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Fields of optical waveguides as waves in free space
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It is shown by using the scalar diffraction theory and the method of images that the arbitrary field confined
by the optical waveguide can be generated in free space by the appropriate light source. The correspondence
between the guided and free-space waves is illustrated using several particular fields, such as the diffraction-
free, self-imaging, ultra-short, solitonlike, partially coherent waves and laser fractals. In opposition to the
eigenmode theory of waveguides, the field at the guide entrance can satisfy neither the guide wave-equation
nor the boundary conditions.
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I. INTRODUCTION [11-14). The fields are compared, where it is possible
(mode-matched fieldsto those obtained by solving a bound-
Bounded optical fields confined by multiple internal re- ary condition problem.

flections at the waveguide boundaries and optical beams
propagating in free space are attracting continuous interest
because of their importance for basic physics and applica-
tions in technology. This subject has been known for decades Let us first consider, for the sake of simplicity, the propa-
and many ways to treat the problem can be found in thejation of waves through the plane waveguiffég. 1). The
literature. The behavior of such waves is governed by Maxguide, which consists of a core and a cladding, is tapered
well's wave equations with the boundary conditions im-with the taper angley. The complex index of refraction
posed. According to the conventional theory of optical=n.—in;, changes abruptly froom; to n, at the guide
waveguidegsolving a boundary condition problgya wave  boundary. Heren,,, is the absorption index of the medium.
arriving to the guide entrance and satisfying the wave equa-
tion and the boundary conditions of the guide propagates X
without diffractive broadening through the optical conduit as
a superposition of the well-known waveguide eigenmodes. Waveguide boundary | | X
In free space the wave equation and the boundary conditions . Py
are different from that of the waveguide. A wave propagates Light source i

a ha
between different locations in free space as the optical beam /)> ﬁﬁn\\b
0

Il. GENERAL CONSIDERATION

that diffracts and broadens. Up to now it was commonly 0)
thought that the fields confined by optical waveguides are -
different in principle from the optical beams propagating in E(xt) v v n,
free space. -1

In this paper we show using the scalar diffraction theory
and the method of images that the arbitrary field confined by (@)
the optical waveguide can be generated in free space by the
appropriate light source. The guided field can be produced in
free-space provided an appropriate launch pattern containing
multiple virtual sources can be constructed. In opposition to
the conventional theory of waveguides, the field at the guide
entrance can satisfy neither the guide wave equation nor the
boundary conditions. That gives possibility to considering
not only the mode-matched waves, but also the fields having
more complicated spatial and temporal properties at the
guide entrance. The correspondence between the guided and
free-space waves is illustrated using several particular fields,
such as the diffraction-free, self-imaging, ultrashort, soliton- b
like, partially coherent waves and laser fractals. Some of (b)
these fields have been found recerttiffraction-free beams
and laser fractal$1—10)) and some many years agself- FIG. 1. (a) Propagation of the wave through the tapered optical
imaging, solitonlike, ultrashort, and partially coherent fieldswaveguide(b) Schematic diagram of the free-space virtual source.

Free-space virtual source

Waveguide boundary
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We consider the guide of length with the dimensions2  Here, r(P/,,P,,) is the distance between poin®/, and
and 2 of the entrance and exit, respectively. In the case oP,,; ©,, is the angle that the lineR(,P,,) makes with the
harmonic fields a wav&y(P,t) at the pointP(x,z) of the it normalé,, to the line (Xminxmay \ is the wavelength:
guide entranceXxe[ —a,a] andz=0) is given byEy(P,t) max

. R UL is the mth zone; 8, is the Kronecker symbol;
=Eq(x)expli[ —wt+ ¢p(X)]}, wherex and z are the coordi- mo . -
nates of the poinP in the coordinate systenX(Z); o and and the top and bottom signs are used>xor0 andx<0,

o(x) are the wave frequency and the phase, respectively Irespectively. It should be noted that absorption of the wave is

) ) '€lY. IHetermined by the imaginary part of the propagation constant
accordance with the Huygens-Fresnel principle, which ISk=wn1/C of I%/q.(l). Th% totgl ?ieIdE’(P’ Ft)) aﬁ tﬁe pointP’
usually regarded as a form of the Helmholtz-Kirchhoff inte- is found by summing the contributions ;‘rom tNe zones of
gral theorem, every poirR(x,z) of the waveEy(P,t) can be the virtual source

considered as the center of a secondary spherical wave.

