!.

B. Galilean transformation

In the following we shall frequently use the Galilea
transformation describing the transition to the referen
frame moving with the velocityV. For Eq.~1! it reads

C~X,T!5c~X2VT,T!exp@ i ~KX2VT!#, ~5!
4-2
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whereK andV are defined by equations

V5K23a3K2, ~6!

V5
1

2
K22a3K3. ~7!

The functionc(x,t) with

x5X2VT, t5T ~8!

satisfies the equation@13,14#

i ] tc1
1

2
a2]x

2c1qucu2c1 ia1ucu2]xC1 ia2c]xucu2

1 ia3]x
3c50, ~9!

with

a25126a3K, ~10!

q512a1K. ~11!

C. Conservation laws

One can check by means of straightforward calculati
that Eq.~1! has the following integral of motion

N5E
2`

`

uC~X,T!u2dX. ~12!

At

a250, ~13!

we have two other conserved integrals@24,13,14#

P5
1

2
i E

2`

`

~C]XC* 2C* ]XC!dX, ~14!

H5E
2`

` H 1

2
u]XCu22

1

2
uCu42

1

4
ia1uCu2~C* ]XC

2C]XC* !2
1

2
ia3~C* ]X

3C2C]X
3C* !J dX.

~15!

III. EMBEDDED SOLITONS

We start with the solutions to Eq.~1! of the form

C~X,T!5x~x!eiLt, ~16!

wherex and t are defined in Eq.~8!. Substituting Eq.~16!
into Eq. ~1!, we arrive at the ordinary differential equation

2 iV]xx1
1

2
]x

2x1uxu2x1 ia1uxu2]xx1 ia2x]xuxu2

1 ia3]x
3x5Lx. ~17!
02661
s

Imposing periodic boundary conditions at the ends of a s
ficiently broad interval and consideringV andx(0) as given
parameters andL as the eigenvalue, we arrive at a nonline
eigenvalue problem that can be numerically solved by a k
of shooting method. An example of such solution ata250
and

a1520.3, a3520.1, x~0!51.5, V50 ~18!

is shown in Figs. 1~a! and 1~b!. It is a nonlocal steady pulse
with uC(x)umax5uC(x0)u and small symmetric ‘‘wings.’’ At
large ux2x0u we can linearize Eq.~17!; then we see that

x~x!'consteikx ~ ux2x0u@1!, ~19!

wherek is a real root of the cubic algebraic equation

L2kV1~1/2!k22a3k350. ~20!

Finding L from the numerical solution of the eigenvalu
problem andk from Eq. ~20!, we have for the case~18!

L50.979, k525.34. ~21!

On the other hand, we can determinek directly from x(x)
that is found numerically from Eq.~17!, together withL.

FIG. 1. Numerical solution of Eq.~17! at parameters~18!. ~a! x
versusx; solid line: ux(x)u5uC(x)u; dashed line: Rex(x). ~b! argx
versusx; at sufficiently largeux2x0u, argx(x) is a linear function:
argx'kux2x0u, which permits to measurek (k'25.2).
4-3
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From Fig. 1~b! we see that the numerically foundx(x) has
indeed the asymptotic behavior~19! with k'25.3 that is
very close to the root of Eq.~20!, written in Eq.~21!. This
agreement is an evidence of the correctness of the nume
solution of the eigenvalue problem by the shooting meth
In a similar way, the solution of eigenvalue problem~17! and
Eq. ~20! for a250 and

a1520.8, a3520.1, x~0!51.5, V520.225
~22a!

gives

L51.209, k525.03. ~22b!

The asymptotic behavior of the numerically foundx(x)
gives the samek'25.03.

For the other case witha250 and

a1521.1, a3520.1, x~0!51.5, V50.35
~23a!

we have

L51.937, k526.12, ~23b!

while from the numerically foundx(x) we obtaink526.1.
In fact, similar quasisoliton solutions, looking like embe

ded solitons, were obtained, by different approaches,
other highly dispersive systems as well@15–17,9,11,12,18–
20#.

