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Collisions between spatiotemporal solitons of different dimensionality in a planar waveguide
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A (211)-dimensional nonlinear Schro¨dinger equation including third-order dispersion is a natural model of
a waveguide, in which strong temporal dispersion is induced by a grating in order to make the existence of
two-dimensional spatiotemporal solitons possible. By means of analytical and numerical methods, we demon-
strate that this model may support, simultaneously, stable dark quasi-one-dimensional~stripe! solitons and
two-dimensional elevation solitons~‘‘antidark solitons’’! in the form of weakly localized ‘‘lumps.’’ The spatial
position of lumps can be controlled by passing stripe dark solitons through them in an arbitrary direction. To
substantiate this mechanism, we analytically calculate a position shift generated by a headon collision between
the stripe and lump. The obtained results are in good agreement with direct numerical simulations.
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I. INTRODUCTION

Recently, much attention in nonlinear optics has been
tracted tospatiotemporalsolitons ~alias light bullets, LBs
@1#!, i.e., two- or three-dimensional~2D or 3D! objects local-
ized in both space and time. Solitons of this type were fi
considered in models of saturable nonlinear media@2#. Then,
they have been studied in second-harmonic-genera
~SHG! media@3–7#, in self-induced transparency@8,9#, and,
beyond the framework of nonlinear optics, in various mod
describing fluid flows@10#. Additionally, stable LBs of the
‘‘antidark’’ type, i.e., elevation solitons built up on top of
continuous-wave~cw! background, were predicted in a no
linear Schro¨dinger ~NLS! model @11#, suggesting the possi
bility of the experimental observation of LBs of the latt
type in a usual glass waveguide.

In a real experiment, spatiotemporal solitons in~effec-
tively! two spatial dimensions have been thus far observe
waveguides with the SHG nonlinearity@7#. A typical size of
the waveguide~monocrystal of a cubic shape! is ;3 cm, the
temporal widtht of the soliton being less than 100 fs@7#.
Obviously, the main difficulty in creation of well-forme
spatiotemporal~or simply temporal@12#! solitons in so small
samples is the lack of strong temporal dispersion, neces
to induce the soliton’s dispersion length smaller than 1 c
In the present work, we consider spatiotemporal solitons
isting on top of a finite-amplitude cw background in a 2
medium with the ordinary Kerr nonlinearity, which corre
sponds to a usual planar glass waveguide. Neverthe
practically possible experiments with solitons~thus far, these
were spatial solitons! in glass waveguides are also limited
samples whose size is measured in centimeters@13#, which
broaches the same problem of creating very strong effec
temporal dispersion in the waveguide.

A principal solution to the problem implemented in e
periments@7,12# ~and still earlier proposed theoretically@6#!,
is the creation of an artificial dispersion by means of a pr
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erly placed grating. However, it is commonly known that t
grating induces not just the second-order temporal disp
sion, which is postulated in the usual models of the s
tiotemporal propagation, but its own dispersion law with
gap, which also gives rise to higher-order dispersions; firs
all the third-order dispersion~TOD! ~see, e.g.,@14# for a
review and a recent experimental work@15# specially fo-
cused on TOD induced by gratings!. A straightforward esti-
mate, based on this dispersion law and assuming the tem
ral width of the pulse;100 fs, grating-induced reflection
length;1 mm, and dispersion length induced by the seco
order dispersion;1 cm, shows that, in fact, the correspon
ing TOD length is also;1 cm. Therefore, taking into ac
count the higher-order dispersion in models
spatiotemporal solitons may be quite important. In t
present work, we make a step in this direction adding
TOD term to the model equation. It will be demonstrated th
this modification results in qualitatively new results, openi
a way to coexistence of solitons of different dimensions, v
quasi-1D dark solitons and truly 2D elevation~‘‘antidark’’ !
solitons in the form of lumps.

