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Dynamics of solitons and quasisolitons of the cubic third-order nonlinear Schrdinger equation
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The dynamics of soliton and quasisoliton solutions of the cubic third-order nonlineard8ueo equation
is studied. Regular solitons exist due to a balance between the nonlinear teriise@ailthird-order disper-
sion; they are not important at smalk (a5 is the coefficient in the third derivative tejrand vanish atg
—0. The most essential, at small, is a quasisoliton emitting resonant radiatioesonantly radiating soliton
Its relationship with the otheisteady quasisoliton, called embedded soliton, is studied analytically and also in
numerical experiments. It is demonstrated that the resonantly radiating solitons emerge in the course of
nonlinear evolution, which shows their physical significance.
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I. INTRODUCTION Equation(1) has regular soliton solutior[8-5|, vanish-

ing at|X|—0. In particular cases, E¢l) may have exadi

Equations describing soliton processes are usually obsoliton solutiong4] or even be integrablgs]. An important
tained by certain approximating procedures affecting nonlinfeature of the solutions describing regular solitons is that

earity and dispersion. Now, in extensive studies of ultrafasthey are degenerating at;—0 (and finite |aq|+|ayl),

processes, the classical approximations often appear to Rghich substantially reduces their physical importance. Their
insufficient and higher-order effects become of importancenymerical investigation at; ,~ @s~1 where done, e.g., in

Atypical example is high speed systems like nonlinear transgef. [6] (see also references thergin
mission lines in the femtosecond regime for soliton commu-  Trare also exist some solutions to E), describing qua-

nications, etc. For such systems soliton solutions in ClaSSiC@isolitons One of them is a steady solution looking like a

sense do not generally exist. Only for very _specmc choice oliton-type pulse embedded into a small amplitude plane
of parameters one can find localized solutions. Instead o

X wave(a soliton on plane wave pedestale call itembedded
regular solitons there may appear nonlocal steadjaod soliton (ES), using the word proposed in a different context
unsteady solitonlike structurgsvhich may be called qua- ' ) prop

sisolitons. These may, however, have significant importancé.r? R?f' 7] Ap"?‘” from that, Eq(l) ha§ other types of qua-
for the nonlinear dynamics. sisoliton splytlons that describe solltonllkg pulses perma-
In this paper we study wave dynamics described by th&1€ntly emitting resonantly generated radiatifsee, e.g.,

extended third-order cubic nonlinear Sotiirger (NLS) ~ Refs. [8-12 for the particular case atr;=a,=0 and
equation [13,14 for the full Eq. (1)]. We will call them resonantly

radiating soliton§RRS); they are unsteady because of losses

1 caused by the radiation. The lifetime of radiating soliton is
oW+ §f9>2<‘1’+|‘1’|2‘1’+i6Y1|\I’|2(9x‘1’+iaz‘I’f9x|\I’|2 sufficiently large ifay is small enough and, naturally, one
can speak about the soliton only in this quasisteady case.
+ia30)3(‘lf=0 (1) (However, at long times, the losses caused by the radiation

become essential for applicatiof@].) At a3—0, the RRS
[with real coefficientsa,(1<n<3)]. This equation de- turns into the regular soliton of Eql) without the third
scribes, in general, the slow evolution of the wave envelopelerivative.
in nonlinear highly dispersive systems. It plays an important There is an interesting and important connection between
role in many nonlinear problems, in particular, in nonlinearthe two types of quasisolitons, ES and RRS, and we demon-
fiber optics[1,2]. In that connectionl denotes the distance strate it in numerical simulations. We will also study the role
along the fiber, whileX is related to the retarded time. The of solitons and quasisolitons in the nonlinear processes de-
second term describes the group velocity dispergwinich  scribed by Eq(1). In particular, the regular solitons and RRS
we have chosen to be anomalous in the present)cis= compete between themselves in nonlinear processes. As far
third term designates the self-phase modulafi@iated to  as the regular solitons disappeaiat—0 and the RRS have
the nonlinear frequency shiftthe fourth term relates to the short lifetimes at largexs, it is clear that at largexs the
self-steepening effects, the fifth term is so-called Ramamegular solitons are more important while the RRS may play
term relating to the self-frequency shift, and the sixth terma decisive role at sufficiently small;. The most interesting
describes the third-order dispersion effect. Equatibnre-  case is, of course, smatk, because the third derivative term
duces to the standard cubic NLS equation g=a,=a@3;  emerges as the result of an expansi@rhe effect of next,
=0, which is integrable. The “extra” terms become of im- fourth derivative, term can be seen in Rdfs3,14]; at cer-
portance for ultrashorte.g., in femtosecond rangpulses. tain relationship between the coefficients before third and
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fourth derivatives there can be no radiation at all which, V. =asechib(X—VT)]e" X 1T (2a)
naturally, may happen also when other high-order terms are
taken into account. ) 6as ) )