Now consider the embedded solitons, starting from
Galilean transformation~5!. Writing it in the form

C~X,T!5c~x,t !eiKx exp@ i ~KV2V!t# ~24!

and assuming that

c~x,t !5c̃~x!expS i
1

2
l2t D , ~25!

wherel is a constant parameter, we compare Eq.~24! with
Eq. ~16!. Then we have

c̃~x!5x~x!exp~2 iKx !, ~26!

l252~L1V2KV!. ~27!

From Eqs.~25! and ~9! we arrive at the following equa
tion for c̃(x)

2
1

2
l2c̃1

1

2
a2]x

2c̃1quc̃u2c̃1 ia1uc̃u2]xc̃1 ia2c̃]xuc̃u2

1 ia3]x
3c̃50, ~28!

Substituting here Eqs.~26! and~27! and taking into accoun
Eqs.~6! and ~7! and Eqs.~10! and ~11! we have Eq.~17! as
one should expect. From Eq.~26! it is seen thatuc̃u2!1 at
uxu@1. Linearizing Eq.~28! we obtain

c̃;eikx ~ uxu@1!, ~29!
02661
cal
.
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wherek is a root of the equation

2a3k32a2k22l250. ~30!

Substituting Eqs.~19! and ~29! into Eq. ~26!, we see that

k5k1K. ~31!

Then, using Eqs.~6! and ~7! and Eqs.~10! and ~27! we can
easily prove that Eqs.~30! and ~20! are equivalent, as it
should be.

At small a3, the solution of Eq.~28! can be written as

c̃~x!5@us~x!1 f ~x!#exp@ ifs~x!#, ~32!

with small f (x). Here us(x) and fs(x) are defined by the
requirement that

F~x!5us~x!exp@ ifs~x!# ~33!

is a soliton solution of Eq.~28! without the last term i.e.,

2
1

2
l2F1

1

2
a2]x

2F1quFu2F1 ia1uFu2]xF1 ia2F]xuFu250

~34!

andF(x)→0 at x56`. Solving Eq.~34!, we have

us~x!5lA2p

q FcoshS 2l

Aa2

xD 1pG21/2

, ~35!

fs~x!52
a112a2

2A
arctanFA12p

11p
tanhS lx

Aa2
D G ,

~36!

p5
Aa2q

A4A2l21a2q2
, ~37!

A25
4a1~a112a2!2~a112a2!2

12
. ~38!

Equations~35!–~38! were obtained in Ref.@14# for a pulse
part of RRS. From Eq.~35! it follows that the soliton ampli-
tude is

u05lA 2p

~11p!q
~39!

and its width is given by

d5Aa2/l. ~40!

Thus one must requirea2.0 and from Eq.~10! it follows
that ata3K.0,

uKu,
1

6
ua3u, ~41!

which is a restriction on the soliton velocity~6!.
4-4
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The small termf (x) in Eq. ~32! expresses the effect of th
third-order dispersion. Atuxu;A(a2)/l, or less, it describes
the modification of the pulse, arising due to the last term
Eq. ~28!, while at largex

f ~x!'c̃~x!;eikx ~42!

wherek is a root of Eq.~30!. Note, that this equation wa
derived in Ref.@14# for the wave number of the resonant
generated radiation by the RRS in the reference frame w
the RRS is at rest. From all that we conclude that Eq.~32!
coincides with the asymptotic expression for the RRS and
radiation at larget.

Let us now compare the embedded solitons, obtai
above numerically, with the solution~32! at condition~13!.
From Eq.~38! we have

A5
1

2
ua1u. ~43!

Equations~6! and ~10! give

K5
12A1212a3V

6a3
, ~44!

a25A1212a3V. ~45!

Using Eqs.~39! and ~37!, we obtain

u0
25

Aa2

2A2
~A4A2l21q2a22qAa2!, ~46!

whereq is defined in Eq.~11!. From Eq.~27! and Eqs.~6!
and ~7! we find

l252S L2
1

2
K212a3K3D . ~47!

Then we have for the case~18! and~21!, which is shown in
Fig. 1: u0'1.37. For the case~22! u0'1.41, and for case
~23! u0'1.42. So, in all three cases we approximately ha
u0'1.4 which is rather close tox(0)51.5, assumed in the
nonlinear eigenvalue problem for all three cases. This s
ports the conclusion that expressions~35! and ~36! approxi-
mately describe the pulse in the embedded soliton~at small
a3).