When the secondary wave reaches the core-cladding bound- M
ary, it is split into two waves: a transmitteeaky) wave E'(P',t)= > ELPt), (5)
proceeding into the second medium and a reflected wave m=|—M|

propagating back into the first medium. According to the

method of images, the reflected secondary wave can be rephereM is the number of zoneeams that contribute the
resented as a wave emerging from the respective poir@nergy into the fielde’(P’,t). The numbeM depends on
P.(x1,z;) of the free-space virtual sour¢Big. 1). The am-  the direction of propagation and the divergence angle of the
plitude and phase of the wave are determined by the FresnepamsE/,(P’,t). These two parameters are determined by
field reflectivity and the phase change associated with théhe valuey and the transverse dimensiotig(\,a,z) of the
reflection. The fielcEy(P,t), afterm reflections, can be rep- beamsE/ (P’,t). For the tapered and plane-parallel guides,
resented as the fielbeam E;,(P’,t) emerged from thenth  an analysis of Eq(5) shows that the arbitrary wagy(P,t)

zone of the virtual source having the field distribution propagates down the guides as the superposition of the
Em(Pm.t). The field distribution in this zone is given by “transient” modesg/ (P’,t) that diffract in the off-axis di-
Em(Pm,t) =RmEo(Xm) exdi(do(Xm) +Adyn—wt)], where the rection and interfere with each other. This result is more
amplitude and the phase are determined by the reflectivitgeneral in comparison to the predictions of the conventional
Rn=II|_;Rj(®;,n;,n;) and the phase chang&¢, theoryof waveguideésolving a boundary condition problem
=E,m:1A¢j(¢’j ,ny,n,) for the m reflections. Here, forthe plane—paral!e_l guidesAccording to the conventio_nal_
Ri(®;,n;,n,) and Ag;(®;,n;,ny) are, respectively, the theory, a wave arriving to the guide entrance and satisfying
Fresnel field reflectivity and the phase change for the bearfhe wave equation and the boundary conditions propagates
E[(P’,t) emerged from thgth zone of the virtual source through the optical conduit as a superposition of the steady-
and reflected at the glancing angie; [15]. The field state fieldgeigenmodeks In our consideration even an eigen-

E’ (P',t) at a general poinP’ of the guide core is given by mode of the plane-parallel guide propagates through the
thné Fresnel-Kirchhoff integrdL6] guide as the superposition of the transient modes.

The new method can be extended to the waveguide hav-
ing a gradient-refraction index. In this case the usual ap-
E' (P t)= f proach based on the representation of the graded index me-

m 1 ’ i . . . . . .
J2i N J xmin r(Pl,,Pm) dium by the steplike refraction index multiguide structure
should be used. For the transmittéelaky) wave proceeding
X (14080 ) Ern(Prm, )X, (1) into the second medium the Fresnel field reflectiRyand
_ , R the phase chang& ¢, should be replaced by the transmis-
with P,m:,P(Xm’Zm) and Pm: P’ (X Zm). where Q<m,,2n_1) sion coefficientT; ané the respective phase changg|. Our
and &m,zy) are the coordinates of the poifsandP" in  aihod can be extended also to the guides of other shapes.
the coordinate systemX(,,Z), respectively. The points The simplest caséhe plane-parallel guidds described by
Pm=P(Xm,Zy) are the images of the poinks=P(x,z). The  £qs (1)—(5) with the taper angley=0. To find the features
transformation can be presented as the rotation, translatiog¢ rectangular guides one should simply use the method for
and inversion of the coordinate systeiX,Z), both thex andy coordinates. The method can be easily ex-
_ ti tended also for the polygonal guides. In the case of the
Xm| _(cod2my), £(=1)"sin(Z2my)| Xy @ curved shapegircular, elliptical, coaxial, or arbitrary-shape
zn) | F(=1)Msin(2my), cog2my)/\ z. |’ guides finding of the equivalent source is an interesting
mathematical problem. In principle, it can be solved as the
m-1 problem of polygonal guides with the number of sidds
X+ a[1+ cog2my) —2(8;n—1) D, cog 2] 'y)} —oo, |t should be mentioned that the correspondence be-
=1 tween free-space modes and waveguide modes is also the
X(—1)" 3) basis of the nonorthogonal mode formalism derived in Ref.
' [16] to describe excess quantum noise in unstable resonators.
In the formalism the waveguide is essentially a lens guide.
. @) An analysis of Eqs(1)—(5) shows that the guided waves
having an arbitrary duration, field distribution, degree of co-

qmax explikr (Ply, P

ti_
Xm =

m—1

sin(2my) —2(8;m—1) >, sin(2jy)