The paper is organized as follows. In Sec. | we describe :mb (a">0), (2b)
important properties of Eq(l), which are used below. In
particular, we discuss regular soliton solutidd$, Galilean V= k— 3agk®+ agh?, (20)
transformations and conservation lajis,14]. The embed-
ded solitons are studied in Sec. lll. As we have already men- 1 1—6ask
tioned, the ES consists of a steady solitonlike pulse on the w= sz_ag,K - 2, (2d)

plane wave background. This structure is rather common in
different nonlinear highly dispersive systefi®s-20]. At a4 _
- : a1+ 26!2 6a3
—0, the plane wave disappears and the pulse turns into a K= o (2
regular soliton of Eq(1) at a3=0. The plane wave ampli- 23

tude, increasing witla:3, may become unstable at sufficiently In fact, these are the soliton solutions found by Potasek and

large a3 due to the modulational instabili'Fy. Considering Tabor[3] (with corrected misprins We will call Egs.(2a—6
small as, we show that the pulse part of ES is rather close toPotasek—Tabo(PD soliton solutions. Atez=0, PT solitons
the pulse in RRS and the wave number of the plane wavgg ot exist: this signifies that their existence is a result of a
coincides with the wave number of resonantly emitted radiapgjance between the nonlinear terms and the linear third-
tion (by the RRS3. Next, we introduce theutoff operation,  order dispersive term. i, # 0, from Eq.(26) it follows that

cutting off both wave wings from the ESec. IV). Thenwe  , js a fixed number, uniquely determined by the coefficients
see that the remained solitonlike pulse is transformed into thgf Eq. (1). However, the solitong2) exist even atw,=0

RRS, emitting radiation only imne direction according to  provided that

the direction of the group velocity of resonant radiation. The

resonant radiation disappearsagt=6as. In this case, con- a;=6a;. ()
sidered in Sec. V, we show that E@.) can be transformed,

by means of the Galilean transformation, to the complexn this casex can bearbitrary, because Eq(2e) follows
modified Korteweg-de VrieMKdV) equation. At particular  from the equation 12;azx=a;—6az+2a;. _

initial conditions, it is reduced to the real MKdV equation, !N case(3) and a;=0, Eq. (1) is the so called Hirota
which is integrable and therefore hassoliton solutions ﬁqutatlon tzat\f"_’m be tra}[psformﬁdhtc;mtge ﬁ)mpleT tmod|f|ed
[22]. This does not mean the complete integrability of &g. orteweg-de Vries equation, whic 5SOTtoN Solutions

at @, =6aj3, because the reduction to the real MKdV equa-[4]' For the Hirota soliton, from Eq2h) it follows

tion is possible only ,for particular initial conditions. On the b=a )
other hand the Painlexanalysiq 21] of the above mentioned '

complexMKdV equation shows that it possesses the Painy, the other particular caseag= a;=2a,, Eq. (1) is inte-

leve property at Grz=a;=2a,. This is just the case when graple[5]. (See also Sec. V.Some results for soliton€2)

Eqg. (1) is integrable[5]. If a,=0, we arrive at the case jth a,#0 were reported in Ref6] (see also references
considered by Hirotd4] who has shown the existence of therein. In particular, it was shown numerically that they
complexN-soliton solutions. In Sec. VI, we consider the caseemerge in a solution of the initial value problem. However,
a,# 6ag. Solving numerically the initial value problem, we this result was obtained at; = a3=1; at smalla, as it will
show that, at sufficiently smaklks, the initial disturbances be shown below, they cannot compete with RRS.

decay into RRS. This indicates that the RRS are important Apart from the solution2a—e, describing “bright” soli-
physical objects playing a significant role in nonlinear dy-tons, which was called in Ref3] sech family, Potasek and
namics. In Sec. VII, a summary of obtained results is givenTabor have also found tanh family that will not be discussed
In Appendix A, the modulational instability of a plane wave, here.(Some generalizations, with both sech and tanh terms,
described by Eq(1), is considered; it is helpful in the study are derived in Refl27] by means of rather tedious algebra;
of the stability of embedded solitons. In Appendix B we the results of this paper are mostly contained in R&f.and
investigate analytically, by means of conservation laws, thdhe generalization$27], which are valid for very specific
evolution of RRS caused by the radiation. This analysis is irfhoices of the parameters, can be obtained by the much sim-

agreement with numerical results described in Secs. IV anf€r approach of Potasek and Tabdie results of Ref{3]
VI are repeated also in some other pagerg.,[23]).

B. Galilean transformation

Il. IMPORTANT PROPERTIES OF EQ. (1) In the following we shall frequently use the Galilean
A. Exact soliton solutions transformation describing the transition to the reference

) ) ) ) frame moving with the velocity. For Eq.(1) it reads
First, we discuss the exact soliton solutions of ER.

They can be written in the form (X, T)=¢p(X=VT,Texdi(KX-QT)], ()
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whereK and() are defined by equations

V=K-—3a3K? (6)

1
Q= E|<2—013K3. (7)

The functiong(x,t) with

Xx=X—-VT, t=T (8)

satisfies the equatidri.3,14]

o1 | |
et 5 @03+l P+ T | 1200 +i ooyl

+iazdiy=0, (9)

with
a,=1-6asK, (10
q=1—a;K. (12)

C. Conservation laws

One can check by means of straightforward calculations

that Eqg.(1) has the following integral of motion

N=J1|\P(X,T)|2dx. (12
At
a,=0, (13
we have two other conserved integrf®g, 13,14
Pzéif:(\lfaxllf*—\lf*axllf)dx, (149

=1 2 1 4 1 2 *
H= | 5lox¥[5= 5 [WI"= glaq| WA axw

1
— W W*) = Siay(W* Y —Wa3¥*) dX.

