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Influence of the relative refractive index on the depolarization of multiply scattered waves
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Using the theory of radiative transfer, we investigate the interaction between polarized waves and a multiple
scattering medium as functions of the relative index of refraction. To study this problem, we consider circularly
and linearly polarized continuous waves incident upon a medium containing spherical scatterers. With an
accurate spectral method, we compute the transmitted Stokes parameters through media containing different
sized scatterers and different indices of refraction. Our numerical results show that the circular depolarization
length exhibits a strong dependence on the relative index of refraction, while the linear depolarization length
does not.
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I. INTRODUCTION

Recently, a large number of studies have been repo
addressing polarization properties of waves scattered b
turbid medium. The interaction of waves with an inhomog
neous medium not only randomizes the direction of
waves but also their polarization state. It has been shown
the polarization information of an incident polarized sour
is preserved over long distances, and that the characte
length over which it depolarizes depends on the size of
inhomogeneities compared with the wavelength@1,2#. Simi-
lar results have been found using time-resolved meas
ments@3#. For spatial inhomogeneities that are small co
pared with the wavelength, linear polarization is preserv
over slightly larger distances than circular polarization@2#.
On the other hand, circular polarization is maintained o
larger distances for spatially large inhomogeneities@2,4#.

In addition to size dependence, we show that polariza
properties of waves interacting with an inhomogeneous
dium also depend on the relative index of refraction~the
ratio between the indices of refraction of the inhomoge
ities and the background!. In particular, we consider a me
dium composed of optically inactive spherical scatterers,
we numerically study the depolarization of light transmitt
through the medium for different sphere sizes and refrac
indices. Our computations show that depolarization leng
can strongly depend on the relative refractive index.

Included in this study is the case where the relative refr
tive index is close to 1. This is an important case for ma
applications such as ocean@5–7#, atmospheric@8–11# and
biological optics@12–14#. The random fluctuations of th
refractive index in the sea and the atmosphere are du
temperature variations. Salinity fluctuations in the sea
humidity fluctuations in the atmosphere also lead to sm
relative variations in the refractive index. These effects yi
refractive index variations on the order of 1% or less. T
variations in soft tissues due to structures within cells are
the order of 5%@15#.
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II. RADIATIVE TRANSFER THEORY

The theory of radiative transfer models waves propag
ing in a scattering and absorbing medium. This theory
appropriate for problems in which propagation distances
much larger than the wavelength. For polarized waves, ra
tive transfer uses the four Stokes parametersI, Q, U, andV.
The total intensity is represented byI, the linear polarization
state byQ and U, and the circular polarization state byV.
The vector radiative transfer equation

1

v
]I ~x,V̂,t !

]t
1V̂•“xI ~x,V̂,t !1SaI ~x,V̂,t !

52SsF I ~x,V̂,t !2E F~V̂,V̂8!I ~x,V̂8,t !dV̂8G , ~1!

governs the 431 Stokes vectorI5(I ,Q,U,V), which de-

pends on positionx, directionV̂, and timet. Herev is the
constant wave speed,Ss is the scattering cross section, an
Sa is the absorption cross section. The integral operation

Eq. ~1! that involves the 434 scattering matrixF(V̂,V̂8)
takes place over the unit sphere. This scattering matrix
scribes the directional distribution of waves that scatter

direction V̂ due to waves of unit energy density incident

direction V̂8. In addition, it describes polarization chang
that waves undergo after scattering. If the scattering matrF
uses the scattering plane as its plane of reference, it dep
only on the cosine of the scattering angleQ.

If the medium contains spherical scatterers, the scatte
matrix can be computed exactly using Mie theory. In th
case, all the elements ofF are functions of the nondimen
sional size parameterka ~k is the wave number in the back
ground medium, anda the radius of the scatterers! and of the
relative refractive indexm.

