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Influence of the relative refractive index on the depolarization of multiply scattered waves
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Using the theory of radiative transfer, we investigate the interaction between polarized waves and a multiple
scattering medium as functions of the relative index of refraction. To study this problem, we consider circularly
and linearly polarized continuous waves incident upon a medium containing spherical scatterers. With an
accurate spectral method, we compute the transmitted Stokes parameters through media containing different
sized scatterers and different indices of refraction. Our numerical results show that the circular depolarization
length exhibits a strong dependence on the relative index of refraction, while the linear depolarization length
does not.
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I. INTRODUCTION II. RADIATIVE TRANSFER THEORY

. The theory of radiative transfer models waves propagat-
Recently, a large number of studies have been reporteﬁgg in a scattering and absorbing medium. This theory is

addfess'”g. polar|zat.|on pro_pemes of waves scgttered by Qppropriate for problems in which propagation distances are
turbid medium. The interaction of waves with an inhomoge-p,ch |arger than the wavelength. For polarized waves, radia-
neous medium not only randomizes the direction of thejye transfer uses the four Stokes paramete€3, U, andV.
waves but also their polarization state. It has been shown thathe total intensity is represented bythe linear polarization
the polarization information of an incident polarized sourcestate hyQ and U, and the circular polarization state b

is preserved over long distances, and that the characteristithe vector radiative transfer equation

length over which it depolarizes depends on the size of the

inhomogeneities compared with _the vyavelenbltlﬁ]. Simi- 1 al(x,fl,t) ~ ~ .
lar results have been found using time-resolved measure- —T+Q~VXI(X,Q,t)+EaI(x,Q,t)
ments[3]. For spatial inhomogeneities that are small com- v

pared with the wavelength, linear polarization is preserved A N -~ N

over slightly larger distances than circular polarizat[@h =—35 |(X'Q,t)—f F(Q,Q)1(x,Q",1)dQ" |, (1)
On the other hand, circular polarization is maintained over

larger distances for spatially large inhomogeneifiz4]. governs the &1 Stokes vectot=(I,Q,U,V), which de-

In aqldition to size.depenQence., we show that polarizatiorbends on positior, directionQ, and timet. Hereu is the
properties of waves interacting with an inhomogeneous Mmegqnsiant wave speed, is the scattering cross section, and
dium also depend on the relative index of refractihe s _ s the absorption cross section. The integral operation in
ratio between the indices of refraction of the inhomogene- . . A
ities and the backgroundin particular, we consider a me- Eq. (1) that involves the_ &4 scattering matn)d_:(Q,Q ).
dium composed of optically inactive spherical scatterers, amt]ak_es place over _the unit SPheFe- This scattering matrix d_e-

. o : . Scribes the directional distribution of waves that scatter in
we numerically study the depolarization of light transmitted™ ="~ . _ T .
through the medium for different sphere sizes and refractivé“reCt'O”Q due to waves of unit energy density incident in
indices. Our computations show that depolarization lengthslirection Q’. In addition, it describes polarization changes
can strongly depend on the relative refractive index. that waves undergo after scattering. If the scattering métrix

Included in this study is the case where the relative refracuses the scattering plane as its plane of reference, it depends
tive index is close to 1. This is an important case for manyonly on the cosine of the scattering an@de
applications such as ocedb-7], atmospherid8—11] and If the medium contains spherical scatterers, the scattering
biological optics[12-14. The random fluctuations of the matrix can be computed exactly using Mie theory. In this
refractive index in the sea and the atmosphere are due tase, all the elements & are functions of the nondimen-
temperature variations. Salinity fluctuations in the sea andional size parametés (k is the wave number in the back-
humidity fluctuations in the atmosphere also lead to smalground medium, and the radius of the scattergrand of the
relative variations in the refractive index. These effects yieldrelative refractive indexm.
refractive index variations on the order of 1% or less. The Two limits are particularly interesting her&a<1 and
variations in soft tissues due to structures within cells are ofm—1|<1. When ka<1 the Rayleigh scattering limit is
the order of 59 15]. valid regardless of the value of [16]. We denote the scat-