(15
I1l. EMBEDDED SOLITONS
We start with the solutions to Eq@l) of the form
V(X,T)=x(x)e', (16)

wherex andt are defined in Eq(8). Substituting Eq(16)
into Eq. (1), we arrive at the ordinary differential equation

) 1 . .
—IVaxx+ 5 aox+ [ x|2x+iaa| x|+ aoxdy x|

+iazdix=Ay. a7
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FIG. 1. Numerical solution of Eq17) at parameter§l8). (a) x
versusx; solid line:| x(x)|=|¥(x)|; dashed line: Rg(x). (b) argx
versusx; at sufficiently larggx—xg|, argx(x) is a linear function:
argx~ k|X—Xg|, which permits to measure (x~—5.2).

Imposing periodic boundary conditions at the ends of a suf-
ficiently broad interval and consideringand y(0) as given
parameters and as the eigenvalue, we arrive at a nonlinear
eigenvalue problem that can be numerically solved by a kind
of shooting method. An example of such solutionagt=0
and

a;=—0.3, a3=-0.1, x(0)=15, V=0 (18
is shown in Figs. (a8 and 1b). It is a nonlocal steady pulse
with | W (X) | max= ¥ (Xo)| and small symmetric “wings.” At
large |x—X,| we can linearize Eq(17); then we see that

x(x)=conste'™*  (|x—x,|>1), (19

wherek is a real root of the cubic algebraic equation
A—kV+ (112 k?— azx®=0. (20)

Finding A from the numerical solution of the eigenvalue
problem andk from Eq. (20), we have for the casgld)

A=0.979, «=-5.34. (21
On the other hand, we can determireirectly from x(x)

that is found numerically from Eql7), together withA.
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From Fig. 1b) we see that the numerically foundx) has
indeed the asymptotic behavi¢t9) with k~—5.3 that is
very close to the root of Eq20), written in Eq.(21). This

agreement is an evidence of the correctness of the numeric
solution of the eigenvalue problem by the shooting method

In a similar way, the solution of eigenvalue probléh?) and
Eq. (20) for a,=0 and

a;1=—-0.8, a3=-0.1, x(0)=15, V=-0.225
(229
gives
A=1.209, «=-5.03. (22b

The asymptotic behavior of the numerically foupdx)
gives the sama&~ —5.03.
For the other case with,=0 and

a;=—11, a3=-0.1, x(0)=15, V=0.35

(233
we have
A=1.937,

k=-—6.12, (23b)

while from the numerically foungy(x) we obtaink=—6.1.

PHYSICAL REVIEW B4 026614

wherek is a root of the equation

2a3k3—a,k?—\2=0. (30)

glubstituting Eqs(19) and(29) into Eq. (26), we see that

k=k+K. (31

Then, using Eqs(6) and(7) and Eqgs.(10) and(27) we can
easily prove that Eqs(30) and (20) are equivalent, as it
should be.

At small a3, the solution of Eq(28) can be written as

B0 =[ug(x)+fx) Jexrli po(x)], (32

with small f(x). Hereug(x) and ¢¢(x) are defined by the
requirement that

F(x)=us(x)exdi¢s(x)]

is a soliton solution of Eq(28) without the last term i.e.,

(33

1 2 1 2 2 i 2 i 2
5\ F+§azaxF+q|F| F+iay|F|?0,F+iasFaF|[?=0

In fact, similar quasisoliton solutions, looking like embed- @ndF(x)—0 atx=*c. Solving Eq.(34), we have

ded solitons, were obtained, by different approaches, for

other highly dispersive systems as welb—17,9,11,12,18—
20].

Now consider the embedded solitons, starting from the

Galilean transformatiois). Writing it in the form

P (X, T)=g(x, )™ exdi(KV-Q)t] (24)
and assuming that
- 1
P(x,t) = w(x)ex;{lz)\zt>, (25)

where\ is a constant parameter, we compare &¢) with
Eqg. (16). Then we have

P(x) = x(x)exp(—iKx),

A2=2(A+Q—KV).

(26)

(27)

From Egs.(25 and(9) we arrive at the following equa-
tion for ¢(x)

1~ 1 2T T2 T T T2
— SNt S adt 912G+ an 200+ i s o Y

+iagdZh=0, (28)
Substituting here Eq$26) and(27) and taking into account
Egs.(6) and(7) and Egs(10) and(11) we have Eq(17) as
one should expect. From E(g6) it is seen that|?°<1 at
[x|>1. Linearizing Eq.(28) we obtain

preikx

(Ix[>1), (29

(34)
oy cosl 2] . a9
Ug(X) = —| COSIf ——X ,
S q \/a—2 p
() a1+ 2a;, ; { 1—pt }‘()\X)
X)=— —F——arcta —tlann —| |,
s 2A 1+p Ja,
(36)
Vagq
P= (37)
JAAI\Z+ a,q2
2
A2:4a1(a1+2a2:32—(a1+ 2a5) . 39

Equations(35)—(38) were obtained in Ref.14] for a pulse
part of RRS. From Eq(35) it follows that the soliton ampli-

tude is
[ 2
Ug=A P (39
(1+p)q
and its width is given by
5=+a,l/\. (40)