Two limits are particularly interesting here:ka!1 and
um21u!1. When ka!1 the Rayleigh scattering limit is
valid regardless of the value ofm @16#. We denote the scat
tering matrix in this limit by R. On the other hand, for
um21u!1, the scattering matrix is simply the product ofR
and a scalar function that does not depend on polarizat
This is the Rayleigh-Gans limit@16#. The scalar function
©2001 The American Physical Society12-1
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A. D. KIM AND M. MOSCOSO PHYSICAL REVIEW E64 026612
governs the amount of energy that scatters in the forw
direction and is a function ofka. The Rayleigh-Gans range i
not limited to homogeneous discrete spherical partic
Scatterers with simple forms such as ellipsoids or spher
as well as inhomogeneous density distributions can also
treated. Furthermore, if the scatterers are not compactly
ported in space~continuous random media!, and the relative
refractive index fluctuations are small, the scattering ma
F takes a form similar to that of the Rayleigh-Gans limit.
this case, the scalar function multiplyingR is the power spec-
tral density function of the fractional permittivity fluctuation
which incorporates the statistical properties of the medi
@17#. The physical basis of the Rayleigh-Gans limit is th
the wave fields scattered from different small volumes wit
the medium are always independent.

In many applications the vector radiative transport eq
tion ~1! is approximated by its scalar counterpart. In th
approximation polarization is neglected, soQ5U5V50 in
Eq. ~1!, and the 434 matrix is replaced by a scalar functio

p(V̂,V̂8) called the phase function. The phase function
often characterized by the anisotropy factorg. For example,
the Henyey-Greenstein phase function

p~V̂,V̂8!5
12g2

2~12g212g cosQ!2/3 ~2!

is often used to describe scattering from clouds and tiss

@18#. Here cosQ5V̂•V̂8. This function varies smoothly from
isotropic scattering (g50) to narrow forward peak scatterin
(g;1) or backward peak scattering (g;21). Within this
scalar approximation only three parameters are necessa
match the observed intensity of a particular experiment:
scattering coefficientSs , the absorption coefficientSa , and
the anisotropy factorg characterizing the phase function.

However, we will show that the relative refractive inde
also affects depolarization. Different media with simil
Ss ,Sa , and g values can exhibit distinctly different polar
ization characteristics if the relative refractive index is d
ferent. Consequently, the entire structure of the scatte
matrix and its dependence on the scatterer size and refra
index need to be considered to understand the depolariza
of waves in a scattering medium.

III. NUMERICAL RESULTS

We begin this numerical investigation by examining t
anisotropy factor of a single sphere. In Fig. 1~a! we plot the
anisotropy factor

g52pE
21

1

cosQF11~cosQ!d~cosQ!, ~3!

computed from Mie theory form51.01 ~solid line!,
m51.20 ~dashed line!, and m51.40 ~dot-dashed line! as
functions of the size parameterka. Here F11 is the ~1, 1!
element of the scattering matrixF. We observe that the be
havior of g is similar for 1.0,m,1.2. In contrast, the an
isotropy factor is not a monotonic function ofka for m
51.40. The complicated behavior ofg reflects the character
02661
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istic oscillations of Mie resonances. Also interesting is t
fact that for large relative refractive indices and large s
parameters, the anisotropy factor is diminished. This beh
ior is due to the increase of backscattering as the rela
refractive index increases.

In our numerical simulations, we consider either a 100
circular or 100% linear polarized continuous plane wave n
mally incident upon an index-matched plane-parallel m
dium of optical thicknesst5d/ l , where d is the physical
thickness andl 5(Ssc1Sa)215S t

21 is the total mean free
path. In this case Eq.~1! reduces to

cosu
]

]z
I ~z,u,f!1SaI ~z,u,f!

52SsF I ~z,u.f!2E
0

2pE
0

p

F~u,f,u8,f8!

3I ~z,u8,f8!sinu8du8df8G . ~4!

Hereu is the polar angle defined with respect to thez axis,
and f is the azimuthal angle. This plane-parallel mediu
contains a random distribution of dielectric spheres, e
with a constant radiusa and a relative refractive indexm.
Therefore, the scattering matrix is computed exactly us
Mie theory @19#. We solve Eq.~4! using a Chebyshev spec
tral method in which the spatial variable of the Stokes vec
I is approximated by an expansion of Chebyshev polyno
als @20#. The resultant system of integral equations for t
angularly dependent expansion coefficients is treated
Gaussian quadrature methods, yielding a sparse linear
tem of equations. This method provides very accurate s
tions to Eq.~4!. Recently, we also showed that Chebysh
spectral methods are suitable to generalizations of Eq.~4!
including time dependent and higher dimensional proble
@21#. While Eq. ~4! offers a significant simplification to the
general problem@Eq. ~1!#, we found that polarization prop

FIG. 1. Anisotropy factorg as a function of the nondimensiona
size parameterka for a medium composed of spherical scattere
with relative refractive indexesm51.01 ~solid line!, m51.20
~dashed line!, andm51.40~dot-dashed line!. The inset enlarges the
region 1<ka<3.
2-2
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INFLUENCE OF THE RELATIVE REFRACTIVE INDEX . . . PHYSICAL REVIEW E64 026612
erties from these results agree well with Monte Carlo sim
lations of more complicated problems involving finite wid
beams. Therefore, we use Eq.~4! as a simple model from
which we are able to ascertain fundamental polarization p
nomena.