=1

Z. =z—a
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herence, and direction of propagation at the guide entranct 1.0 B A T Cuy e — -
can be generated in free space by the appropriate equivalelh SRR R A | VA VA
source. The guided waves can be produced in free spac=
provided an appropriate launch pattern containing multipleg
virtual sources can be constructed. In opposition to the con-g
ventional theory of waveguides, the field at the guide en- 067
trance can satisfy neither the guide wave equation nor the‘g }
boundary conditions. That gives possibility to considering s 041 /
not only the mode-matched waves, but also the fields having € h
more complicated spatial and temporal properties at theZ 02- /
guide entrance. This approach is illustrated in the following |/
section using several particular fields, such as the diffraction-
free, self-imaging, ultrashort, solitonlike, partially coherent 00
waves and laser fractals. The fields are compared, where it i
possible(mode-matched fieldsto those obtained by solving

a boundary condition problem.

081 A
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FIG. 2. The normalized intensity distributions of the eigenmode
TE,, the transient modeE/(x’,t), and the superposition of the
Ill. PARTICULAR FIELDS transient modes E’(P’,t)=2§n:|,3‘Er’n(P’,t). Curves
B, C, D, E, F, andG are, respectively, the normalized in-

. . L. A
Let us consider the optical guiding and the respectlvqe’Insities of the transient modes havingn=—3, —2

free—space propagation of the sgveral particular fields. We 1, 0, 1, 2, and 3. Curves and| are, respectively, the normal-
first demonstrate. that the TEM elge_nmodﬂa$x,z,t) of th_e ized intensities of the T eigenmode and the superposition
plane-parallel guideg=b,y=0) having the total-reflection g/(p' ) in the core regioxe[—a,a]). The intensity distribu-
walls can exist and propagate without diffractive broadeningjons of the transient modes and their superposition were calculated

not only in the optical guide but also in free space. Accord-for the distancee=1 m from the virtual source using the param-
ing to the conventional theory of waveguides, the wave haveters\ =500 nm and 2=500 um.

ing the mode-matched profile and the plane wave front at the

guide entrance propagates down the optical conduit as thgeqry of waveguides are presented in Fig. 3 for the compari-
waveguide eigenmode. In our consideration, it means thalyn One can see that the distributions are indistinguishable.
Eo(x,z=0=0)=¢;(x), Rn=1 andA¢py=mm. For such  the apove presented results demonstrate the unexpected cor-
conditions Egs(1)—(5) give respondence between the waveguide eigenmodes and the

E'(x' 1) = 1 J(2M+l)a exdi(kr(x',x)— wt)] J(x)dx L0
0.8

Vinz
(6)

The virtual source producing the waveguide eigenmode in@
the free space is particularly simplE(x,z=0)= ;(x) for
xe[—(2M+1)a,(2M +1)a] andM =d,/2a— 1. It should
be noted that the bearis, (P’,t) with m>M do not deliver
the energy to the guided field in the regishe[—a,a].
Therefore, the fieldE(x,z=0)=¢;(x) can be extended to
the full regionx e[ —o0,]. The interference and diffraction
of this field produces the “diffraction-free” beam in the free . ;
space. Moreover, it can be easily demonstrated that the st g4 . 9 X
perposition of the eigenmodefg(x,z,t) and ¢;(x,z,t) is the 250 -125 0 125 250
longitudinally periodic field with the beat lengttZ, Transverse Coordinate (pim)
=2m(ki—k;)"'. That means that the respective virtual o S .
source produces the self-imaging field in the free space. As FIG. 3. The normallzed_ intensity o_ll_strlbutlons of the eigen-
an example, Fig. 2 shows the intensity distributions calcuMmodes Tk and TE and their superposition TE TE, calculated

lated for the eigenmode TE the “transient modes” using Egs.(1)—(6) for the different distanceg from the virtual