Thus one must requira,>0 and from Eq.(10) it follows
that atasK>0,

1
KI<3lasl, (@1

which is a restriction on the soliton velocitg).
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The small ternf (x) in Eq. (32) expresses the effect of the k~a,/2as, (50)
third-order dispersion. Afx|~ \(a,)/\, or less, it describes
the modification of the pulse, arising due to the last term inwhich approximately determines the wave number of the

Eq. (28), while at largex plane wave in the wings. Expressiofi®) and(31) approxi-
5 _ mately give the roots of Eq20) in analytical form. From
f()~(x)~ e (42  Eq.(50) it follows
wherek is a root of Eq.(30). Note, that this equation was sgnk=sgnas. (52)

derived in Ref[14] for the wave number of the resonantly

generated radiation by the RRS in the reference frame wher&nd, finally, from the results of Ref.14] it follows that at
the RRS is at rest. From all that we conclude that 88  small ag

coincides with the asymptotic expression for the RRS and its

radiation at large. Ja|k| | 2 2,/ K| 2 -
Let us now compare the embedded solitons, obtained (X)~B| —x exp — — | 1+ —arcsinp | |e™,
above numerically, with the solutiof82) at condition(13). (52)

From Eq.(38) we have
where B is a complex constant withB|~1—10. This ex-

1 L .

A= §|a1|' (43) pression is valid at

a,|k

Equations(6) and (10) give @>1, (53

1-V1-12a3V

K= 6—3 (44 i.e., when the wave numbéris much larger than the inverse
@3 width of the soliton(33). In expression(52), it is also as-
a,— V1= 12aqV. (45) sumed that 2A>\/\/aylky 4 (this does not excludé

<1). If

Using Eqgs.(39) and(37), we obtain
9= 2AN~NAlkid (o 2AN<N/aylkid), (54)

Ja,
ué:z_Ai(VArA N2+ g%a,—qyay), (46)  which may be satisfied only gt~1 andq~1, we have
whereq is defined in Eq(11). From Eq.(27) and Egs.(6) _ I{— W\/a—2| kl) ikx
and(7) we find f(x)=B\/azlk|ex AN ©9

It is easy to check that we can arrive at E§5) by sub-
stituting in Eq.(52) the first of conditiong54) andp=1.

From all the foregoing, one can see a connection between
Then we have for the cagé8) and(21), which is shown in  the embedded and resonantly radiating solitons. In the next
Fig. 1: ug~1.37. For the cas€?2) u,~1.41, and for case section we present numerical experiments disclosing this
(23) up=1.42. So, in all three cases we approximately haveconnection from another side.
uo~ 1.4 which is rather close tg(0)=1.5, assumed in the

1
A%=2 A—§K2+2a3K3 : (47)

nonlinear eigenvalue problem for all three cases. This sup- IV. THE CUTOFE OPERATION

ports the conclusion that expressiai3%) and(36) approxi-

mately describe the pulse in the embedded sol{arsmall Let us define a cutoff operation transforming the embed-
az). ded soliton into an isolated pulse. Turning to the function

Now considerf(x). At small a3, the roots of Eq.30)  x(x) in Eq. (16), we write
have simple analytical expressiofist]. Neglecting the first

term in Eq.(30), we have the two smallest roots Xeut(X) = x(X)r(X), (56)
Y wherer (x) is a cutting factor that we take in the form
k~+j—. (48)
\/3—2 1 X—Xo+AX X—Xo— AX
o o r(x)=z|tanh —— | —tanQ ——| |.
Substituting this into Eq(42), we have 2 Y -
P~ (X)~exp TN aX). (49)

HereX, is the center of the pulse andk>0 is the width of
This is in agreement with the asymptotic behavior of expresthe cutted functiony.,«(x). According to Eq(57), r(x) van-
sion (33) at largex. The third root can be approximately ishes afx—x,|—c and the positive parameter character-
obtained if one neglects the last term in E80). This gives izes the “sharpness” of vanishing. Assuming thats small
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radiation spreads out with time; this shows that on the left
hand side there is a transient radiation, emitted at shthie

to the initial condition(58). On the contrary, on the right
hand side we see a wave train with approximately constant
amplitude, with the front propagating to the right; so, the
length of the wave train increases with time. Therefore the
cutoff pulse permanently emits radiation to the right. The
spectrum, shown in Fig.(&), has a peak at approximately
equal to the root of Eq20) with account of finite velocity of
the pulse at=138(it is still rather close toc from Eq.(21),

i.e., to the wave number of the wing waves in embedded
soliton).

Analyzing the time behavior of aMy, we find that
d(argW)/dt=A(t) is a slow function oft, with A(0)
~0.98 andA (130)~0.85. Note that thisA(0) coincides,
with a good accuracy, with Eq21). Similar results were
obtained for cutoff pulses in cas€22) and (23).