Now considerf (x). At small a3, the roots of Eq.~30!
have simple analytical expressions@14#. Neglecting the first
term in Eq.~30!, we have the two smallest roots

k'6 i
l

Aa2

. ~48!

Substituting this into Eq.~42!, we have

c̃' f ~x!;exp~7l/Aa2x!. ~49!

This is in agreement with the asymptotic behavior of expr
sion ~33! at largex. The third root can be approximatel
obtained if one neglects the last term in Eq.~30!. This gives
02661
n

re

ts

d

e

p-

-

k'a2/2a3 , ~50!

which approximately determines the wave number of
plane wave in the wings. Expressions~50! and~31! approxi-
mately give the roots of Eq.~20! in analytical form. From
Eq. ~50! it follows

sgnk5sgna3 . ~51!

And, finally, from the results of Ref.@14# it follows that at
small a3

f ~x!'BSAa2uku
A D 1/2

expF2
pAa2uku

4l S 11
2

p
arcsinpD Geikx,

~52!

where B is a complex constant withuBu;1210. This ex-
pression is valid at

Aa2uku
l

@1, ~53!

i.e., when the wave numberk is much larger than the invers
width of the soliton~33!. In expression~52!, it is also as-
sumed that 2Al@l/Aa2uk1,2u ~this does not excludeAl
!1). If

2Al;l/AA2uk1,2u ~or 2Al,l/Aa2uk1,2u!, ~54!

which may be satisfied only atp'1 andq'1, we have

f ~x!5BAa2ukuexpS 2
pAa2uku

2l D eikx. ~55!

It is easy to check that we can arrive at Eq.~55! by sub-
stituting in Eq.~52! the first of conditions~54! andp51.

From all the foregoing, one can see a connection betw
the embedded and resonantly radiating solitons. In the n
section we present numerical experiments disclosing
connection from another side.

IV. THE CUTOFF OPERATION

Let us define a cutoff operation transforming the emb
ded soliton into an isolated pulse. Turning to the functi
x(x) in Eq. ~16!, we write

xcut~x!5x~x!r ~x!, ~56!

wherer (x) is a cutting factor that we take in the form

r ~x!5
1

2 F tanhS x2x01Dx

g D2tanhS x2x02Dx

g D G .
~57!

Herex0 is the center of the pulse andDx.0 is the width of
the cutted functionxcut(x). According to Eq.~57!, r (x) van-
ishes atux2x0u→` and the positive parameterg character-
izes the ‘‘sharpness’’ of vanishing. Assuming thatg is small
4-5
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enough andDx is such that the factorr (x) cuts off only the
wings without essential disturbing the pulse inx(x) (g and
Dx can be properly chosen in numerical tests! we then take
the pulsexcut(x) as the initial condition to Eq.~1! @see Fig.
2~a!#

C~X,0!5xcut~X!. ~58!

In Fig. 2~b! one can see that the cutted pulse emits radia
at t.0. However, on the left hand side of the pulse t

FIG. 2. Numerical solution of Eq.~1! at initial condition ~58!
and a1520.3, a250, a3520.1. ~a! The initial cut pulse. Full
line: uCu versusx at T50; dotted line depicts the correspondin
embedded soliton.~b! The cutoff pulse atT5138; full line: uCu
versusx; dashed line: ReC versusx. ~c! log10uCku versusk (Ck is
the Fourier transform ofC(x); one can see a peak near the root
resonance equation~20!.
02661
n

radiation spreads out with time; this shows that on the
hand side there is a transient radiation, emitted at smallt due
to the initial condition~58!. On the contrary, on the righ
hand side we see a wave train with approximately cons
amplitude, with the front propagating to the right; so, t
length of the wave train increases with time. Therefore
cutoff pulse permanently emits radiation to the right. T
spectrum, shown in Fig. 1~c!, has a peak atk approximately
equal to the root of Eq.~20! with account of finite velocity of
the pulse att5138 ~it is still rather close tok from Eq.~21!,
i.e., to the wave number of the wing waves in embedd
soliton!.

Analyzing the time behavior of argC, we find that
d(argC)/dt5L(t) is a slow function of t, with L(0)
'0.98 andL(130)'0.85. Note that thisL(0) coincides,
with a good accuracy, with Eq.~21!. Similar results were
obtained for cutoff pulses in cases~22! and ~23!.