tering matrix in this limit by R. On the other hand, for

|m—1|<1, the scattering matrix is simply the product Rf
*Electronic address: adkim@math.stanford.edu and a scalar function that does not depend on polarization.
"Electronic address: mmoscoso@math.stanford.edu This is the Rayleigh-Gans limif16]. The scalar function
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governs the amount of energy that scatters in the forward 1.0
direction and is a function dfa. The Rayleigh-Gans range is
not limited to homogeneous discrete spherical particles.
Scatterers with simple forms such as ellipsoids or spheroids 0.8
as well as inhomogeneous density distributions can also be
treated. Furthermore, if the scatterers are not compactly sup-
ported in spacécontinuous random mediaand the relative 806
refractive index fluctuations are small, the scattering matrix
F takes a form similar to that of the Rayleigh-Gans limit. In
this case, the scalar function multiplyifjs the power spec- 04
tral density function of the fractional permittivity fluctuations
which incorporates the statistical properties of the medium p
[17]. The physical basis of the Rayleigh-Gans limit is that 02
the wave fields scattered from different small volumes within
the medium are always independent.

In many applications the vector radiative transport equa-
tion (1) is approximated by its scalar counterpart. In this

approximation polarization is neglected, @=U=V=0 in : . o o

. . with relative refractive indexesn=1.01 (solid line), m=1.20
EqL(lA)’ and the 44 matrix is replaced by a scalar function (dashed ling andm= 1.40(dot-dashed ling The inset enlarges the
p(Q,Q") called the phase function. The phase function isregion I<ka<3.
often characterized by the anisotropy facgo~or example,

FIG. 1. Anisotropy factog as a function of the nondimensional
size parameteka for a medium composed of spherical scatterers

the Henyey-Greenstein phase function istic oscillations of Mie resonances. Also interesting is the
) fact that for large relative refractive indices and large size

p(fl ﬁ,): 1-9 %) parameters, the anisotropy factor is diminished. This behav-

' 2(1—g®+2gcos®)?? ior is due to the increase of backscattering as the relative

_ ) ) ) refractive index increases.

is often used to qesAcrlbe scattering from clouds and tissues |n our numerical simulations, we consider either a 100%

[18]. Here co®=-Q)'. This function varies smoothly from circular or 100% linear polarized continuous plane wave nor-

isotropic scatteringd=0) to narrow forward peak scattering mally incident upon an index-matched plane-parallel me-

(g~1) or backward peak scattering{ —1). Within this  dium of optical thicknessr=d/I, whered is the physical

scalar approximation only three parameters are necessary tickness and= (3¢ +3,) =31 is the total mean free

match the observed intensity of a particular experiment: theath. In this case Ed1) reduces to

scattering coefficient ¢, the absorption coefficier¥,, and

the anisotropy factog characterizing the phase function.
However, we will show that the relative refractive index

also affects depolarization. Different media with similar

2.,2,, andg values can exhibit distinctly different polar- ——3

ization characteristics if the relative refractive index is dif-

ferent. Consequently, the entire structure of the scattering

matrix and its dependgnce on the scatterer size and ref.ract.ive X1(z,0',¢")sin0'do’ de’

index need to be considered to understand the depolarization

of waves in a scattering medium.

J
COS@E|(Z,0,¢)+Ea|(Z,0,¢)

l(z,0.¢>—f:”fOWF<0,¢,0',¢'>

- 4

Here 6 is the polar angle defined with respect to thaxis,
Ill. NUMERICAL RESULTS and ¢ is the azimuthal angle. This plane-parallel medium
contains a random distribution of dielectric spheres, each

We begin this numerical investigation by examining thewith a constant radiua and a relative refractive indem.
anisotropy factor of a single sphere. In Figa)lwe plot the = Therefore, the scattering matrix is computed exactly using

anisotropy factor Mie theory[19]. We solve Eq(4) using a Chebyshev spec-
. tral method in which the spatial variable of the Stokes vector
_ | is approximated by an expansion of Chebyshev polynomi-
=
9 277[ 1 CosOF 1y(cos®)d(cosB), ©® als [20]. The resultant system of integral equations for the

