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Collisions between spatiotemporal solitons of different dimensionality in a planar waveguide
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A (2+1)-dimensional nonlinear Schiinger equation including third-order dispersion is a natural model of
a waveguide, in which strong temporal dispersion is induced by a grating in order to make the existence of
two-dimensional spatiotemporal solitons possible. By means of analytical and numerical methods, we demon-
strate that this model may support, simultaneously, stable dark quasi-one-dimeristdpal solitons and
two-dimensional elevation solitor{$antidark solitons”) in the form of weakly localized “lumps.” The spatial
position of lumps can be controlled by passing stripe dark solitons through them in an arbitrary direction. To
substantiate this mechanism, we analytically calculate a position shift generated by a headon collision between
the stripe and lump. The obtained results are in good agreement with direct numerical simulations.
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[. INTRODUCTION erly placed grating. However, it is commonly known that the
grating induces not just the second-order temporal disper-
Recently, much attention in nonlinear optics has been atsion, which is postulated in the usual models of the spa-
tracted tospatiotemporalsolitons (alias light bullets, LBs tiotemporal propagation, but its own dispersion law with a
[1]), i.e., two- or three-dimension&2D or 3D) objects local-  gap, which also gives rise to higher-order dispersions; first of
ized in both space and time. Solitons of this type were firsall the third-order dispersiofTOD) (see, e.g.[14] for a
considered in models of saturable nonlinear m¢#laThen, review and a recent experimental wolk5] specially fo-
they have been studied in second-harmonic-generatingused on TOD induced by grating#\ straightforward esti-
(SHG) media[3-7], in self-induced transparen¢,9], and, mate, based on this dispersion law and assuming the tempo-
beyond the framework of nonlinear optics, in various modelsal width of the pulse~100 fs, grating-induced reflection
describing fluid flows[10]. Additionally, stable LBs of the length~1 mm, and dispersion length induced by the second-
“antidark” type, i.e., elevation solitons built up on top of a order dispersion-1 cm, shows that, in fact, the correspond-
continuous-wavécw) background, were predicted in a non- ing TOD length is also~1 cm. Therefore, taking into ac-
linear Schrdinger (NLS) model[11], suggesting the possi- count the higher-order dispersion in models of
bility of the experimental observation of LBs of the latter spatiotemporal solitons may be quite important. In the
type in a usual glass waveguide. present work, we make a step in this direction adding the
In a real experiment, spatiotemporal solitons(&ffec-  TOD term to the model equation. It will be demonstrated that
tively) two spatial dimensions have been thus far observed ithis modification results in qualitatively new results, opening
waveguides with the SHG nonlinearity]. A typical size of a way to coexistence of solitons of different dimensions, viz.,
the waveguidémonocrystal of a cubic shapes ~3 cm, the  quasi-1D dark solitons and truly 2D elevati¢tantidark”)
temporal width7 of the soliton being less than 100 [fg]. solitons in the form of lumps.
Obviously, the main difficulty in creation of well-formed In this connection, it is necessary to say that recent ex-
spatiotemporalor simply tempora[12]) solitons in so small  periments have already initiated the study of interactions be-
samples is the lack of strong temporal dispersion, necessatween spatial solitons of different dimensionality, namely,
to induce the soliton’s dispersion length smaller than 1 cm1D and 2D ones. In particular, a collision of a Wight
In the present work, we consider spatiotemporal solitons ex“needle” soliton with a 1D bright soliton stripe was ob-
isting on top of a finite-amplitude cw background in a 2D served in a photorefractive crystdl6], while interaction of a
medium with the ordinary Kerr nonlinearity, which corre- 1D dark soliton stripe with a 2Ddark vortex soliton was
sponds to a usual planar glass waveguide. Neverthelesstudied in the rubidium vapdi7]. However, interactions of
practically possible experiments with solitoftkus far, these spatio-temporalsolitons having different dimensionalities,
were spatial solitonsin glass waveguides are also limited to for instance, a 1D stripe and a 2D lump, and/or different
samples whose size is measured in centimdte8§ which  polarities, e.g., dark and “antidark” solitons, have not been
broaches the same problem of creating very strong effectivaddressed yet. It is among the purposes of this work to study