We conclude that the cutoff pulses are radiating solito
and the radiation is permanently emitted only in one dir
tion. As far ask is connected withk from Eq. ~31!, which is
the real root of Eq.~30!, obtained from the resonant cond
tion, we conclude that the cutoff operation transforms
into RRS. The front of radiated wave train propagates w
the group velocityU(k) given by @14#

U~k!5a2k23a3k2'2a2/4a3 . ~59!

From this it follows that

sgnU~k!52sgnk52sgna3 . ~60!

Therefore ata3,0 it should bek,0 andU(k).0. This
means that the soliton in Fig. 2~a! should permanently emi
radiation to the right while the peak in the spectrum of t
wave train should be at negativek. This is in agreement with
the results presented in Figs. 2~b! and 2~c!.

To describe analytically the whole system after the cuto
one can use at smalla3 the equation@14#

c̃~x,t !5@us~x!1h~x,t !#exp@ ifs~x!#, ~61!

whereus(x) and fs(x) are given~in adiabatic approxima-
tion! by Eqs.~35! and~36! andh(x,y), at largex and t, has
the following asymptotic expression

h~x,t !' f ~x!Q~Ux!Q~ uUut2uxu!. ~62!

Here f (x) is given by Eq.~52! and Q(Y) is the Heaviside
function

Q~Y!51 ~Y.0!, Q~Y!50 ~Y,0!. ~63!

Equation~62! expresses that the soliton radiates in the dir
tion of group velocityU and the radiation front propagate
with the velocity uUu. The above mentioned adiabatic a
proximation means that at sufficiently smalla3, the radiation
is so small that the soliton parameters inus(x) andcs(x) ~as
well as the wave numberk) can be considered as constan
However, the soliton losses may be essential at large tim

The variation of soliton parameters, caused by the rad
tion, can be estimated by means of the integrals of mot
~Appendix B!. A vast information about the soliton evolu

f
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tion, caused by the radiation, follows from the numeric
solution of Eq.~1!. For the parameters used in Fig. 2, t
results following from this solution are presented in Fig.
One finds that the mean value ofuCumax5u0(t), shown in
Fig. 3~a!, decreases logarithmically, similar to what w
found for the casea15a250 @25,26#. Analyzing the soliton
position@Fig. 3~b!# one can find that the soliton velocityV(t)
increases fromV(0)50 to V(138)'0.29, i.e., the soliton is
acceleratingand the functionV(t) increases~also logarith-
mically!. Now, usingL(0)'0.98, L(138)'0.85 and Eqs.
~47! and ~44!, we havel(0)'1.4, l(138)'1.28. There-
fore, the soliton widthD5Aa2/l increases fromD(0)
'0.71 toD(138)'0.99, i.e., the radiating soliton is widen
ing with time. All that can be considered as a numeri
confirmation of analytical results obtained in Appendix
from the conservation laws, in particular that

sgn
dV

dt
52sgnk5sgnU, ~64!

which means that the soliton is accelerating in the direct
of the group velocity of resonant radiation.

V. SPECIAL CASE a1Ä6a3

The coefficientq in Eq. ~9! disappears at

K51/a1 . ~65!

FIG. 3. Temporal behavior of the radiating soliton ata1

520.3, a250, a3520.1. ~a! uCumax versusT5t; ~b! the soliton
position versust.
02661
l
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Substituting this in Eq.~10!, we have a25126a3 /a1.
Therefore, at condition~3! the coefficienta2 also vanishes
and Eq.~9! takes the form

] tc16a3ucu2]xc1a2c]xucu21a3]x
3c50, ~66!

which is related to Eq.~1! by a Galilean transformations~5!
and ~8! with

V5
1

12a3
, K5

1

6a3
, V5

1

108a3
2

. ~67!

Consider a particular solution of Eq.~66!

c~x,t !5eiuz~x,t !, ~68!

where u5const andu, z(x,t) are real. Then Eq.~66! is
reduced to the MKdV equation

] tz12~3a31a2!z2]xz1a3]x
3z50. ~69!