We conclude that the cutoff pulses are radiating solitons;
and the radiation is permanently emitted only in one direc-
tion. As far ask is connected withk from Eq.(31), which is
the real root of Eq(30), obtained from the resonant condi-
tion, we conclude that the cutoff operation transforms ES
into RRS. The front of radiated wave train propagates with
the group velocityJ (k) given by[14]

U (k) =ayk—3agk?~ —a,ldas. (59)
From this it follows that

sgnU (k) = —sgnk= —sgnas. (60)

Therefore atu3<0 it should bek<0 andU(k)>0. This
means that the soliton in Fig(& should permanently emit
radiation to the right while the peak in the spectrum of the
wave train should be at negatikeThis is in agreement with
the results presented in Figgb2and Zc).

To describe analytically the whole system after the cutoff,
one can use at smail; the equatiorj14]

P(x,t) =[ug(x) + n(x,t) Jexdi ps(X)], (62)

whereug(x) and ¢¢(x) are given(in adiabatic approxima-
tion) by Eqgs.(35) and(36) and 5(x,y), at largex andt, has

FIG. 2. Numerical solution of Eg.1) at initial condition (58)
and a;=—0.3, @,=0, a3=—0.1. (a) The initial cut pulse. Full
line: |¥| versusx at T=0; dotted line depicts the corresponding
embedded soliton(b) The cutoff pulse aff =138; full line: |¥| o ) o
versusx; dashed line: R& versusx. (c) log,o ¥ | versusk (¥, is  Here f(x) is given by Eq.(52) and O(Y) is the Heaviside
the Fourier transform o (x); one can see a peak near the root of function
resonance equatiof20). O(Y)=1

the following asymptotic expression

7(x,0)~F(x)O(Ux)O(|U[t—[x]). (62

(Y>0), O(Y)=0 (Y<0). (63

enough and\x is such that the factar(x) cuts off only the
wings without essential disturbing the pulsexifx) (y and
Ax can be properly chosen in numerical t¢st® then take
the pulsey..(x) as the initial condition to Eq(l) [see Fig.

2(a)]

Equation(62) expresses that the soliton radiates in the direc-
tion of group velocityU and the radiation front propagates
with the velocity |U|. The above mentioned adiabatic ap-
proximation means that at sufficiently smal, the radiation
is so small that the soliton parameteraiix) andy¢(x) (as
well as the wave numbeék) can be considered as constant.
However, the soliton losses may be essential at large times.
The variation of soliton parameters, caused by the radia-
In Fig. 2(b) one can see that the cutted pulse emits radiatiotion, can be estimated by means of the integrals of motion
at t>0. However, on the left hand side of the pulse the(Appendix B. A vast information about the soliton evolu-

W(X,0)= xcul( X). (58
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[ Substituting this in Eq.(10), we have a,=1—-6a3/a;.
Therefore, at conditiori3) the coefficienta, also vanishes
and Eq.(9) takes the form

max

Gp+ B as| Yl 2o+ axpd,| Y|+ aszd3p=0,  (66)

which is related to Eq(l) by a Galilean transformation$)

and (8) with
V= ! , Kzi, 0= ! . (67)
12a; 6as 108q3
! 10 t 100 Consider a particular solution of E(66)
B P(x,t)=€%2(x,b), (68)

x(t)}
0120. where 6=const ande, {(x,t) are real. Then Eq(66) is

reduced to the MKdV equation

110y Il +2(3ag+ ay) (20, L+ azd3(=0. (69)

100 It is completely integrable and, in particular, has exact
A ; N-soliton solutions[22] if a,# —3az=—(1/2)a; [cf. Eq.
90| ] (2b)]. From them, using EJ68) and Galilean transformation
. . . : . . with parameter$67), we one can findN-soliton solutions of
0 20 40 60 t80 100 120 140 Eq. (1) at a;=6a3. For one-soliton solution we have
FIG. 3. Temporal behavior of the radiating soliton af ys=aseclib(x— azb’)]e”, (70

=-0.3, @,=0, az=—0.1.(3) |¥|nhax VversusT =t; (b) the soliton

position versug wherea and b are connected by means of E@b). This

expression, together with Eq$5) and (67), leads to the
. - . Potasek-Tabor soliton, described by E¢a—(2e) with «
tion, caused by the radiation, follows from the numerlcaI:K:1/6a3 (as#0). Therefore theN-soliton solutions of

solution of Eq.(l). For the para_meters used in F|g. 2., the Eq. (1), \I'Q'(X,T), atT— +o0, are composed of the Potasek-
results following from this solution are presented in Fig. 3'Tabor solitons

D e on g 11 2ion 0 coniton(, 0,0 (Hrota casei)
found for the caser; = a,=0 [25,26]. Analyzing the soliton we arrive at the complex MKdV equation
position[Fig. 3(b)] one can find that the soliton velocit(t) i+ B ag| 20+ azddp=0. (71)
increases fronV(0)=0 to V(138)~0.29, i.e., the soliton is

acceleratingand the functionv(t) increasedalso logarith-  The soliton solution to this equation has the form
mically). Now, usingA (0)~0.98, A(138)~0.85 and Eqgs. _

(47) and (44), we have\(0)~1.4, A\(138)~1.28. There- Ps(x,t) =asecha(x—ct)Jexgi(px—at+0)] (72
fore, the soliton widthA= Ja—zl)\ increases fromA(O)