E/(x',t), and the superposition of the transient modesSouree- The respective distributions obtained using the conventional

. . theory of waveguides are presented for the comparison. Curves
E'(P",)=3N_|_mEm(P’,t). We notice that the distribu- y ot wavegul P parl U

- : P A, B, and C show, respectively, the fields TE TE;, and TE
tions of the eigenmode TEand the superpositioB’(P",t) |1, at the guide entrance. CurvésandB demonstrate, respec-
are indistinguishable in the “core” region. Figure 3 demon- ey, the fields TE and TE computed for z
strates the intensity distributions of the eigenmodes ad  —20,21 ...,600 cm. CurveC shows the field TE+TE; calcu-

TE, and the superposition TE TE, calculated using EQs. lated for z=66.6 cm+pZ, where p=1,2,...,10 and Z,
(1)—(6) for the different distances from the virtual source. =33.3 cm. The distributions were calculated using the parameters
The respective distributions obtained using the conventional =500 nm and 2=500 um.

-(2M+1)a r(x’,x)

n
=)
T

Normalized Inte
5

024}/
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diffraction-free[1—8] and self-imaging11-14 fields of free
space. It is clear now that the diffraction-free Bessel-type
beam[1-8] is the free-space equivalent of the eigenmode of
the cylindrical waveguide.

Let us now consider the optical guiding and the respective
free-space propagation of the field, which at the guide en-
trance has more complicated temporal properties. We will
study an ultrashort light pulse, a wide-frequency-bandwidth
field. The input pulsésy(x,z=0,t) at the guide entrance can
be presented in the form of the Fourier integral

Eo(P,t)= f

Using Egs. (1)—(5) for the input harmonic field
Eo(P,w)exp(—iwt) and substituting the result into E7),

Eo(P,w)exp —iwt)dw. (7)

FIG. 5. The normalized intensity distributions of the pulse hav-

we get the field distribution of the pulse inside the guide. A9 Eo(X) =TEs(x) calculated using Eqg1)—(7) for the different
istancez=0,5,10 cm from the virtual source. The respective dis-

simple analysis of the equations yields a new prediction, th ributions obtained using the conventional theory of waveguides are
ultrashort wave propagates through the guide as the superpg:

sition of many pulses that diffract in the off-axis direction shown for comparison.
and interfere with each other. An example of the computer
simulation of the evolution of the 10-fs pulse inside theand 5. At the guide entrance the Gaussian-shaped pulse
plane-parallel hollow waveguide of the thicknesa=22b  matches the profile of the TEor TE; eigenmodes and has
=500 um and the lengtte, =10 cm is shown in Figs. 4 the plane wave front,

-1500

-1000  -500 500

Eo(X,z=01)=Eq(x)exd — 2 In(2)(t/7)?]

X expli[kz— wot+ ¢o(X) 1}, (8

where 7,=10 fs, Ag=27Cc/wg=500 nm, and ¢qy(x)

Time (fs)

10 Y 20
5
04
-5

@

€

S

o
1

%

=const. Figure 4 shows the intensity distributions calculated
for the input pulse, the “transient mode£;(x’,t) and the
superposition of the transient modesE’(P’,t)
=Em:‘,M|E,’n(P’,t). The input pulse matches the eigen-
mode Tk, Ey(x)=TEy(x). One can see that the distribu-
tions of the input pulse and the superpositlBh(P’,t) are

indistinguishable. Figure 5 shows the intensity distributions
of the pulse havinggq(x)=TEz(x) calculated using Egs.
: \ N y (1)—(7) for the different distances from the virtual source.
J el F WY EV b The respective distributions obtained using the conventional
‘ CerlMlse M theory of waveguides are shown for the comparison. We
1000 500 0 500 1000 15 notice that the distributiong are i_ndistinguis_hable. Thus the
. usual result of the modal dispersion theory is recovered; the
Transverse Coordinate (um) spatial profile of the wave is undistorted along its path of
propagation provided the input pulse is mode matched. That
means that an ultrashort pulse can exist and propagate with-
out diffractive broadening not only in the optical guide but
also in free space. It is interesting to consider also a soliton-