temporal dispersion in the waveguide. these types of the interactions theoretically in a model of the
A principal solution to the problem implemented in ex- nonlinear waveguide with the usual Kerr nonlinearity taking
perimentg 7,12] (and still earlier proposed theoreticall§]), into regard TOD, which is necessary to describe a realistic

is the creation of an artificial dispersion by means of a propsituation, as it was explained above.
The consideration of an interaction between the dark
stripes and “antidark” lumps is not merely a subject of the-
*Corresponding author. FAX:#301-725 7658. Email address: oretical interest. Indeed, passing a dark stripe soliton or,
dfrantz@cc.uoa.gr more generally, an array of stripes through a lufiimeces-
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sary, the stripes may be launched in different direciang (1), u(z,x,t) is a complex envelope of the electromagnetic
unique opportunity tanovethe lump in a controllable way field, which evolves along the longitudinal coordinatede-
(provided that the interaction-induced shift of the lump’s po-pending also on the transverse coordinaéad timet, while
sition is calculated in advance, which we do in this work the constant parametessand 8 are the SOD and TOD co-
Thus, the problem to be considered here directly suggestfficients, respectively. Below, we assume that hetind 8
new experiments, which are quite feasible by means of availare positive,>0 corresponding to the normal dispersion.
able techniquef7]. In principle, a method that makes it pos-  Substitutingu= ugp*>exp(¢) into Eq. (1), we derive the
sible to manipulate positions of 2D solitons in the waveguidefollowing system of equations:
may have implications for the design of optical data-
processing systems, but it would be premature to discussthis |, 12 1, 2 2\ 1 -1, 12 _ u
bpplication i detail here. ¢~ |Uol’p+ 3 (ex—aed) =3 p~ " (p") = a(p™)y]
Getting back to the theoretical purport of the interaction —Bem—Be;—3Bp " ¢(p")]=0, )
problem, it is relevant to mention the well-known fact that
collisions between lumps in equations of tK@domtsev- _
Petviashvili (KP) type, to which the present model may be Pzt (P@x)x— a(pey)—Bpm+ 3 Blp~ *p)i+3B(pe)=0.
reduced(see belowy yield shifts exactly equal to zeld 8]. )
Therefore, a finite collision-induced position shift for a lump Below, we intend to consider a configuration with two
is, by itself, a nontrivial result. solitonsA and B which initially (i.e., atz=0) are far apart
For the analytical consideration of the problem, we em-om each other, moving in opposite directions with veloci-
ploy a variation of the so-called Poincarghthill-Kuo PEr-  iesC™ andC® in thet-z plane, so that they are going to
turbation methodsee, e.9.[19]) to show that the solitons . jije. Assuming small-amplitude solitons with amplitudes
with different dimensionality(1D and 2D and different po- ~¢, wheres<1 is a formal perturbation parameter, we ex-
larity (dark and antidarkindeed coexist and, therefore, they o t that the collision will be quasi-elastic, so as to cause
may interact. We show that the corresponding field may be,ny shifts of the postcollision soliton trajectories.
regarded as a superposition of two waves moving in opposite Fixing that the solitorA(B) is moving to the rightleft) in

direct_ions, which obey two different KP equations in the 'ethe t-z plane, we introduce stretched coordinateand 7,
spective reference frames. One turns out to be the so-call hich are linked to the solitons and defined as follows:

KP-1l equation, which has stable quasi-1D soliton solutions

(corresponding to the 1D dark stripeand the other is the o A) 3

KP-I equation, which gives rise to stabliemp solutions of E=e"(t=C2)+eli(n, X, 2) +e7E(n, X, 2) +- -+,
the elevatior(antidark type (while its quasi-1D solutions are (4)
unstable. A noteworthy feature of these lumps is that they

are weakly(nonexponentially localized, unlike 2D solitons  5=g"4(t+C®z)+ &9 (£,X,Z) + %29 (£,X,2) ++ -+,
of the usualexponentially localizedtype dealt with in Refs. (5)
[16], [17].