~0.71 toA(138)~0.99, i.e., the radiating soliton is widen- with arbitraryp and

ing with time. All that can be considered as a numerical c=—3azp’+ aza®, o=-—azp+3azpa® (73
confirmation of analytical results obtained in Appendix B
from the conservation laws, in particular that [cf. Eq.(70)]. Then
dv T (X, T)=asecha(X—VT)]exdi(kX—oT+6)],
Sgngr =~ sgnk=sgnu, (64) (74)
where

which means that the soliton is accelerating in the direction

of the group velocity of resonant radiation. Vs=VHe, k=K+p, o=ot+Q+pV. (75)

Therefore nowk is arbitrary andVg(«) and w(«) coincide

V. SPECIAL CASE a,=6as; with Egs. (2c) and (2d), respectively. This means that Egs.
(74) and(75) indeed describe the Hirota solitons, mentioned
The coefficientg in Eq. (9) disappears at in Sec. Il A, and Eq(1) in Hirota case definitely has com-
plex N-soliton solutions. The system of Hirota solitofes-
K=1/a;. (65 pecially with p#0) seem to be rather interesting objects for
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the soliton theory. Some numerical simulations, demonstrat- a;=—0.5, a3=0.1. (77

ing generation of robust complex Hirota solitons from initial

pulses, are described elsewh¢g9]. We continue further
studies in this field.

The behavior of the solution at these parameters is shown in
Fig. 4, where the case;=0 (with @;=—0.5) is also pre-

As for Eq.(66), it may not be, generally, integrable; one Sénted for comparison. In the latter case, the initial pulse

can only assert that it has-soliton solutions at anyr,#
—(1/2)a4. Below, we call Eq(66) general complex MKdV
equation. The Painlévtest[21] applied to Eq.(66) shows
that it has the Painlévproperty if a,=3aj, i.e., 6az=a;
=2a,. This is just the integrability condition for Eql)
found by Sasa and Satsurfid]. These conclusions are in
agreement with those following from the Painleest of Eq.
(1) [28,23.

VI. PULSE EVOLUTION AT a;#6as3, a,=0

Here, we report on the numerical solutions of Ed). in
general case. First we take, as initial condition, the pulse

\I’(X,0)=Asec+%(x—xo) exdiC(X—Xo)] (76)

with A=1.9, C=0 andXy=100 and assume that

splits into four solitons of the fornG33) and(35)—(38), with
a,=1 and moving to the leftFig. 4(a)]. On the other hand,
in case(77) the initial pulse splits into threeadiating soli-
tons. Two of them propagate to the right and the smallest
one, to the left.

The radiated wave trains propagate to the right with the
group velocities larger than the soliton velocit{@sgs. 4b)
and 4c)]; this is in agreement with Eq60). The time de-
pendence of the soliton coordinates is shown in Fig. 5. At
a3=0, the soliton velocities are constant. A= —0.1, the
solitons are accelerating ipositive direction, which agrees
with Eq. (64). The Fourier spectra for both cases=0 and
az=—0.1, are shown in Fig. 6. The spectrumaa{=0 ex-
hibits no resonant radiatidfrig. 6(@)] while ataz=—0.1 we
see three distinct resonant peaks with negakiyevhich are
the wave numbers of the resonant radiation emitted by the
solitons in the “laboratory” fram¢Fig. 6(b)]. The difference
between the wave numbers follows from Eg0) which is
valid, as we have seen, both for embedded and radiating
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P FIG. 7. The amplitude of the first soliton versus tinfa) aj

=0, (b) az=—0.1.
FIG. 5. Plots ofXy(t) for three largest solitons shown in Fig. 8.
Dashed linex;=—0.5, a,=0, a3=0; solid line:a;=-0.5,2,  while in the second case they must slowly decrease because
=0, a3=-0.1. of the soliton radiation.

_ ) ) N In the aforegoing, we studied the case whepu;=0.
solitons. As far as the solitons have different velocities andyow let us consider;as<0. We take

amplitudes(the latter are determined by the soliton param-

eterA), they have different wave numbers becaksdéeing

a root of Eq.(20), depends on the soliton velocity and am- a;=-086, a3=0.1, (78)
plitude.

An important difference between the two cases=0  and initial condition(76) with C=1/2, X,=850. The solu-
and a3#0, is seen in Figs. 7 and 8. In the first case, thetion at T=370 is shown in Fig. 9. We see a pulse with
average soliton amplitudes have constant limitstatee  radiation on both its sides. An analysis shows that on the left

hand side there is the resonantly generated radidiion
log,, |‘I’K| agreement with Eq(60), where nowa3>0, k>0, U<O0).
. ' On the right-hand side, there is a radiation composed of the

harmonics of continuous spectrum; it satisfies the linearized
2r Eqg. (1) and has been emitted in the transient period of time.
3l The spectral distribution is shown in Fig. 10. One can see

two spectral maximums at positive wave numbers. The nar-
-4t row one corresponds to the resonant radiation, while the
sl broader peak is composed of the continuous spectrum. Its
’ structure can be understood from the dispersion equation
6}
71 0= (1/2k*— azk® (799
-8

¥ e
21
3
4}
5t
B}
7L
-8 L L , .
30 20 10 0 10 20 30
K . .
10 t 100
FIG. 6. Fourier spectra of the solutions shown in Fig.(a);
a;=—0.5, a,=0, a3=0; t=48 (b) @;=-0.5, @,=0, a; FIG. 8. The amplitude of the second soliton versus tita.