In this connection, it is necessary to say that recent
periments have already initiated the study of interactions
tween spatial solitons of different dimensionality, namely
1D and 2D ones. In particular, a collision of a 2Dbright
‘‘needle’’ soliton with a 1D bright soliton stripe was ob-
served in a photorefractive crystal@16#, while interaction of a
1D dark soliton stripe with a 2Ddark vortex soliton was
studied in the rubidium vapor@17#. However, interactions of
spatio-temporalsolitons having different dimensionalities
for instance, a 1D stripe and a 2D lump, and/or differe
polarities, e.g., dark and ‘‘antidark’’ solitons, have not be
addressed yet. It is among the purposes of this work to st
these types of the interactions theoretically in a model of
nonlinear waveguide with the usual Kerr nonlinearity taki
into regard TOD, which is necessary to describe a reali
situation, as it was explained above.

The consideration of an interaction between the d
stripes and ‘‘antidark’’ lumps is not merely a subject of th
oretical interest. Indeed, passing a dark stripe soliton
more generally, an array of stripes through a lump~if neces-
©2001 The American Physical Society04-1
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sary, the stripes may be launched in different directions! is a
unique opportunity tomovethe lump in a controllable way
~provided that the interaction-induced shift of the lump’s p
sition is calculated in advance, which we do in this wor!.
Thus, the problem to be considered here directly sugg
new experiments, which are quite feasible by means of av
able techniques@7#. In principle, a method that makes it po
sible to manipulate positions of 2D solitons in the wavegu
may have implications for the design of optical da
processing systems, but it would be premature to discuss
application in detail here.

Getting back to the theoretical purport of the interacti
problem, it is relevant to mention the well-known fact th
collisions between lumps in equations of theKadomtsev-
Petviashvili ~KP! type, to which the present model may b
reduced~see below!, yield shifts exactly equal to zero@18#.
Therefore, a finite collision-induced position shift for a lum
is, by itself, a nontrivial result.

For the analytical consideration of the problem, we e
ploy a variation of the so-called Poincare´-Lighthill-Kuo per-
turbation method~see, e.g.,@19#! to show that the solitons
with different dimensionality~1D and 2D! and different po-
larity ~dark and antidark! indeed coexist and, therefore, the
may interact. We show that the corresponding field may
regarded as a superposition of two waves moving in oppo
directions, which obey two different KP equations in the
spective reference frames. One turns out to be the so-ca
KP-II equation, which has stable quasi-1D soliton solutio
~corresponding to the 1D dark stripe!, and the other is the
KP-I equation, which gives rise to stablelump solutions of
the elevation~antidark! type~while its quasi-1D solutions are
unstable!. A noteworthy feature of these lumps is that th
are weakly~nonexponentially! localized, unlike 2D solitons
of the usual~exponentially localized! type dealt with in Refs.
@16#, @17#.

Having found these solutions in an analytical form, w
then analytically calculate their position shifts induced
head-on collisions. The fact that the dark stripe and antid
LB undergo nearly elastic collisions, resembling collisio
between genuine solitons in completely integrable syste
is confirmed by direct numerical simulations reported in t
work too. Numerically computed solitons’ collision-induce
position shifts are found to be in a reasonable agreement~the
largest discrepancy being 20%! with the analytical values
predicted by the asymptotic approach.

II. THE MODEL AND ITS ANALYTICAL CONSIDERATION

The model equation, namely the (211)-dimensional
NLS equation with the focusing Kerr nonlinearity, secon
order dispersion~SOD!, and TOD can be derived directl
from the Maxwell’s equations, applying to them the slowl
varying-envelope and paraxial approximations, and ha
known normalized form@11#,

iuz1
1
2 ~uxx2autt!1uuu2u5 ibuttt ~1!

~the derivation is straightforward too if the dispersion is
duced by the above-mentioned grating, see Ref.@6#!. In Eq.
02660
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~1!, u(z,x,t) is a complex envelope of the electromagne
field, which evolves along the longitudinal coordinatez, de-
pending also on the transverse coordinatex and timet, while
the constant parametersa andb are the SOD and TOD co
efficients, respectively. Below, we assume that botha andb
are positive,a.0 corresponding to the normal dispersion

Substitutingu5u0r1/2exp(iw) into Eq. ~1!, we derive the
following system of equations:

wz2uu0u2r1 1
2 ~wx

22aw t
2!2 1

2 r21/2@~r1/2!xx2a~r1/2! tt#

2bwm2bw t
323br21/2@w t~r1/2! t# t50, ~2!

rz1~rwx!x2a~rw t! t2brm1 3
4 b~r21r t

2! t13b~rw t
2! t50.