The transmitted copolarizedI copol and cross-polarized
I x-pol intensities are computed in each case with respect
receiver with a 16° semiaperature directed normal to
boundary plane atz5d. The copolarized intensity is the re
ceived intensity, having the same direction of polarization
the incident wave. For linear~circular! polarization, the
transmitted cross-polarized component is perpendicular~op-
posite! to the incident polarization direction. If the mediu
is completely homogeneous, then there is no scattering,
the transmitted cross-polarized component is zero. Howe
if the medium is not homogeneous, waves interact with
inhomogeneities, resulting in an increment of cross-polari
component and a decrement of the copolarized compon
In Fig. 2~a!, we plot the copolarized~solid line! and cross-
polarized~dashed line! components as functions of the op
cal thicknesst for circularly continuous incident plan
waves. Figure 2~b! shows the same computation but for li
early incident plane waves. In this case, we have taken
account the fact that we measure the linear polarized in
sities with a receiver directed normal the boundary pla
The transmitted intensitiesI copol andI x-pol , polarized parallel
and perpendicular to the incident polarized wave, requir
change of basis of the solution vectorI5(I ,Q,U,V) to the
reference frame of the receiver@19#:

I copol5
1
2 @cos2 u cos2 f1sin2 f#I 1 1

2 @cos2 u cos2 f

2sin2 f#Q2 1
2 @cosu sin 2f#U, ~5a!

I x-pol5
1
2 @cos2 u sin2 f1cos2 f#I 1 1

2 @cos2 u sin2 f

2cos2 f#Q1 1
2 @cosu sin 2f#U. ~5b!

Note that Eq.~5! may yield a nonzero cross-polarized com
ponent due to transmitted intensities in nonforward dir
tions, cosuÞ1.

For an optical thicknesst@1, the normalized polarization
difference exponentially decays as

I copol2I x-pol

I copol1I x-pol
;exp@2t/j i #, ~6!

where the subindexi 5L,C denotes linear and circular inc
dent light, respectively. The depolarization lengths defin
here are scaled with respect to the total mean free path.
insets in Figs. 2~a! and 2~b!, for circularly and linearly po-
larized waves, respectively, show the exponential decay
their normalized polarization differences. By computing
least-squares fit of the normalized polarization differen
data, we obtain the depolarization lengthsjC andjL shown
below. We note that the normalized polarization difference
used to obtain better optical images of biological me
@12,22–24#.

In Fig. 3~a! we plot the circular depolarization lengthjC
as a function of the nondimensional size parameterka for
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three relative indices of refractionm. For smallka we ob-
serve that the depolarization length is independent ofm,
which is consistent with the Rayleigh limit. However, fo
larger size parameters,jC increases as the relative index
refraction increases. In fact, forka52 the circular depolar-
ization length form51.40 is more than two times larger tha
that for m51.01. The increase ofg with respect tom at ka
52 is not large enough to explain this effect~see the inset in
Fig. 1!. Furthermore, forka53 the circular depolarization
length for m51.40 is still much larger than that fo
m51.01, even thoughg is nearly equal. We also observe th
while jC is simply an increasing function ofka for
m51.01, the behavior ofjC is more complicated for large
m, reflecting resonance effects.

On the other hand, we observe in Fig. 3~b! that the linear
depolarization lengthjL depends onm more smoothly. Its

FIG. 2. Transmitted intensities for circularly~a! and linearly~b!
polarized incident waves. Hereka52.98 andm51.20. The re-
ceiver, which has a 16° field of view, is directed normal to t
boundary plane. The inset is a plot showing the exponential de
of the corresponding normalized polarization difference defined
Eq. ~6!.
2-3
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A. D. KIM AND M. MOSCOSO PHYSICAL REVIEW E64 026612
behavior can be explained by the anisotropy factor, sincejL
increases proportionally withg. In contrast with previous
results @2#, our computations do not show that the ra
jC /jL is an increasing function ofka in general. This ratio
increases monotonically withka only for the case whereum
21u!1.