It is completely integrable and, in particular, has exa
N-soliton solutions@22# if a2Þ23a352(1/2)a1 @cf. Eq.
~2b!#. From them, using Eq.~68! and Galilean transformation
with parameters~67!, we one can findN-soliton solutions of
Eq. ~1! at a156a3. For one-soliton solution we have

cs5a sech@b~x2a3b2t !#eiu, ~70!

where a and b are connected by means of Eq.~2b!. This
expression, together with Eqs.~5! and ~67!, leads to the
Potasek-Tabor soliton, described by Eqs.~2a!–~2e! with k
5K51/6a3 (a3Þ0). Therefore theN-soliton solutions of
Eq. ~1!, Cs

N(X,T), at T→6`, are composed of the Potase
Tabor solitons.

If, in addition to condition~3!, a250 ~Hirota case@4#!,
we arrive at the complex MKdV equation

] tc16a3ucu2]xc1a3]x
3c50. ~71!

The soliton solution to this equation has the form

cs~x,t !5a sech@a~x2ct!#exp@ i ~px2st1u!# ~72!

with arbitraryp and

c523a3p21a3a2, s52a3p313a3pa2 ~73!

@cf. Eq. ~70!#. Then

Cs~X,T!5a sech@a~X2VsT!#exp@ i ~kX2vT1u!#,
~74!

where

Vs5V1c, k5K1p, v5s1V1pV. ~75!

Therefore nowk is arbitrary andVs(k) andv(k) coincide
with Eqs. ~2c! and ~2d!, respectively. This means that Eq
~74! and~75! indeed describe the Hirota solitons, mention
in Sec. II A, and Eq.~1! in Hirota case definitely has com
plex N-soliton solutions. The system of Hirota solitons~es-
pecially with pÞ0) seem to be rather interesting objects f
4-7
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FIG. 4. Development of the initial pulse~76!
with A51.9, C50, X05100 ~dashed line!. ~a!
a1520.5, a250, a350, t548, ~b! a1520.5,
a250, a3520.1,t548, ~c! a1520.5, a250,
a3520.1,t5175.
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the soliton theory. Some numerical simulations, demonst
ing generation of robust complex Hirota solitons from init
pulses, are described elsewhere@29#. We continue further
studies in this field.

As for Eq. ~66!, it may not be, generally, integrable; on
can only assert that it hasN-soliton solutions at anya2Þ
2(1/2)a1. Below, we call Eq.~66! general complex MKdV
equation. The Painleve´ test @21# applied to Eq.~66! shows
that it has the Painleve´ property if a253a3, i.e., 6a35a1
52a2. This is just the integrability condition for Eq.~1!
found by Sasa and Satsuma@5#. These conclusions are i
agreement with those following from the Painleve´ test of Eq.
~1! @28,23#.

VI. PULSE EVOLUTION AT a1Å6a3 , a2Ä0

Here, we report on the numerical solutions of Eq.~1! in
general case. First we take, as initial condition, the pulse

C~X,0!5A sechF1

2
~X2X0!Gexp@ iC~X2X0!# ~76!

with A51.9, C50 andX05100 and assume that
02661
t- a1520.5, a350.1. ~77!

The behavior of the solution at these parameters is show
Fig. 4, where the casea350 ~with a1520.5) is also pre-
sented for comparison. In the latter case, the initial pu
splits into four solitons of the form~33! and~35!–~38!, with
a251 and moving to the left@Fig. 4~a!#. On the other hand
in case~77! the initial pulse splits into threeradiating soli-
tons. Two of them propagate to the right and the smal
one, to the left.

The radiated wave trains propagate to the right with
group velocities larger than the soliton velocities@Figs. 4~b!
and 4~c!#; this is in agreement with Eq.~60!. The time de-
pendence of the soliton coordinates is shown in Fig. 5.
a350, the soliton velocities are constant. Ata3520.1, the
solitons are accelerating inpositivedirection, which agrees
with Eq. ~64!. The Fourier spectra for both cases,a350 and
a3520.1, are shown in Fig. 6. The spectrum ata350 ex-
hibits no resonant radiation@Fig. 6~a!# while ata3520.1 we
see three distinct resonant peaks with negativek, which are
the wave numbers of the resonant radiation emitted by
solitons in the ‘‘laboratory’’ frame@Fig. 6~b!#. The difference
between the wave numbers follows from Eq.~20! which is
valid, as we have seen, both for embedded and radia
4-8
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solitons. As far as the solitons have different velocities a
amplitudes~the latter are determined by the soliton para
eterL), they have different wave numbers becausek, being
a root of Eq.~20!, depends on the soliton velocity and am
plitude.