S o
& 3
1 1

=)
8

Normalized Intensity

-1500 1500

c

FIG. 4. (a) The normalized intensity distributions calculated for
the input pulse, the transient mode§(x’,t), and the superposition
of the transient mode&’(P’,t)=3:2 |_1;Efn(P’.t). The input

pulse ~ matches  the e'geande. olE (b) vaes. like wave, the field that broadens neither transversely nor
A, B, C, D, E, F, andG are, respectively, the normalized in- | itudinally. | der to derive the feat f h a field
tensities of the transient modes havingn=-3, —2, ongitudinally. In order to aerive the features of such a neld,

~1, 0, 1, 2, and 3. Curved and| are, respectively, the normal- W& re_cast the pre\_/ious result for a short wave propaga;ing in
ized intensities of the TE eigenmode and the superposition the dispersive guidg¢n,=n;(w)]. The pulse at the guide
E’(P’,t) of the transient modes in the core regioa[ —a,a]. T entrance is given b¥y(x,z=0,t) = Eq(X) Eo(t). Using Egs.
intensity distributions of the transient modes and their superposmorﬁl) —(5) for the input field that matches the eigenmode profile
were calculated for the distanze=0.8 m from the virtual source. Eo(X)=#i(X) and neglecting the unimportant proportional-
CurvesA, B, C, D, E, F, G, H, andl show the intensities at ity factor we get the field=’ (P',t") at the pointP’(x") of

the timet=0 fs. the regionx’ e[ —a,a],
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E'(P',t'>=wx')f:[wm(w)]”Eo(w)exp(—iwt')dw, 1o
(9)

whereEq(w) is the Fourier transform of the fiely(t’). In
the case ofwn;(w)=const the pulse is a solitonlike field, =
which broadens neither transversely nor longitudinally. Thus'g
a solitonlike pulse propagating inside the dispersive guide= 041
without distortion can be produced by the virtual source in g
the “free” space. 5 02-
We now consider the optical guiding and the respectivez
free-space propagation of the partially coherent wave. At the .
guide entrance, the incoherent or partially coherent wave 350 175 0 175 350
Eo(x,z=0t) can be described in terms of the mutual coher- Transverse Coordinate (jim)
ence functionl oo P',P!; 7) (for example, se¢l7]),

FIG. 6. Normalized intensity distributions of the partially coher-
T oof pi,pi;T):<E0(pi,t+ 7) ES(Pi,t))t, (10) ent field at the guide exit computed using EGE)—(14). The pa-
rameters of the light at the guide entrande: |u|=1; B, |ul

where the point®' P! e[ —a,a]. Using Eqs(1)—(5) and the ~ ~ -85 © |#/=0.75; andD, |u|=0.

mutual intensity function]oo(P',Pj)=F00(P',P';O), we get

i i T P’y insi ' sin(2(AX")?/\
the mutual intensity(P'',P'1) inside the guide 304 XD =TT 2 n(2m( ”2) ) a4
" " (2w (AX")4IN)
. . xmax (. max X .

J(P',P1)= 2 z err1nin Ln:nm (P, Pp) We computed the intensity distribution at the exit of the
m=|=M n=[=M] Pm straight guide having the thicknesa22b=700 xm and
Xexp{—nlcflw(ri—rj)] the lengthz. =10 cm. The input radiation is produced by

@' o'l the linear source having the length=125 um and A
><X( ) x(07) x dx: (11) =500 nm. Figure 6 shows the normalized intensity for the
FP N N AR partially coherent field8 andC. The distributions produced
by the coherenA and incoherenD input fields are shown
with for the comparison. At the guide entrance the partially co-
herent fields, strictly speaking, are not the mode-matched
Jnn( PP =(Eo(P, ,ES (PL 1))y, (120  waves. Therefore it is difficult to compare directly the calcu-