Having found these solutions in an analytical form, we
then analytically calculate their position shifts induced by
head-on collisions. The fact that the dark stripe and antidarlg\,heregj and 7; (j=1,2,...) are coordinate perturbations de-
LB undergo nearly elastic collisions, resembling collisionsscriping collision effects, which will be found below by
between genuine solitons in completely integrable systtmsneans of the perturbation method. The solitons’ velocities
is confirmed by direct numerical simulations reported in thisc(A) andc(®) appearing in the definition@) and(5) are not
work too. Numerically computed solitons’ collision-induced grpjitrary. The subsequent consideration will demonstrate that
position shifts are found to be in a reasonable agreeftielt i, the |owest approximation, they are determined by the am-
largest discrepancy being 20%ith the analytical values pjityde of the cw background and higher-order corrections to

X=¢gXx, Z=¢g%%, (6)

predicted by the asymptotic approach. them depend on characteristics of the solitéamplitude,
wave numbers, efc
Il. THE MODEL AND ITS ANALYTICAL CONSIDERATION Equations(2) and (3) have a simple solutiop=1 and

@=|uo|?z, whereu, is an arbitrary complex constant, which
corresponds to the cw solution to Ed). Although this cw
solution is subject to modulational instability in the case un-
der consideratiofithe focusing Kerr nonlinearity and normal
SOD), one can easily find conditions under which the insta-
Bility band is effectively suppressed by a finite size of the
waveguidd 11]; it is also relevant to stress that newly devel-
oped experimental techniques indeed make it possible to ob-

iU+ 3 (Ug— aly) + [ulPu=iBuy (1)  serve 2D solitongnamely, vortices in SHG mediaupported

by a background that is formally subject to the modulational

(the derivation is straightforward too if the dispersion is in-instability [20]. Thus, we expect that if the two solitors
duced by the above-mentioned grating, see R&j. In Eq.  and B were created on top of this cw background, their

The model equation, namely the {2)-dimensional
NLS equation with the focusing Kerr nonlinearity, second-
order dispersionfSOD), and TOD can be derived directly
from the Maxwell’s equations, applying to them the slowly-
varying-envelope and paraxial approximations, and has
known normalized fornj11],
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head-on collision will take place within an interval of the  Proceeding to the next order, viQ(e?) and O(¢%?9),
propagation distance which is much shorter than that nec- Egs.(2) and(3) give rise to the following results. First, we
essary for onset of the modulational instability. As we will obtain expressions for the amplitude and phase funciigns
show below by direct numerical simulations, this is indeedand ¢,

the case.
We seek small-amplitude solutions to E(®.and(3) that
propagate on top of the cw solution, which makes it natural p2=T12(&,X,2) +92(7,X,2), (12
to introduce the following expansions for the fieldsind ¢:
Co (¢ Co (7
p=1+epite’pyt--, e=|Ug/’zte e +e¥0pt -, <pz=—;0f fz(é’,X,Z)dé’Jr;OJ 9a(n'.X,2)d7’,
+oo -

(7) 13
where p; and ¢; (j=1,2,...) are functions of the stretched
coordinates defined in Eq&4)—(6). Finally, assuming that, and the resul(1l) is obtained once again. As it is seen, these
to the leading order ig, the absolute valugg”) andC®) of  results are similar to those obtained in the leading-order ap-
the soliton velocitiedsee Eqgs(4) and (5)] are equal, we proximation. The functiond,(£,X,Z) and g,(#»,X,Z) can
introduce the following expansions f@" and C(®): be found in the subsequent approximation, but they are not
relevant for the present work.
A)_ (A) L 2+(A) Second, we obtain the following equations for the un-
C=CoteCi +e°Cy -, known amplitude-perturbation functiorig andg;,
()
C®=Cy+eCP+e2CP+:--,