An important difference between the two cases,a350
and a3Þ0, is seen in Figs. 7 and 8. In the first case,
average soliton amplitudes have constant limits att→`

FIG. 5. Plots ofX0(t) for three largest solitons shown in Fig. 8
Dashed line:a1520.5, a250, a350; solid line:a1520.5, a2

50, a3520.1.

FIG. 6. Fourier spectra of the solutions shown in Fig. 4;~a!
a1520.5, a250, a350; t548 ~b! a1520.5, a250, a3

520.1; t5175. HereCk is the Fourier transform ofC(X).
02661
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while in the second case they must slowly decrease bec
of the soliton radiation.

In the aforegoing, we studied the case whena1a3>0.
Now let us considera1a3<0. We take

a1520.6, a350.1, ~78!

and initial condition~76! with C51/2, X05850. The solu-
tion at T5370 is shown in Fig. 9. We see a pulse wi
radiation on both its sides. An analysis shows that on the
hand side there is the resonantly generated radiation@in
agreement with Eq.~60!, where nowa3.0, k.0, U,0).
On the right-hand side, there is a radiation composed of
harmonics of continuous spectrum; it satisfies the lineari
Eq. ~1! and has been emitted in the transient period of tim
The spectral distribution is shown in Fig. 10. One can s
two spectral maximums at positive wave numbers. The n
row one corresponds to the resonant radiation, while
broader peak is composed of the continuous spectrum
structure can be understood from the dispersion equatio

v5~1/2!k22a3k3 ~79a!

FIG. 7. The amplitude of the first soliton versus time.~a! a3

50, ~b! a3520.1.

FIG. 8. The amplitude of the second soliton versus time.~a!
a350, ~b! a3520.1.
4-9
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and the corresponding expression for the group velocity
continuous spectrum

Vg~k!5k23a3k2. ~79b!

From this we see that, ata3.0, the continuous radiation o
the right-hand side of the pulse is composed from

0,k<k051/6a3 , ~79c!

whereVg(k0)5maxVg(k). As far ask0 is less than the wave
number of resonant radiation, approximately given by E
~50! ~note that in our case, according to Eq.~45!, a2.1),
one can see why the peak of continuous spectra is less thk
of resonant radiation. All this shows that the pulse in Fig. 9
nothing but RRS. The time behavior of its amplitude
shown in Fig. 11; qualitatively, it is similar to Fig. 3~a!.

It is reasonable to compare these results with the c
a1520.6, a350, at the same initial condition. Then w
have two regular solitons, propagating to the right. The s
ton positions versus time for both cases are shown in Fig.
Note a very small acceleration of RRS in the direction
group velocity~which is now negative!.

VII. CONCLUSIONS

We have considered soliton and quasisoliton solutions
Eq. ~1! and their relationship. Solutions~2!, describing regu-

FIG. 9. The RRS at parametersa1520.6,a350.1. Full line:
uCu, dotted line: ReC.

FIG. 10. Spectral distribution ata1520.6,a350.1.
02661
f

.

s

se

i-
2.
f

f

lar solitons, degenerate ata3→0; this shows that they exis
due a balance between nonlinear terms and linear third-o
dispersion. On the other hand the quasisolitons~embedded
and resonantly radiating! turn ata3→0 into the regular soli-
ton solutions of Eq.~1! without the third derivative term.
Apart from that, ata250, the regular solitons exist only in
the special casea156a3.

The resonantly radiating solitons~RRS! are nonsteady;
the amplitudes of their radiation at smalla3 are exponen-
tially small and so their parameters change logarithmica
slow in this case. Only such quasisteady solitons have s
ciently large lifetimes to be of physical significance. Th
embedded solitons~ES!, which are steady structures consis
ing of pulses embedded into plane waves~wings!, have close
connection with RRS, similar to other systems. The cor
sponding analytical treatment in Sec. III is supplemented
numerical simulations with the cutoff operation~Sec. IV!; it
is demonstrated that it leads to the transformation of ES
RRS that radiates in the direction of the radiation group
locity. Just after the cutoff, the amplitude, velocity, and wa
number of the radiated wave train coincide with those
wings; marching in time, we have seen that the amplitu
decreases, the soliton velocity increases and the wave n

FIG. 11. Soliton amplitude versus time ata1520.6,a350.1.