~3!

Below, we intend to consider a configuration with tw
solitonsA and B which initially ~i.e., atz50! are far apart
from each other, moving in opposite directions with velo
ties C(A) andC(B) in the t-z plane, so that they are going t
collide. Assuming small-amplitude solitons with amplitud
;«, where«!1 is a formal perturbation parameter, we e
pect that the collision will be quasi-elastic, so as to cau
only shifts of the postcollision soliton trajectories.

Fixing that the solitonA(B) is moving to the right~left! in
the t-z plane, we introduce stretched coordinatesj and h,
which are linked to the solitons and defined as follows:

j5«1/2~ t2C~A!z!1«j1~h,X,Z!1«3/2j2~h,X,Z!1¯ ,
~4!

h5«1/2~ t1C~B!z!1«h1~j,X,Z!1«3/2h2~j,X,Z!1¯ ,
~5!

X5«x, Z5«3/2z, ~6!

wherej j andh j ( j 51,2,...) are coordinate perturbations d
scribing collision effects, which will be found below b
means of the perturbation method. The solitons’ velocit
C(A) andC(B) appearing in the definitions~4! and~5! are not
arbitrary. The subsequent consideration will demonstrate
in the lowest approximation, they are determined by the a
plitude of the cw background and higher-order corrections
them depend on characteristics of the solitons~amplitude,
wave numbers, etc!.

Equations~2! and ~3! have a simple solutionr51 and
w5uu0u2z, whereu0 is an arbitrary complex constant, whic
corresponds to the cw solution to Eq.~1!. Although this cw
solution is subject to modulational instability in the case u
der consideration~the focusing Kerr nonlinearity and norma
SOD!, one can easily find conditions under which the ins
bility band is effectively suppressed by a finite size of t
waveguide@11#; it is also relevant to stress that newly deve
oped experimental techniques indeed make it possible to
serve 2D solitons~namely, vortices in SHG media! supported
by a background that is formally subject to the modulatio
instability @20#. Thus, we expect that if the two solitonsA
and B were created on top of this cw background, th
4-2
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COLLISIONS BETWEEN SPATIOTEMPORAL SOLITONS . . . PHYSICAL REVIEW E 64 026604
head-on collision will take place within an interval of th
propagation distancez, which is much shorter than that ne
essary for onset of the modulational instability. As we w
show below by direct numerical simulations, this is inde
the case.

We seek small-amplitude solutions to Eqs.~2! and~3! that
propagate on top of the cw solution, which makes it natu
to introduce the following expansions for the fieldsr andw:

r511«r11«2r21¯ , w5uu0u2z1«1/2w11«3/2w21¯ ,
~7!

where r j and w j ( j 51,2,...) are functions of the stretche
coordinates defined in Eqs.~4!–~6!. Finally, assuming that
to the leading order in«, the absolute valuesC(A) andC(B) of
the soliton velocities@see Eqs.~4! and ~5!# are equal, we
introduce the following expansions forC(A) andC(B):

C~A!5C01«C1
~A!1«2C2

~A!1¯ ,
~8!

C~B!5C01«C1
~B!1«2C2

~B!1¯ ,

whereC0 andCj
(A) ,Cj

(B) ( j 51,2,...) will be found below in
terms of solitons’ characteristics~amplitudes, wave numbers
etc!.

Substituting Eqs.~4!–~8! into Eqs.~2! and~3!, we obtain
a hierarchy of coupled equations for the functionsr j andw j .
To the leading order, i.e., to ordersO(«) and O(«3/2), re-
spectively, Eqs.~2! and ~3! amount to two linear equations
whose solution has the following form. The amplitude p
turbationr1 is

r15 f 1~j,X,Z!1g1~h,X,Z!, ~9!

where the unknown functionsf 1(j,X,Z) andg1(h,X,Z) are
to be determined at the next order. The phase perturbatiow1
can be expressed in terms of the same functions,

w152
C0

a E
1`

j

f 1~j8,X,Z!dj81
C0

a E
2`

h
g1~h8,X,Z!dh8,

~10!

where the lower limits of the integration in Eq.~10! were
chosen so as to make the initial phases of the two wa
equal to zero. Finally, it is found that the unknown lowe
order velocityC0 is determined by the equation

C0
22auu0u250. ~11!