[f —CcPf +ﬁ(1+—2ﬁco)f e
whereC, andC* ,C(® (j=1,2,...) will be found below in ) a® |1 8C,
terms of solitons’ characteristi¢camplitudes, wave numbers, 8C C
elg. . . x| 1+ —20)f1§§§} _z_oflxxzo’ (14)
Substituting Eqs(4)—(8) into Egs.(2) and(3), we obtain @ @
a hierarchy of coupled equations for the functipnend¢; .
To the leading order, i.e., to orde@(e) and O(£%?), re-
spectively, Eqs(2) and(3) amount to two linear equations, (B) 3Cq 26C, a?
whose solution has the following form. The amplitude per- 912+ C1 01, | 17 79101, F 8C,
turbationp, is
8BCo Co
X1 1= _az_) Yigmy| T 5, 91xx= 0. (15
P1= fl(g,X,Z)'f‘gl( 7]-X,Z)y (9) 7

where the unknown functionfs (&,X,Z) andgq(7,X,Z) are  Both Egs.(14) and(15) have the form of the KP equation in
to be determined at the next order. The phase perturbation the reference frame<(¢,X) and Z, ,X), respectively. As
can be expressed in terms of the same functions, we will see below, under certain conditions, E¢s4) and
(15) possess stable soliton solutions of different dimension-
Co e c ality and polarity, namely, 1D dark and 2D elevatitmti-
o= 22" e x,2)de + _Of” a(n' X.2)dy', dark solitons, respectively.
a )io a ) o Finally, eliminating secular terms at the present order of
(10)  the asymptotic approximation, we derive equations for the
phase-perturbation functiorg and 74,
where the lower limits of the integration in E¢LO) were
chosen so as to make the initial phases of the two waves

equal to zero. Finally, it is found that the unknown lowest- 1 1 68Co 16
order velocityC, is determined by the equation 51’7_71 Tz |9 (16
2_ 2_
C2— a|ug|2=0. (12) 1/ 68C
me=g| 17—z |f1 17

Thus, at the leading order, we have shown that the field is a
superposition of two wave& andB described, respectively,

by the functionsf,(¢,X,Z) andgs(#7,X,Z), which are trav- In the next section, we will obtain soliton solutions to Egs.
eling with the same absolute value of the velocity in oppositg14) and (15) and then, making use of Eq&l6) and (17),
directions in thet-z plane. The form of these functions will position shifts of solitons induced by their headon collision
be derived below in the next-order approximation. will be found.
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I1l. ONE-DIMENSIONAL DARK AND TWO-DIMENSIONAL y=7n+\,Z, (22)
ELEVATION SOLITONS AND THEIR COLLISIONS

We now return to the KP equatiori¢4) and (15) and s=alug| Y 348(8— 6)]Y?X, (23
assume, without loss of generality, that the leading-order
soliton velocityC, is positive, i.e..Co=aquy| as per Eq. where\, and \, are arbitrary constants. In this case, the
(11). Then, it is easy to verify that E14) is a KP-Il equa- first-order correctiorC(lB) to the lump’s velocity can also be
tion (i.e., the one with negative effective dispersiowhile  found,
Eq.(15) is either a KP-Il or a KP-I equatiofi.e., it may have
positive dispersiondepending on the value of the parameter, 31,a25(5—8)
6= a2 B|uy)|. (18 0
The solution(21) is a 2D spatiotemporal soliton, which de-
cays algebraically (slower than an exponentjalas (72
+X?)Y2_5. As in this case the facto(8)/(6—2) in the
lump’s amplitude must be negative, the soluti@i) repre-
sents an antidark elevation on top of the cw background.