FIG. 12. Soliton positions versus time fora1520.6,a350
~1,2! and,a1520.6,a350.1 ~3!.
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ber changes according to Eqs.~30! and~31!. This is in agree-
ment with conservation laws~Appendix B!.

In Sec. V we have investigated a special casea156a3,
interesting from a theoretical point of view. Then the qu
sisolitons, ES and RRS, do not exist and Eq.~1! can be
reduced, by means of Galilean transformation, to the co
plex MKdV equation. It turns into two integrable cases:
a250 ~Hirota equation! and at a253a3 ~Sasa-Satsuma
equation!. At other values ofa2 it seems to be nonintegrable
despite that it hasN-soliton solutions.

Presumably, in the nonlinearprocessesonly regular soli-
tons and RRS may be of the physical significance. From
~2b! it follows, however, that the amplitude of regular solito
vanishes ata3→0, while for the RRS it remains finite
Therefore one should expect that at smalla3, the RRS are
more important in the nonlinear evolution.~Small a3 is the
most interesting case from physical point of view beca
the third derivative term is in fact the result of an expansio!
In Sec. VI we show how RRS are emerging from initi
disturbances. This indicates that the RRS are impor
physical objects playing a significant role in the nonline
dynamics.
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APPENDIX A: MODULATIONAL INSTABILITY OF
PLANE WAVE, ACCORDING TO EQ. „1…

Equation~1! has exact plane wave solution

C5A exp~ ikX2 ivT!. ~A1!

Substituting Eq.~A1! into ~1!, we have

v5
1

2
k22~12a1k!A22a3k3. ~A2!

Substituting a slightly perturbed wave~A1!

C5A~12x!exp~ ikX2 ivT!, ~A3!

into Eq. ~1!, we have

ixT1
1

2
~126a3K !xXX1 i ~K1a1A223a3K2!xX

1~12a1k!~x1x* !A21 ia2~xX1xX* !A2. ~A4!

Writing x5u1 iw and assuming that

~u,w!'exp~ ipX2 irT !.

we obtain dispersion equation, which is convenient to w
in the form

G222a2kA2G2
1

4
~126a3K !k2@~126a3K !k2

24~12a1K !A2#50, ~A5!
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where

G5r 1a3p32~k23a3k21a1A2!p. ~A6!

Thus, at realp, Im G5Im r and the stability condition is

~126a3k!2p2>4A2@~12a1k!~126a3k!2a2
2A2#.

~A7!

Unlike the plane wave solution of the regular NLS, now t
plane wave can be stable at anyp, if

~12a1k!~126a3k!<a2
2A2. ~A8!

At a250 this is possible at

1

a1
<k<

1

6a3
~6a3,a1! ~A9a!

1

6a3
<k<

1

a1
~a1,6a3!. ~A9b!

Applying the stability criterion to the wings of embedde
solitons, wherek'1/2a3, we see that this may satisfy con
dition ~A9b!; then one can expect that the wings are stab
We should also take into account onlyp.L21, whereL is
the period in the numerical scheme; this relaxes the lim
tions following from the stability criterion.

APPENDIX B: INVESTIGATION OF THE SOLITON
EVOLUTION BY MEANS OF THE INTEGRALS

OF MOTION

First, we present a general analysis of conserved integ
N,P,H. Substituting Eq.~5! into expressions~12!, ~14!, and
~15! we have after simple algebra

N5 È`

uc~x,t !u2dx, ~B1!

P5KN1
1

2
i È`

~c]xc* 2c* ]xc!dx, ~B2!

wherec(x,t) satisfies Eq.~9!.
To have a convenient expression forH, we substitute in

Eq. ~15! a3]x
3C anda3]x

3C* from Eq. ~1!, to obtain

H5
i

2 È
`

dX~C* ]TC2C]TC* !1 1
2 È`

dXuCu4

1
i

4
a1 È`

dXuCu2~C* ]XC2C]XC* !.