Thus, at the leading order, we have shown that the field
superposition of two wavesA andB described, respectively
by the functionsf 1(j,X,Z) andg1(h,X,Z), which are trav-
eling with the same absolute value of the velocity in oppos
directions in thet-z plane. The form of these functions wi
be derived below in the next-order approximation.
02660
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Proceeding to the next order, viz.,O(«2) and O(«5/2),
Eqs. ~2! and ~3! give rise to the following results. First, w
obtain expressions for the amplitude and phase functionsr2
andw2 ,

r25 f 2~j,X,Z!1g2~h,X,Z!, ~12!

w252
C0

a E
1`

j

f 2~j8,X,Z!dj81
C0

a E
2`

h
g2~h8,X,Z!dh8,

~13!

and the result~11! is obtained once again. As it is seen, the
results are similar to those obtained in the leading-order
proximation. The functionsf 2(j,X,Z) and g2(h,X,Z) can
be found in the subsequent approximation, but they are
relevant for the present work.

Second, we obtain the following equations for the u
known amplitude-perturbation functionsf 1 andg1 ,

F f 1Z2C1
~A! f 1j1

3C0

2 S 11
2bC0

a2 D f 1f 1j2
a2

8C0

3S 11
8bC0

a2 D f 1jjjG
j

2
C0

2a
f 1XX50, ~14!

Fg1Z1C1
~B!g1h2

3C0

2 S 12
2bC0

a2 Dg1g1h1
a2

8C0

3S 12
8bC0

a2 Dg1hhhG
h

1
C0

2a
g1XX50. ~15!

Both Eqs.~14! and~15! have the form of the KP equation i
the reference frames (Z,j,X) and (Z,h,X), respectively. As
we will see below, under certain conditions, Eqs.~14! and
~15! possess stable soliton solutions of different dimensi
ality and polarity, namely, 1D dark and 2D elevation~anti-
dark! solitons, respectively.

Finally, eliminating secular terms at the present order
the asymptotic approximation, we derive equations for
phase-perturbation functionsj1 andh1 ,

j1h5
1

4 S 11
6bC0

a2 Dg1 , ~16!

h1j5
1

4 S 12
6bC0

a2 D f 1 . ~17!

In the next section, we will obtain soliton solutions to Eq
~14! and ~15! and then, making use of Eqs.~16! and ~17!,
position shifts of solitons induced by their headon collisi
will be found.
4-3



de

er

e
ng
I,

n
v
y,
at

av

fo
rip
rm

o

lia

he

-

.

c-

f
n-
ly

g

os-
e
,
n-

n
t
al

i-

-
ly

y,

wn
y.
ch
is

s is

asi-
ith
ed
up

der
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III. ONE-DIMENSIONAL DARK AND TWO-DIMENSIONAL
ELEVATION SOLITONS AND THEIR COLLISIONS

We now return to the KP equations~14! and ~15! and
assume, without loss of generality, that the leading-or
soliton velocityC0 is positive, i.e.,C05a1/2uu0u as per Eq.
~11!. Then, it is easy to verify that Eq.~14! is a KP-II equa-
tion ~i.e., the one with negative effective dispersion!, while
Eq. ~15! is either a KP-II or a KP-I equation~i.e., it may have
positive dispersion! depending on the value of the paramet

d[a3/2/buu0u. ~18!

In particular, if d,2 or d.8, Eq. ~15! is KP-II, while if 2
,d,8, Eq. ~15! is KP-I. Note that if C052a1/2uu0u,0,
then the types of Eqs.~14! and ~15! are reversed, i.e., th
former one is either a KP-I or a KP-II equation, dependi
on the value ofd, and the latter equation is always KP-I
which means that the types of their soliton solutions~to be
presented below! will change accordingly.