Thus, in the region Z §<8 the field obeying Eq(1) is a
. : iti f two solitons, which move in opposite direc-
presented beloywill change accordingly. Zgﬁgrgr?zlt#;?/;o ) e . X

. : pposite polaritiedip/elevation and differ-
As is known[ 18], these two versionéP-Il and KP-) of ent dimensionalities: a quasi-1D dark strigeliton A) and a

the KP equation give rise to soliton solutions of different . .
types. Particularly, both the KP-II and KP-I equations have2D lump (solitonB), described by Eq$19) and(21), respec-

stripe (quasi-1D soliton solutions, which are, respectively, tively. A nontrivial feature of this situation is a possibility of

stable and unstable in these two cases, and the KP-I equati@?c?eerzgogeclzgwsﬁgtgettr\::taetﬂi;hr?omﬁv?acilléci)'[ﬂsz;ti\cl)vr?Kr:r?als ocr?ln-
additionally has stabléump (2D) soliton solutions. In our ' y only

. . ; . . in the presence of TOD. Indeed,3t=0, both Egs.
case, the stripe-soliton solution to EG44) (i.e., the leading- oceur in .
order part of the solitor) has the form (14) and (15) turn out to be of the KP-Il type, possessing

solely dark stripe-soliton solutions.
The theoretical predictions, i.e., the coexistence and pos-
R sibility of the headon collision of the small-amplitude
sech ki (&+ koX+ x3Z)], quasi-1D (Q1D) dark line soliton and 2D elevation lump,
(199  have been verified by direct numerical integration of the un-
derlying NLS equatior{1). The analytical expressions given
where the relation11) was used,xi,kz,k3 are arbitrary  py Egs.(19) and (21) were used as initial configurations at
constants characterizing the soliton’s amplitude and wave=0 on top of a cw background of a finite extent. An actual
numbers, and the positive paramefaras defined above by shape of the background was a super-Gaussiar(-ekx?
Eq. (18). In this case, the first-order correcti@{” to the  +t2)/L.2]8) (which is a realistic shape of a cylindrical opti-

In particular, if 5<2 or §>8, Eq.(15) is KP-Il, while if 2

< §<8, Eq. (15) is KP-I. Note that if Cy=— a*qu|<O0,
then the types of Eqq14) and (15) are reversed, i.e., the
former one is either a KP-I or a KP-IlI equation, depending
on the value ofé, and the latter equation is always KP-II,
which means that the types of their soliton solutidtts be

X 7= akf 0+8
1(&,X, )__W 572

soliton’s velocity is cal beam created by laser systéms the simulations, we
have used the values=0.1 andB=0.013 for the SOD and
1 1 ax% TOD coefficients, respectivelfvhich corresponds, in accor-

cW=-— 5B(5+ 8) k- 2 g5 e (200 dance with what was said in the Introduction, to relatively

strong TOD. As for the solitons’ parameters, we usag

Notice that in the casé<2 or 5>8, Eq. (15), which de- =1 for the cw backgroundand L=90 for the super-
scribes the leading-order part of the soliBnhas a similar ~ S@ussial x;=1.6, x;=0.2 for the Q1D dark soliton, and
solution, i.e., a stable stripe soliton, which is not relevant for*1~0-8, x;=0.9 for the 2D elevation lump, respectively,
the present analysis. Importantly, the amplitude of the strip&’hile the perturbation parameter was chosen t@ b®.25.
soliton (19) is always negative, i.e., the soliton has the form _Starting from the initial configuration shown in Figal,
of a dip on the cw background and as result this soliton is oflifferent stages of the simulated headon collision are shown
the dark type. in Figs. ](b)—l(g) for z=7.5, 13.5,. 15, and 30, respeqtlvely.
We now proceed to the KP-I version of E@5), assum- Additional details are shown by inset contour plots in each
ing that 2< 5<8. In this case, the stripguasi-1D soliton panel. As it is seen, although a small amount of radiation is
solution is unstable but there exist stable 2D solitons alia§Mittéd by both solitons, and deformation in their shapes is

lumps[18]. In our case, the lump-soliton solution to Eq5) tangible (especially for the 2D lumy the collision is quasi-
is elastic: after passing through each other, the solitons basi-

cally restore their shapes. This behavior is in agreement with
_ the analytical results of the perturbation theory developed
o ) S : : ision i i
1 1 above, which predicts that the headon collision is elastic up
[y2+ N 82+ h; P to the second order, but it becomes inelastic if higher-order
(21 corrections are included.e., the above corrections, and