Then using the Galilei transformation in the form~24! and
taking into account that at larget

] t' i ~l2/2!c,

we arrive at the following asymptotic expression:
4-11
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H'S V2KV2
1

2
l2DN1PV1

1

2
q È`

ucu4dx

2
1

2
ia1 È`

ucu2~c]xc* 2c* ]xc!dx. ~B3!

Substituting Eqs.~25! and ~32! into Eq. ~B1!, we have at
large t ~cf. Refs.@25,26#!,

N'Ns1Nr , ~B4!

where

Ns5 È`

uus~x,t !u2dx, Nr5 È`

uh~x,t !u2dx ~B5!

are contributions from the soliton and the radiation. Us
Eq. ~35! we have

Ns5
2a2

a1
arctanS a1l

Aa2q
D ~B6!

and, at larget,

Nr'u f u2uUut ~B7!

wheref is given by Eq.~52! or ~55!. Evidently,u f u2 does not
depend onx. Then from the conservation ofN it follows

d

dt F2a2

a1
arctanS a1l

Aa2q
D G'2u f u2uUu. ~B8!

In a similar way, from Eq.~B2! and the conservation ofP we
have the following asymptotic equation at larget

N
dK

dt
1

d

dt È
`

us
2~x!]xcs~x!dx1ku f u2uUu'0. ~B9!

From Eq.~36! at a250, we have

]xcs~x!52
a1

2a2
us

2~x!. ~B10!

Taking into account that

È`

us
4~x!dx5

2a2q

a1
S 2Aa2l

q
2NsD , ~B11!

we transform Eq.~B9! to the form

N
dK

dt
2

d

dt F q

a1
S 2Aa2l

q
2NsD G1ku f u2uUu'0. ~B12!

Now we turn to Eq.~B3!. After differentiation overt and
simple calculations we obtain
02661
g

P
dV

dt
2S l

dl

dt
1a2K

dK

dt DN

52
d

dt F1

2
q È`

ucu4dx

1
i

4
a1 È`

ucu2~c* ]xc2c]xc* !dxG
52

d

dt F1

2
q È`

ucsu4dx

1
i

4
a1 È`

ucsu2~cs* ]xcs2cs]xcs* !dxG . ~B13!

Using

dV

dt
5a2

dK

dt
, ~B14!

we obtain

a2~P2KN!
dK

dt
2l

dl

dt
N

'2
d

dt S 1

2
q È`

us
4dx1

a1
2

2a2
È`

us
6dxD .

~B15!

Let us apply these relations to smalla1 ~which is just the
case shown in Fig. 3!. Assuming that

a1l

Aa2q
!1, ~B16!

we have

Ns'
2Aa2l

q S 12
a1

2l2

3a2q2D . ~B17!

Therefore Eq.~B8! is reduced to

d

dt F2Aa2l

q S 12
a1

2l2

3a2q2D G52u f u2uUu. ~B18!

In the same approximation, Eq.~B12! takes the form

N
dK

dt
'2ku f u2uUu1

2a1

3

d

dt S l3

Aa2q2D , ~B19!

At a1→0, Eqs.~B18! and~B19! turn into equations obtained
in Ref. @18#. From Eqs.~B19!, ~B14!, and ~60! follows the
important qualitative result~64!.

Now, consider Eq.~B15!. Taking into account Eqs.~B2!,
~B10!, ~B11!, and~B19! we see that at

t!lk22u f u24U22 ~B20!
4-12



.

e

f

s
s in
q.

ill

DYNAMICS OF SOLITONS AND QUASISOLITONS OF . . . PHYSICAL REVIEW E 64 026614
and smalla1, Eq. ~B15! is approximately equivalent to Eq
~B18!. Performing calculations similar to those in Ref.@19#
and using Eq.~B14!, we conclude that the soliton widthl21

and velocity V(t) are changing logarithmically slow. Th
same holds for the soliton amplitudeu0(t), determined from
Eqs.~39! and ~37!, in agreement with numerical solution o
A

t.

ll-

a,

02661
Eq. ~1! ~see Fig. 3!. The characteristic time of the variation
of soliton parameters has the same order of magnitude a
Ref. @26#, which is much less than the right hand side of E
~B20!.

If a1 is not small, the analysis is rather tedious and w
not be considered here.
t-

u,
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