lations with that of the eigenmode theory. Nevertheless, we
where x(®)=1+cos®; the points P Pl c[xMmin xmax  notice that the usual result of the theory of partially coherent
can be found using Egs(2)—(4). Using the function fields is rec_overed, thg spatial profile of the guided wave
J(P',P'}, one can easily find the complex coherence factoProadens with decreasing the coherence degree. _
w(P"1,P")), the mutual coherence functidh(P'|,P'}), and Finally, we consider the_ relation betwee_n the guided
the intensity distributionl (P')=J(P"I,P'I:P"i~p'l) of  Waves and the laser fractal fields. Let us consider the forma-
the guided wavé17]. In order to better understand the trans- tion of light fields in thg laser resonator, vyh|ch consists of a
formation of the guided waves into the free-space fields, wélane-parallel waveguide, two concave mirrors, and an aper-
have numerically examined the guided fields having differenfur® (Fig. 7). The aperture consists of the walls of the guide
degree of the spatial coherency. We considered the intensity i
distribution of the guided fields that at the guide entrance are /V‘““al souree_

incoherent, partially coherent, or coherent. Such fields can be 303X 4.
produced by an incoherent, uniform-intensity, quasimono- ' TP
chramatic linear source placed at the different distances from A v 2 1 .§
the guide entrancgl7]. The input fields can be described by 3T “‘“I’[b g
the mutual intensity R 251 -- S
h (h e Lhii E
Joo(Xi ,X,—)=J J J(xi”,x}’)exp:—nocflw(ri”—rj’)] \ e o
—hJ-h -3aT Il::
) ) 456789
x(O") x(@") _ _
X— —dx dx]- , (13 FIG. 7. Formation of the laser fractéCantor dustin the wave-
ik r A guide resonator: 1, guide boundary; 2, mirrors, and 3, obstacle. The
triadic Cantor discontinuundline fracta): 4, Cy; 5, C4; 6, Cy; 7,
with Cs; 8,Cy4; and 9,Cs.
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and a light obstacle placed on the laser axis at the guide IV. CONCLUSION
entrance. The obstacle length is given|kly=2a/q, whereq

i natural number. The transverse dimension of the “st In conclusion, it is shown using the scalar diffraction
S a" 1atural nUMBer. 1he ransverse dimension of the s ept'heory and the method of images that the arbitrary field con-
like” input field E is equal to the guide thicknessa2The

N ) i fined by the optical waveguide can be generated in free space
obstacle cuts thedlq part of this field creating the fiello.  py the appropriate light source. The guided field can be pro-
Guiding of the fieldE, can be presented as propagation ofgyced in free space provided an appropriate launch pattern
the fieldsE,, generated by the respective fiellls, of the  containing multiple virtual sources can be constructed. In
virtual source[Egs. (1)—(5)]. After reflection from the mir-  opposition to the conventional theory of waveguides, the
ror, the M-times reduced image of the fieldE’ field at the guide entrance can satisfy neither the guide wave
=ET",T,1,1|E,’T, arrives to the guide exit. In the limit of small equation nor the boundary conditions. That gives possibility
diffraction effect[E/,~E,,, see Eq(1)], the round-trip pro- 0 considering not only the mode-matched waves, but also
cess can be presented as the mathematical procedure of cdfi¢ fields having more complicated spatial and temporal
struction of the line fractals by the tremis8]. In the case of ~Properties at the guide entrance. The correspondence be-
2a=1, q=3, m=(—1,0,1), andM =3, the intersection of tween the guided and free-space waves was illustrated using
the setsC,,, is the triadic Cantor dust=N,,C,,, the fractal _several particular fleld_s, spch as _the diffraction-free, self-
with Hausdorf’s dimension D=log2/log3. Here, C, imaging, ultrashort, _solltonhke, partially coherent waves and
—E, C,=E,, andC, is the reduced image of the fiele Ia_\ser fractals. The fleI(_JIs were compared_, where it was pos-
—E’ ,+E},+E] (see Fig. 5. In order to find the se€, one sible (mode—mqtc_:hed fieldsto th_ose obtained by solving a
should simply repeat the round-trip procedure for the inpupoundary condition problem. It is expected that our method
“field” Cy_;. The result means that the laser fractahdic can be_ extended to the electron and neutrpn waﬁimsthe
Cantor dustcan be generated in the free space by the wav diffraction-free beams the problem was discussed in Ref.
guide resonator. The laser fractals were recently observed D.
the experiment§9,10]. The studies have shown that a fractal
pattern can only appear if the two mirrors form a so-called
unstable configuration. In our case such a configuration is This work was supported by the Hungarian Scientific Re-
formed by the two mirrors and the virtual source of thesearch FoundatiofOTKA, Contract No. T 026644and in
waveguide. part by the U.S. Department of Energy.
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