2a0 [6—8
gl( W:X-Z): ( )

ugl?l6-2
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FIG. 1. Evolution of the colliding quasi-one-dimensional dark stfwéh «;=1.6, k,=0.2) and two-dimensional antidark lum{@vith
A1=0.8,1,=0.9) on top of a super-Gaussian cylindrical background. Snapshots of the field are displayed at the values of the propagation
distancez=0 (a), z=7.5 (b), z=13.5(c), z=15 (d), andz=30 (e). As it is seen, the solitons undergo a quasielastic collision, which is
accompanied by a slight deformation of their shapes and emission of a small amount of radiation.

¢, to the solitons’ amplitudes and phases come into )play and (17), respectively, we evaluate the solitons’ coordinate
Also, notice that a deformation of the super-Gaussian backperturbationst; and »,. Then, the solitons’ position shifts
ground is observed in Fig.(4), which is a precursor of the induced by the headon collision can be obtained as follows.
modulation instability(the latter manifests itself at essen- We assume that the solitoWsand B, which are described,
tially longer propagation distances, starting fram42). respectively, by the waveformfs (£,X,Z) and g1(#,X,2),
The final step in our approach is to find postcollision are initially far enough from each other, i.e., the soli®is
shifts of the soliton trajectories in an analytical form; as wasplaced atyp=0 and¢= +, andB is placed att=0 and
explained in the Introduction, these results are importuned as — . Then, long enough after their collision, the shiftg
they make it possible to predict how positions of the lumpsand Ag of the positions of the soliton&d andB can be de-
may be controlled by passing stripe dark solitons througtiined as follows: Ag=¢g[ 71(é— —2,X,Z)— n1(é—
them. At first, substituting Eqg21) and (19) into Egs.(16)  +%,X,Z)] and Ap=¢e[&1(n—+2,X,Z2) = &(n—
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FIG. 2. Details of the evolution of the dark stripe and antidark lump just before their collision, ize=,1&(a) andz=12.5(b), and just
after the collision, i.e., at=17 (c) andz=17.5(d). As is clearly seen, the dark stripe gets bent and temporarily stuck to the antidark lump
due to attraction between them. After the collision, the solitons restore their shape.

—o,X,Z)]. Nevertheless, in applications, the phase shiftghe interaction with the finite-energy lump. The position shift
should be obtained for a finite propagation lengthin this Ay of the 2D elevation lump soliton is
case, we may calculate the phase shifts as

B ak(6—6)(6+8) k1L
Ap=e[E4(7—LI12) = &(n——LI2)] Ae=e Slu ootz M2 (28
and Using the aforementioned values of the physical param-
eters pertaining to the solitons shown in Fige)%1(e), we
Ag=el[n1(§——LI2) = n(§—+LI2)]. find that the theoretical predictions given by E¢®5) and

_ _ _ ) (26) for the position shifts of the solitons attor L=4.5)
Following this way, we find that the shift of the 1D dark

Q1D stripe soliton is
Ap=-0.51 and Ag=-6.9x10 2, (27

_ 2a(6—-8)(0+6) 25 for the Q1D dark soliton and 2D elevation lump, respec-
AT T ugl?8(6-2) tively.