angularly dependent expansion coefficients is treated by
computed from Mie theory form=1.01 (solid line),  Gaussian quadrature methods, yielding a sparse linear sys-
m=1.20 (dashed ling and m=1.40 (dot-dashed lineas tem of equations. This method provides very accurate solu-
functions of the size parametéa HereF,; is the (1, 1)  tions to Eqg.(4). Recently, we also showed that Chebyshev
element of the scattering matrix We observe that the be- spectral methods are suitable to generalizations of (Bq.
havior of g is similar for 1.0<m<1.2. In contrast, the an- including time dependent and higher dimensional problems
isotropy factor is not a monotonic function ¢ for m  [21]. While Eq. (4) offers a significant simplification to the
=1.40. The complicated behavior gfreflects the character- general probleniEq. (1)], we found that polarization prop-
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0

erties from these results agree well with Monte Carlo simu- 10 . . :
lations of more complicated problems involving finite width
beams. Therefore, we use E@) as a simple model from
which we are able to ascertain fundamental polarization phe-
nomena.

The transmitted copolarized,,, and cross-polarized
| v-por INteNsities are computed in each case with respect to ¢
receiver with a 16° semiaperature directed normal to the
boundary plane at=d. The copolarized intensity is the re-
ceived intensity, having the same direction of polarization as
the incident wave. For lineafcirculan polarization, the
transmitted cross-polarized component is perpendidolar
posite to the incident polarization direction. If the medium
is completely homogeneous, then there is no scattering, anc
the transmitted cross-polarized component is zero. However. (a)
if the medium is not homogeneous, waves interact with the 19 ¢ 0 " % 20
inhomogeneities, resulting in an increment of cross-polarized optical thickness d/I
component and a decrement of the copolarized component
In Fig. 2(a), we plot the copolarizedsolid line) and cross- 10° , .
polarized(dashed lingcomponents as functions of the opti-
cal thicknesst for circularly continuous incident plane
waves. Figure () shows the same computation but for lin-
early incident plane waves. In this case, we have taken into s RTINS
account the fact that we measure the linear polarized inten-& 10’
sities with a receiver directed normal the boundary plane. 2
The transmitted intensitidg,p, andl .o, polarized parallel
and perpendicular to the incident polarized wave, require a
change of basis of the solution vector (1,Q,U,V) to the
reference frame of the receivgt9:
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=

FIG. 2. Transmitted intensities for circular{g) and linearly(b)

Note that Eq.(5) may yield a nonzero cross-polarized com- polarized incident waves. Herea=2.98 andm=1.20. The re-
ponent due to transmitted intensities in nonforward direcceiver, which has a 16° field of view, is directed normal to the
tions, cosh#1. boundary plane. The inset is a plot showing the exponential decay

For an optical thickness> 1, the normalized polarization of the corresponding normalized polarization difference defined in
difference exponentially decays as Eq. (6).

I copor= I x-pol / 6 three relative indices of refractiom. For smallka we ob-
|Cop0|+|x_po|~exq_7' &il, ©®) serve that the depolarization length is independenimpf
which is consistent with the Rayleigh limit. However, for

where the subindek=L,C denotes linear and circular inci- larger size parameterg¢ increases as the relative index of
dent light, respectively. The depolarization lengths definedefraction increases. In fact, féta=2 the circular depolar-
here are scaled with respect to the total mean free path. Thzation length form=1.40 is more than two times larger than
insets in Figs. @) and 2b), for circularly and linearly po- that form=1.01. The increase @ with respect tom at ka
larized waves, respectively, show the exponential decay of 2 is not large enough to explain this effésee the inset in
their normalized polarization differences. By computing aFig. 1). Furthermore, folkka=3 the circular depolarization
least-squares fit of the normalized polarization differencdength for m=1.40 is still much larger than that for
data, we obtain the depolarization lengthsand ¢, shown m=1.01, even though is nearly equal. We also observe that
below. We note that the normalized polarization difference isvhile ¢ is simply an increasing function oka for
used to obtain better optical images of biological mediam=1.01, the behavior of. is more complicated for larger
[12,22-24. m, reflecting resonance effects.