As is known@18#, these two versions~KP-II and KP-I! of
the KP equation give rise to soliton solutions of differe
types. Particularly, both the KP-II and KP-I equations ha
stripe ~quasi-1D! soliton solutions, which are, respectivel
stable and unstable in these two cases, and the KP-I equ
additionally has stablelump ~2D! soliton solutions. In our
case, the stripe-soliton solution to Eq.~14! ~i.e., the leading-
order part of the solitonA! has the form

f 1~j,X,Z!52
ak1

2

uu0u2 S d18

d12D sech2@k1~j1k2X1k3Z!#,

~19!

where the relation~11! was used,k1 ,k2 ,k3 are arbitrary
constants characterizing the soliton’s amplitude and w
numbers, and the positive parameterd was defined above by
Eq. ~18!. In this case, the first-order correctionC1

(A) to the
soliton’s velocity is

C1
~A!52

1

2
b~d18!k1

22
1

2

ak2
2

bd
1k3 . ~20!

Notice that in the cased,2 or d.8, Eq. ~15!, which de-
scribes the leading-order part of the solitonB, has a similar
solution, i.e., a stable stripe soliton, which is not relevant
the present analysis. Importantly, the amplitude of the st
soliton ~19! is always negative, i.e., the soliton has the fo
of a dip on the cw background and as result this soliton is
the dark type.

We now proceed to the KP-I version of Eq.~15!, assum-
ing that 2,d,8. In this case, the stripe~quasi-1D! soliton
solution is unstable but there exist stable 2D solitons a
lumps@18#. In our case, the lump-soliton solution to Eq.~15!
is

g1~h,X,Z!52
2a

uu0u2 S d28

d22D H 2y21l1s21l1
21

@y21l1s21l1
21#2J ,

~21!
02660
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y5h1l2Z, ~22!

s5auu0u21@3d~82d!#1/2X, ~23!

where l1 and l2 are arbitrary constants. In this case, t
first-order correctionC1

(B) to the lump’s velocity can also be
found,

C1
~B!52

3l1a2d~d28!

8C0
2l2 . ~24!

The solution~21! is a 2D spatiotemporal soliton, which de
cays algebraically ~slower than an exponential! as (h2

1X2)1/2→`. As in this case the factor (d28)/(d22) in the
lump’s amplitude must be negative, the solution~21! repre-
sents an antidark elevation on top of the cw background

Thus, in the region 2,d,8 the field obeying Eq.~1! is a
superposition of two solitons, which move in opposite dire
tions and have opposite polarities~dip/elevation! and differ-
ent dimensionalities: a quasi-1D dark stripe~solitonA! and a
2D lump~solitonB!, described by Eqs.~19! and~21!, respec-
tively. A nontrivial feature of this situation is a possibility o
a headon collision between the two solitons, which is co
sidered below. Note that this nontrivial situation may on
occur in the presence of TOD. Indeed, ifb50, both Eqs.
~14! and ~15! turn out to be of the KP-II type, possessin
solely dark stripe-soliton solutions.

The theoretical predictions, i.e., the coexistence and p
sibility of the headon collision of the small-amplitud
quasi-1D ~Q1D! dark line soliton and 2D elevation lump
have been verified by direct numerical integration of the u
derlying NLS equation~1!. The analytical expressions give
by Eqs.~19! and ~21! were used as initial configurations a
z50 on top of a cw background of a finite extent. An actu
shape of the background was a super-Gaussian exp„2@(x2

1t2)/L2#8
… ~which is a realistic shape of a cylindrical opt

cal beam created by laser systems!. In the simulations, we
have used the valuesa50.1 andb50.013 for the SOD and
TOD coefficients, respectively~which corresponds, in accor
dance with what was said in the Introduction, to relative
strong TOD!. As for the solitons’ parameters, we usedu0
51 for the cw background~and L590 for the super-
Gaussian!, k151.6, k250.2 for the Q1D dark soliton, and
l150.8, l250.9 for the 2D elevation lump, respectivel
while the perturbation parameter was chosen to be«50.25.