To understand the mechanisms contributing to the de
larization of waves, in Fig. 4 we plot the relative amount
power with circular and linear polarizations scattered by
single sphere due to fully polarized incident plane waves
Fig. 4~a!, we consider a circularly polarized incident wav
with Stokes vectorI5(1,0,0,1), impinging on a scattere
with relative indexes of refractionm51.01 ~solid line! and
m51.40 ~dot-dashed line!. We compute the relative amoun
of energy density scattered that is circularly polarized:

PC5E uV~V8!udV8Y E I ~V8!dV8. ~7!

This quantity ranges from 0<PC<1. It is equal to zero for
unpolarized waves, and is equal to 1 for completely cir
larly polarized waves. In Fig. 4~a!, PC shows a strong depen
dence on both the size parameter and the relative inde
refraction. Forum21u!1 ~solid line!, PC grows monotoni-

FIG. 3. Circular~a! and linear~b! depolarization lengthsjC and
jL , respectively, scaled by the scattering mean free path for sp
cal scatterers with relative refractive indexesm51.01 ~solid line!,
m51.20~dashed line!, andm51.40~dot-dashed line!. The receiver,
which has a 16° field of view, is directed normal to the bound
plane.
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cally to 1. If the relative index of refraction is larger~dot-
dashed line!, then, after a fast increase,PC oscillates with a
decreasing tendency. In fact,PC is smaller for a large relative
index of refraction than for small ones if the size parame
is large. This phenomenon indicates that circularly polariz
waves depolarize faster asm increases for largeka. Our nu-
merical simulations demonstrate this behavior.

Similarly, we consider a linearly polarized incident plan
wave with Stokes vectorI5(1,1,0,0) in Fig. 4~b!. In this
case the Stokes componentsQ and U are related to each
other through rotations, so we consider both together.
relative amount of energy density scattered that is linea
polarized is@25#

PL5E AQ2~V8!1U2~V8!dV8Y E I ~V8!dV8. ~8!

This quantity also takes values 0<PL<1.
The salient feature of Fig. 4 is that while thePL is equal

or almost equal to 1 regardless of the size parameter or
relative index of refraction,PC depends on both and is sig
nificantly less than 1. As a result, circularly polarized wav
will systematically depolarize after each scattering.

Since PL'1, after single scattering, linearly polarize
waves are not systematically depolarized like circularly p
larized waves. A second mechanism is responsible for lin
depolarization. Linear polarization is defined with respect

ri-

y

FIG. 4. Fraction of power with circular~a! and linear~b! polar-
izations scattered from a single sphere due to fully circularly a
linearly polarized, incident waves, respectively, as functions of
size parameter form51.01 ~solid line! and m51.4 ~dot-dashed
line!.
2-4
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INFLUENCE OF THE RELATIVE REFRACTIVE INDEX . . . PHYSICAL REVIEW E64 026612
a reference plane. For our discussion, let us choose that p
to be the scattering plane spanned by the incident and s
tered direction vectors. After several scattering events,
directional distribution of the Stokes vector becomes r
domized along with the orientation of these scattering plan
Hence the Stokes vector at any position involves the mixt
of several directions, each having different scattering plan
thereby giving rise to depolarization. Consequently, the
ear depolarization length is approximately equal to the tra
port mean free pathl tr5@S t(12g)#21, which is the charac-
teristic length scale for directional randomization. O
numerical results are consistent with this statement. Un
linear polarization, circular polarization is defined indepe
dent of a reference plane, so this second mechanism doe
depolarize them.

IV. SUMMARY

In summary, we have studied the influence of the relat
refractive index on the depolarization properties of scatter
media. By computing solutions to the plane-parallel probl
with linearly and circularly polarized incident waves, we d
ys

itt

er

p

p

J.
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termine the corresponding linear and circular depolarizat
lengths from the exponential decay of the normalized po
ization difference. In particular, we find that the circular d
polarization length strongly depends on the refractive ind
Scattering from a single sphere clearly demonstrates this
pendence. While circular depolarization systematically
creases after each scattering event, linear depolarization
creases with the randomization of directions. Consequen
the linear depolarization length is approximately equal to
transport mean free path. This is true independent of the
parameter and the refractive index of the scatterers. In a
tion, we have observed similar phenomena for various
ceiver apertures, including a full field of view. These resu
may be useful for polarization techniques in optical imagi
applications.
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