In Fig. 3(@ we plot the circular depolarization lengtiz On the other hand, we observe in FigbBthat the linear
as a function of the nondimensional size paramé&gefor  depolarization lengthé;, depends orm more smoothly. Its
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FIG. 4. Fraction of power with circulaia) and linear(b) polar-
izations scattered from a single sphere due to fully circularly and

FIG. 3. Circular(a) and linear(b) depolarization length§c and  |inearly polarized, incident waves, respectively, as functions of the
&, respectively, scaled by the scattering mean free path for spherkjze parameter fom=1.01 (solid line and m=1.4 (dot-dashed
cal scatterers with relative refractive indexas-1.01 (solid line), line).

m=1.20(dashed ling andm= 1.40(dot-dashed ling The receiver,
which has a 16° field of view, is directed normal to the boundaryca”y to 1. If the relative index of refraction is largédot-

plane. dashed ling then, after a fast increasB. oscillates with a
) , . , decreasing tendency. In fa®& is smaller for a large relative

behavior can be explained by the anisotropy factor, sfice ngex of refraction than for small ones if the size parameter
increases proportionally witly. In contrast with previous s |arge. This phenomenon indicates that circularly polarized
results [2], our computations do not show that the ratio,,yes depolarize faster asincreases for largka. Our nu-
¢c/éL is an increasing function dta in general. This ratio  merical simulations demonstrate this behavior.
increases monotonically witka only for the case wherfm Similarly, we consider a linearly polarized incident plane
—1|<1. _ - wave with Stokes vector=(1,1,0,0) in Fig. 4b). In this

To understand the mechanisms contributing to the deposgse the Stokes componer@sand U are related to each
larization of waves, in Fig. 4 we plot the relative amount of 5iner through rotations, so we consider both together. The

power with circular and linear polarizations scattered by &g|ative amount of energy density scattered that is linearly
single sphere due to fully polarized incident plane waves. Ihg|arized is[25]

Fig. 4(a), we consider a circularly polarized incident wave
with Stokes vectod =(1,0,0,1), impinging on a scatterer

with relative indexes of refractiom=1.01 (solid line) and Pﬁf \/QZ(Q'HUZ(Q')dQ'/ f 1(Q")dQ’. (8)
m= 1.40 (dot-dashed line We compute the relative amount
of energy density scattered that is circularly polarized:

This quantity also takes valuess(P| <1.
The salient feature of Fig. 4 is that while thg is equal
Pczf |V(Q’)|dQ’/ f 1(Q)dQ'. @) or aI_mo;t equal to 1 regardless of the size parametgr or the

relative index of refractionP- depends on both and is sig-
nificantly less than 1. As a result, circularly polarized waves

This quantity ranges from9P.<1. It is equal to zero for will systematically depolarize after each scattering.

unpolarized waves, and is equal to 1 for completely circu- Since P ~1, after single scattering, linearly polarized

larly polarized waves. In Fig.(d4), Pc shows a strong depen- waves are not systematically depolarized like circularly po-

dence on both the size parameter and the relative index dérized waves. A second mechanism is responsible for linear

refraction. Forim—1|<1 (solid line), Pc grows monotoni- depolarization. Linear polarization is defined with respect to
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a reference plane. For our discussion, let us choose that platermine the corresponding linear and circular depolarization
to be the scattering plane spanned by the incident and scdengths from the exponential decay of the normalized polar-
tered direction vectors. After several scattering events, theation difference. In particular, we find that the circular de-
directional distribution of the Stokes vector becomes ranypolarization length strongly depends on the refractive index.
domized along with the orientation of these scattering planesScattering from a single sphere clearly demonstrates this de-
Hence the Stokes vector at any position involves the mixtur@endence. While circular depolarization systematically de-
of several directions, each having different scattering planesreases after each scattering event, linear depolarization de-
thereby giving rise to depolarization. Consequently, the lincreases with the randomization of directions. Consequently,
ear depolarization length is approximately equal to the transthe linear depolarization length is approximately equal to the
port mean free path,=[=,(1—g)] %, which is the charac- transport mean free path. This is true independent of the size
teristic length scale for directional randomization. Ourparameter and the refractive index of the scatterers. In addi-
numerical results are consistent with this statement. Unlike¢ion, we have observed similar phenomena for various re-
linear polarization, circular polarization is defined indepen-ceiver apertures, including a full field of view. These results
dent of a reference plane, so this second mechanism does oty be useful for polarization techniques in optical imaging
depolarize them. applications.
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