Starting from the initial configuration shown in Fig. 1~a!,
different stages of the simulated headon collision are sho
in Figs. 1~b!–1~e! for z57.5, 13.5, 15, and 30, respectivel
Additional details are shown by inset contour plots in ea
panel. As it is seen, although a small amount of radiation
emitted by both solitons, and deformation in their shape
tangible~especially for the 2D lump!, the collision is quasi-
elastic: after passing through each other, the solitons b
cally restore their shapes. This behavior is in agreement w
the analytical results of the perturbation theory develop
above, which predicts that the headon collision is elastic
to the second order, but it becomes inelastic if higher-or
corrections are included~i.e., the above correctionsr2 and
4-4
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FIG. 1. Evolution of the colliding quasi-one-dimensional dark stripe~with k151.6, k250.2! and two-dimensional antidark lump~with
l150.8, l250.9! on top of a super-Gaussian cylindrical background. Snapshots of the field are displayed at the values of the pro
distancez50 ~a!, z57.5 ~b!, z513.5 ~c!, z515 ~d!, andz530 ~e!. As it is seen, the solitons undergo a quasielastic collision, whic
accompanied by a slight deformation of their shapes and emission of a small amount of radiation.
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w2 to the solitons’ amplitudes and phases come into pla!.
Also, notice that a deformation of the super-Gaussian ba
ground is observed in Fig. 1~e!, which is a precursor of the
modulation instability~the latter manifests itself at esse
tially longer propagation distances, starting fromz'42!.

The final step in our approach is to find postcollisi
shifts of the soliton trajectories in an analytical form; as w
explained in the Introduction, these results are importune
they make it possible to predict how positions of the lum
may be controlled by passing stripe dark solitons throu
them. At first, substituting Eqs.~21! and ~19! into Eqs.~16!
02660
k-

s
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s
h

and ~17!, respectively, we evaluate the solitons’ coordina
perturbationsj1 and h1 . Then, the solitons’ position shifts
induced by the headon collision can be obtained as follo
We assume that the solitonsA and B, which are described
respectively, by the waveformsf 1(j,X,Z) and g1(h,X,Z),
are initially far enough from each other, i.e., the solitonA is
placed ath50 andj51`, andB is placed atj50 andh
52`. Then, long enough after their collision, the shiftsDA
and DB of the positions of the solitonsA and B can be de-
fined as follows: DB5«@h1(j→2`,X,Z)2h1(j→
1`,X,Z)# and DA5«@j1(h→1`,X,Z)2j1(h→
4-5
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FIG. 2. Details of the evolution of the dark stripe and antidark lump just before their collision, i.e., atz512 ~a! andz512.5~b!, and just
after the collision, i.e., atz517 ~c! andz517.5 ~d!. As is clearly seen, the dark stripe gets bent and temporarily stuck to the antidark
due to attraction between them. After the collision, the solitons restore their shape.
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2`,X,Z)#. Nevertheless, in applications, the phase sh
should be obtained for a finite propagation lengthL; in this
case, we may calculate the phase shifts as

DA5«@j1~h→L/2!2j1~h→2L/2!#

and

DB5«@h1~j→2L/2!2h1~j→1L/2!#.

Following this way, we find that the shift of the 1D dar
Q1D stripe soliton is

DA5«
2a~d28!~d16!

Luu0u2d~d22!
. ~25!

Note that, in the limitL→1`, this phase shift vanishes
which is quite natural, as, in the infinite system, the posit
of the stripe which has infinite energy cannot be shifted
02660
s
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the interaction with the finite-energy lump. The position sh
DB of the 2D elevation lump soliton is

DB5«
ak1~d26!~d18!

2uu0u2d~d12!
tanhS k1L

2 D . ~26!

Using the aforementioned values of the physical para
eters pertaining to the solitons shown in Figs. 1~a!–1~e!, we
find that the theoretical predictions given by Eqs.~25! and
~26! for the position shifts of the solitons are~for L54.5!

DA520.51 and DB526.931022, ~27!

for the Q1D dark soliton and 2D elevation lump, respe
tively.