Since the position shifts are negative, the solitons attract

Note that, in the limitL— +<0, this phase shift vanishes, each other, which is also obvious in Fig. 2 that displays

which is quite natural, as, in the infinite system, the positiondetails of the collision at the crucial stage when the solitons

of the stripe which has infinite energy cannot be shifted byare interacting strongly. In particular, when the solitons are
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approaching each other, the dark stripe bends due to the ahe positive second-order and third-order temporal disper-
tractive force as is seen in Fig(&# (corresponding taz  sions, supports coexisting soliton solutions of different di-
=12) and then it sticks to the lump, see Figb® which  mensionality and polarity, propagating on top of a cw back-
corresponds t@=12.5. Just after the collisiofthe central ground. We have shown that each soliton, viz, a quasi-1D
point of the collision isz= 15), the dark stripe is still stuck to dark stripe and 2D spatiotemporal soliton in the form of an
the lump as is seen in Fig(@ atz=17. Finally, the stripe elevated “lump,” is governed by its own KP equation and
separates from the lump and moves away, still being bent, d8ey move in opposite directions. A noteworthy peculiarity of
is shown in Fig. 2d) for z=17.5. Notice that for larger val- the lump spatiotemporal soliton is that it is weakiyonex-
ues ofz (i.e., long enough after the collisiprthe dark stripe  ponentially localized. We have developed a perturbation
restores its straight-line shape, see Fig).1 theory, which shows that, up to the second-order approxima-
The collision-induced position shifts of the solitons, ana-tion, collisions between these two solitons are elastic. The
lytical predictions for which are given by E@27), can be analytical predictions have been verified by direct numerical
extracted from simulations by means of the following proce-integration of the underlying NLS model, with a conclusion
dure. At first, the simulations are run separately for thethat the solitongespecially the quasi-1D dark strip@deed
quasi-1D dark stripgsoliton A) and 2D lump(soliton B), restore their shapes after passing through each other. Slight
which are moving to the left and to the right, respectively,deformation and emission of radiation were also observed, in
along thex axis in the(x,t) plane[see insets in Figs.(4—  accord with the analytical approach, which predicts that there
1(e)]. Thus, assuming that at=0, centers of the soliton&  exist higher-order corrections to the soliton fields. Addition-
andB were placed at points, andxg, we find the propa- ally, we have analytically calculated position shifts of the
gation distances, sag, andzg, needed for the dark stripe solitons induced by the collision that were found to be in
and elevation lump to reach the poimigandx, (i.e., for the  quite a reasonable agreement with the numerical results. Us-
solitons to interchange their positignginally, carrying out  ing the shifts suggests a natural way to control the position of
the simulations of the actual collision, we find that the soli-the lumps in the experiment by passing through them dark
ton A reaches the poingz and the solitorB reaches the point  stripe solitons launched in the appropriate diredpn .
X, after passing distances, sgyandzj, which are different There exists a possibility of a real experiment to verify
from z, and zz because the collision took place. Then, thetheoretical results reported in this work. This can be done

. " . : 2 using an ordinary planar glass waveguide as a host medium
numerically found position shifts of the solitons afe, and a broad optical beam, on top of which the solitons are to

=Zp—2p andAp=25—7g. , - _ be created. The necessary strong temporal dispersion can be
This way, we have found that the numerical position shifts asteq by means of a grating. The grating will inevitably

for the solitons, the coJIision between which isAdispIayed iNinduce strong higher-order dispersion, which our model takes

Figs. Xa-1(e), are A,=—5.95<10"! and Ag=—8.2 into regard.

x 10" 2, which appears to be a typical example, if compared In fact, the results may have a broader significance, not

to many other runs of the collision simulations not shownconfined to the field of nonlinear optics, as they provide in-

here. If these values are compared to the theoretical predisight into general aspects of dynamics of multidimensional

tions (27), discrepancies are:18% for the Q1D dark stripe solitons in nonintegrable systems.

(soliton A) and ~19% for the elevation lumgsoliton B).

Having in mind that Eqs(25) and(26) produce the shifts in
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