=—0.1; t=175. HereV . is the Fourier transform o¥ (X). a3=0, (b) ag=—-0.1.
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FIG. 11. Soliton amplitude versus time @a{= —0.6,23=0.1.

and the corresponding expression for the group velocity o . s .
continuous spectrum Iar solitons, degenerate at— 0; this shows that they exist

due a balance between nonlinear terms and linear third-order
Vy(K) = k—3agk? (79p  dispersion. On the other hand the quasisolittembedded
g 30 L. . .
and resonantly radiatingurn ata;— 0 into the regular soli-
From this we see that, at;>0, the continuous radiation on ton solutions of Eq.(1) without the third derivative term.

the right-hand side of the pulse is composed from Apart from that, ate,=0, the regular solitons exist only in
the special case;,=6as;.
0<ksko=1/6a3, (790 The resonantly radiating soliton®RRS are nonsteady;

) the amplitudes of their radiation at smalk are exponen-
whereVy(ko) =maxV(k). As far asko is less than the wave  ja|ly small and so their parameters change logarithmically
number of resonant radiation, approximately given by Edqgjow in this case. Only such quasisteady solitons have suffi-
(50) (note that in our case, according to E¢5), a,>1),  ciently large lifetimes to be of physical significance. The
one can see why the peak of continuous spectra is lessthanempedded soliton€ES), which are steady structures consist-
of resonant radiation. All this shows that the pulse in Fig. 9 ising of pulses embedded into plane wavetngs), have close
nothing but RRS. The time behavior of its amplitude isconnection with RRS, similar to other systems. The corre-
shown in Fig. 11; qualitatively, it is similar to Fig(a. sponding analytical treatment in Sec. Il is supplemented by

It is reasonable to compare these results with the casgumerical simulations with the cutoff operati¢8ec. 1V); it
a;=—0.6, 3=0, at the same initial condition. Then we s demonstrated that it leads to the transformation of ES into
have two regular solitons, propagating to the right. The soliRrs that radiates in the direction of the radiation group ve-
ton positions versus time for both cases are shown in Fig. 13gcity. Just after the cutoff, the amplitude, velocity, and wave
Note a very small acceleration of RRS in the direction ofnymber of the radiated wave train coincide with those of
group velocity(which is now negative wings; marching in time, we have seen that the amplitude

decreases, the soliton velocity increases and the wave num-

X(1)

VIl. CONCLUSIONS

We have considered soliton and quasisoliton solutions of
Eqg. (1) and their relationship. Solutior{®), describing regu-

900

log,, .| 800
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100

0 100 200 300 400 500 600 700

-15 -10 -5 0 5 10 15

FIG. 12. Soliton positions versus time fer,=—0.6a3=0
FIG. 10. Spectral distribution at;=—0.6,23=0.1. (1,2 and,a;=—0.623=0.1 (3).
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ber changes according to E¢80) and(31). Thisis in agree- where
ment with conservation law@\ppendix B).

In Sec. V we have investigated a special cage=6as, I=r+a3p®~(k—3agk?+ a;A%)p. (AB)
interesting from a theoretical point of view. Then the qua- B o
sisolitons, ES and RRS, do not exist and Ef). can be Thus, at reap, ImI'=Imr and the stability condition is
reduced, by means of Galilean transformation, to the com- 2 2 5 212
plex MKdV equation. It turns into two integrable cases: at (1~ 6asx)"p"=4AT(1-a1x)(1—-6agn) —azA%].
a,=0 (Hirota equation and at a,=3a3 (Sasa-Satsuma (A7)
equation. At other values ofy, it seems to be nonintegrable
despite that it hadl-soliton solutions.

Presumably, in the nonlineg@rocesse®nly regular soli-
tons_and RRS may be of the physica] significance. Fron_"n Eq. (1—a1K)(1—6a3K)<a§A2. (A8)
(2b) it follows, however, that the amplitude of regular soliton
vanishes ata;—0, while for the RRS it remains finite. a¢ a,=0 this is possible at
Therefore one should expect that at smajl the RRS are

' Unlike the plane wave solution of the regular NLS, now the
plane wave can be stable at apyif

more important in the nonlinear evolutioGmall a5 is the 1 1

most interesting case from physical point of view because S SKSga. (Baz<ay) (A93)
the third derivative term is in fact the result of an expangion. ! 3

In Sec. VI we show how RRS are emerging from initial 1 1

dlstu_rbance_s. This |r]d|cate§ thz_;lt the RR.S are |mportant G—ng— (a;<6as). (A9b)
physical objects playing a significant role in the nonlinear as ag

d ics.
ynamics Applying the stability criterion to the wings of embedded

solitons, wherec~1/2a, we see that this may satisfy con-
dition (A9b); then one can expect that the wings are stable.