Since the position shifts are negative, the solitons attr
each other, which is also obvious in Fig. 2 that displa
details of the collision at the crucial stage when the solito
are interacting strongly. In particular, when the solitons
4-6
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approaching each other, the dark stripe bends due to th
tractive force as is seen in Fig. 2~a! ~corresponding toz
512! and then it sticks to the lump, see Fig. 2~b!, which
corresponds toz512.5. Just after the collision~the central
point of the collision isz515!, the dark stripe is still stuck to
the lump as is seen in Fig. 2~c! at z517. Finally, the stripe
separates from the lump and moves away, still being ben
is shown in Fig. 2~d! for z517.5. Notice that for larger val
ues ofz ~i.e., long enough after the collision!, the dark stripe
restores its straight-line shape, see Fig. 1~e!.

The collision-induced position shifts of the solitons, an
lytical predictions for which are given by Eq.~27!, can be
extracted from simulations by means of the following proc
dure. At first, the simulations are run separately for
quasi-1D dark stripe~soliton A! and 2D lump~soliton B!,
which are moving to the left and to the right, respective
along thex axis in the~x,t! plane@see insets in Figs. 1~a!–
1~e!#. Thus, assuming that atz50, centers of the solitonsA
andB were placed at pointsxA andxB , we find the propa-
gation distances, sayzA and zB , needed for the dark strip
and elevation lump to reach the pointsxB andxA ~i.e., for the
solitons to interchange their positions!. Finally, carrying out
the simulations of the actual collision, we find that the so
ton A reaches the pointxB and the solitonB reaches the poin
xA after passing distances, sayzA8 andzB8 , which are different
from zA and zB because the collision took place. Then, t
numerically found position shifts of the solitons areD̂A

5zA2zA8 and D̂B5zB2zB8 .
This way, we have found that the numerical position sh

for the solitons, the collision between which is displayed

Figs. 1~a!–1~e!, are D̂A525.9531021 and D̂B528.2
31022, which appears to be a typical example, if compa
to many other runs of the collision simulations not sho
here. If these values are compared to the theoretical pre
tions ~27!, discrepancies are'18% for the Q1D dark stripe
~soliton A! and '19% for the elevation lump~soliton B!.
Having in mind that Eqs.~25! and~26! produce the shifts in
the asymptotic approximation, which assumes that the s
tons have small amplitudes and, as a matter of fact, t
collide at a large relative velocity, we conclude that t
agreement between the analytical prediction and direct
merical results is quite reasonable.

IV. CONCLUSIONS

In this work, we used an analytical approach to show t
a (211)-dimensional NLS equation, which includes bo
. E

r-
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the positive second-order and third-order temporal disp
sions, supports coexisting soliton solutions of different
mensionality and polarity, propagating on top of a cw bac
ground. We have shown that each soliton, viz, a quasi-
dark stripe and 2D spatiotemporal soliton in the form of
elevated ‘‘lump,’’ is governed by its own KP equation an
they move in opposite directions. A noteworthy peculiarity
the lump spatiotemporal soliton is that it is weakly~nonex-
ponentially! localized. We have developed a perturbati
theory, which shows that, up to the second-order approxi
tion, collisions between these two solitons are elastic. T
analytical predictions have been verified by direct numeri
integration of the underlying NLS model, with a conclusio
that the solitons~especially the quasi-1D dark stripe! indeed
restore their shapes after passing through each other. S
deformation and emission of radiation were also observed
accord with the analytical approach, which predicts that th
exist higher-order corrections to the soliton fields. Additio
ally, we have analytically calculated position shifts of th
solitons induced by the collision that were found to be
quite a reasonable agreement with the numerical results.
ing the shifts suggests a natural way to control the position
the lumps in the experiment by passing through them d
stripe solitons launched in the appropriate direction~s!.

There exists a possibility of a real experiment to ver
theoretical results reported in this work. This can be do
using an ordinary planar glass waveguide as a host med
and a broad optical beam, on top of which the solitons are
be created. The necessary strong temporal dispersion ca
created by means of a grating. The grating will inevitab
induce strong higher-order dispersion, which our model ta
into regard.

In fact, the results may have a broader significance,
confined to the field of nonlinear optics, as they provide
sight into general aspects of dynamics of multidimensio
solitons in nonintegrable systems.
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