This work was partly supported from INTAS Grant No We should also take into account orpy>L %, whereL is
99-1068. the period in the numerical scheme; this relaxes the limita-
tions following from the stability criterion.
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APPENDIX A: MODULATIONAL INSTABILITY OF

PLANE WAVE, ACCORDING TO EQ. (1) APPENDIX B: INVESTIGATION OF THE SOLITON
. . EVOLUTION BY MEANS OF THE INTEGRALS
Equation(1) has exact plane wave solution OF MOTION
V=AexpixX—iwT). (A1) First, we present a general analysis of conserved integrals

N,P,H. Substituting Eq(5) into expression$12), (14), and

Substituting Eq(A1) into (1), we have (15) we have after simple algebra

1
=42 (1— 2_ 3 %
w=5K (1= a1k)A°— a3k, (A2) N:f ()| 2dx (B1)
Substituting a slightly perturbed wavAl)
1 o
T=A(1l-y)expikX—iwT), (A3) P=KN+ EiJ (o™ — * dp)dx, (B2)

into Eg. (1), we have o
where (x,t) satisfies Eq(9).

) 1 ) ) 5 To have a convenient expression fdr we substitute in
ixT+ 5(1—6a3K)Xxx+I(K+ a1A”—3a3K?) xx Eq. (15) a3d>¥ and azd>¥* from Eq. (1), to obtain

+(1—a16)(x+ x*)A2+ia +YAZ (A4 i *
( 1) (x+x*) 2(xx+ xx) (Ad) szf dX(\If*ﬂT\I’—\If&T‘P*)-F%f dx|w|*

Writing y=u-+iw and assuming that

. _ i o
(u,w)~expipX—irT). + Zalf AX|W2(W* gy W — W 9 W),
we obtain dispersion equation, which is convenient to write
in the form Then using the Galilei transformation in the for@®@4) and
taking into account that at large
1
2= 2a,KAT = 7 (1-6a5K)k?[ (1~ 6asK)k? a~i(N212) i,
—4(1- a;K)A%]=0, (A5)  we arrive at the following asymptotic expression:
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Q—KV 17\2 N+PV+1 F 4d Pdv xdk KdK
AR 29, lvdx at | Mar Ty
(= df1 (=
—ElalL [ (poxy™ =y oxpydx. (BI) T qu |¢]*dx
- . i o
Substituting Eqgs(25) and (32) into Eq. (B1), we have at t—a j 2(4* 3, h— P, % ) dx
larget (cf. Refs.[25,26)), 47t oc|¢| VoY doxy
_ dl1 (=
N=NG+N,, CE R a[qu yalédx
where i .
w w +Zalfw |‘/’s|2(‘//;c ax‘/’s_ ¢sax’p§)dx (813)
Ns=f lug(x,1)|%dXx, N,=J | p(x,1)[?dx  (B5)
” ” Using
are contributions from the soliton and the radiation. Using dv dK
Eq. (35 we have a=aza, (B14)
2a, i
NS:—ar cta r(\/_ ) (B6) we obtain
= (P— KN)dK )\d)\N
a —— [
and, at large, 2 dt
df1l (= @’ (o
N,~|f|Z|U]t (B7) *__‘f 4 _1f 6
~IF2Y] dt(zq “utar [
wheref is given by Eq.(52) or (55). Evidently,|f|? does not (B15)

depend orx. Then from the conservation of it follows
Let us apply these relations to smal} (which is just the

d|2a, a\ case shown in Fig.)3Assuming that
—| —Carcta ~—|f|?|U]. (BY)
dt] @ Vayq i
o<1, (B16)
In a similar way, from Eq(B2) and the conservation & we Vayq
have the following asymptotic equation at large
we have
NGt + gt | w00 a00dxkEUI~0. (B9 N 22
— X X)dx ~0. 2\ao\ ai\
dt " di).. ) Ng~ ——2 (1— . (B17)
q 3a,0°?
From Eq.(36) at @,=0, we have ]
Therefore Eq(B8) is reduced to
Ay ihs(X)= ——u 2(x). (B10) 2\a,\ a?\?
: ° d]24a, 1-——||=—|f]3u].  (B1Y
dt| q 3a,02
Taking into account that o
In the same approximation, EB12) takes the form
o 2a,q [ 2va\
f u‘s‘(x)dx=a—2q( ? —NS), (B11) Kl 2% d A3 510
*® 1 E’V_ | | | | 3 dt \/——q ’ ( )

e transform Eq(B9) to the form
W a(B9) At a;—0, Egs.(B18) and(B19) turn into equations obtained

dK 2\/a—)\ in Ref. [18]. From Egs.(B19), (B14), and(60) follows the
Ne— — — [ [ 2YF2% +k|f|q|U|~0. (B12)  important qualitative resuli54).
dt dtje;| ¢ Now, consider Eq(B15). Taking into account Eq$B2),

(B10), (B11), and(B19) we see that at
Now we turn to Eq(B3). After differentiation overt and
simple calculations we obtain t<Ak?|f| U2 (B20)
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and smalle,, Eq. (B15) is approximately equivalent to Eq. Eq. (1) (see Fig. 3 The characteristic time of the variations
(B18). Performing calculations similar to those in REf9]  of soliton parameters has the same order of magnitude as in
and using Eq(B14), we conclude that the soliton widii* Ref.[26], which is much less than the right hand side of Eq.
and velocity V(t) are changing logarithmically slow. The (B20).

same holds for the soliton amplitudg(t), determined from If a; is not small, the analysis is rather tedious and will
Egs. (39 and(37), in agreement with numerical solution of not be considered here.
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