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Fields of optical waveguides as waves in free space
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It is shown by using the scalar diffraction theory and the method of images that the arbitrary field confined
by the optical waveguide can be generated in free space by the appropriate light source. The correspondence
between the guided and free-space waves is illustrated using several particular fields, such as the diffraction-
free, self-imaging, ultra-short, solitonlike, partially coherent waves and laser fractals. In opposition to the
eigenmode theory of waveguides, the field at the guide entrance can satisfy neither the guide wave-equation
nor the boundary conditions.
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I. INTRODUCTION

Bounded optical fields confined by multiple internal r
flections at the waveguide boundaries and optical be
propagating in free space are attracting continuous inte
because of their importance for basic physics and appl
tions in technology. This subject has been known for deca
and many ways to treat the problem can be found in
literature. The behavior of such waves is governed by M
well’s wave equations with the boundary conditions im
posed. According to the conventional theory of optic
waveguides~solving a boundary condition problem!, a wave
arriving to the guide entrance and satisfying the wave eq
tion and the boundary conditions of the guide propaga
without diffractive broadening through the optical conduit
a superposition of the well-known waveguide eigenmod
In free space the wave equation and the boundary condit
are different from that of the waveguide. A wave propaga
between different locations in free space as the optical b
that diffracts and broadens. Up to now it was commo
thought that the fields confined by optical waveguides
different in principle from the optical beams propagating
free space.

In this paper we show using the scalar diffraction theo
and the method of images that the arbitrary field confined
the optical waveguide can be generated in free space by
appropriate light source. The guided field can be produce
free-space provided an appropriate launch pattern contai
multiple virtual sources can be constructed. In opposition
the conventional theory of waveguides, the field at the gu
entrance can satisfy neither the guide wave equation nor
boundary conditions. That gives possibility to consideri
not only the mode-matched waves, but also the fields hav
more complicated spatial and temporal properties at
guide entrance. The correspondence between the guided
free-space waves is illustrated using several particular fie
such as the diffraction-free, self-imaging, ultrashort, solito
like, partially coherent waves and laser fractals. Some
these fields have been found recently~diffraction-free beams
and laser fractals@1–10#! and some many years ago~self-
imaging, solitonlike, ultrashort, and partially coherent fiel
1063-651X/2001/64~2!/026603~6!/$20.00 64 0266
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@11–14#!. The fields are compared, where it is possib
~mode-matched fields!, to those obtained by solving a bound
ary condition problem.

II. GENERAL CONSIDERATION

Let us first consider, for the sake of simplicity, the prop
gation of waves through the plane waveguide~Fig. 1!. The
guide, which consists of a core and a cladding, is tape
with the taper angleg. The complex index of refractionn
5nr2 inim changes abruptly fromn1 to n2 at the guide
boundary. Herenim is the absorption index of the medium

FIG. 1. ~a! Propagation of the wave through the tapered opti
waveguide.~b! Schematic diagram of the free-space virtual sour
©2001 The American Physical Society03-1
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We consider the guide of lengthzL with the dimensions 2a
and 2b of the entrance and exit, respectively. In the case
harmonic fields a waveE0(P,t) at the pointP(x,z) of the
guide entrance (xP@2a,a# andz50) is given byE0(P,t)
5E0(x)exp$i@2vt1f0(x)#%, where x and z are the coordi-
nates of the pointP in the coordinate system (X,Z); v and
f0(x) are the wave frequency and the phase, respectively
accordance with the Huygens-Fresnel principle, which
usually regarded as a form of the Helmholtz-Kirchhoff int
gral theorem, every pointP(x,z) of the waveE0(P,t) can be
considered as the center of a secondary spherical w
When the secondary wave reaches the core-cladding bo
ary, it is split into two waves: a transmitted~leaky! wave
proceeding into the second medium and a reflected w
propagating back into the first medium. According to t
method of images, the reflected secondary wave can be
resented as a wave emerging from the respective p
P1(x1 ,z1) of the free-space virtual source~Fig. 1!. The am-
plitude and phase of the wave are determined by the Fre
field reflectivity and the phase change associated with
reflection. The fieldE0(P,t), afterm reflections, can be rep
resented as the field~beam! Em8 (P8,t) emerged from themth
zone of the virtual source having the field distributio
Em(Pm ,t). The field distribution in this zone is given b
Em(Pm ,t)5RmE0(xm)exp@i(f0(xm)1Dfm2vt)#, where the
amplitude and the phase are determined by the reflect
Rm5) j 51

m Rj (F j ,n1 ,n2) and the phase changeDfm

5( j 51
m Df j (F j ,n1 ,n2) for the m reflections. Here,

Rj (F j ,n1 ,n2) and Df j (F j ,n1 ,n2) are, respectively, the
Fresnel field reflectivity and the phase change for the be
Ej8(P8,t) emerged from thej th zone of the virtual source
and reflected at the glancing angleF j @15#. The field
Em8 (P8,t) at a general pointP8 of the guide core is given by
the Fresnel-Kirchhoff integral@16#,

Em8 ~P8,t !5
1

A2il
E

xm
min

xm
max exp@ ikr ~Pm8 ,Pm!#

r ~Pm8 ,Pm!

3~11cosQm!Em~Pm ,t !dxm , ~1!

with Pm5P(xm ,zm) and Pm8 5P8(xm8 ,zm8 ), where (xm ,zm)
and (xm8 ,zm8 ) are the coordinates of the pointsP and P8 in
the coordinate system (Xm ,Zm), respectively. The points
Pm5P(xm ,zm) are the images of the pointsP5P(x,z). The
transformation can be presented as the rotation, transla
and inversion of the coordinate system (X,Z),

S xm

zm
D 5S cos~2mg!, 6~21!m sin~2mg!

7~21!m sin~2mg!, cos~2mg!
D S xm

t,i

zm
t D , ~2!

xm
t,i5Fx7aH 11cos~2mg!22~d1m21! (

j 51

m21

cos~2 j g!J G
3~21!m, ~3!

zm
t 5z2aFsin~2mg!22~d1m21! (

j 51

m21

sin~2 j g!G . ~4!
02660
f

In
s

e.
d-

ve

p-
nt

el
e

ty

m

n,

Here, r (Pm8 ,Pm) is the distance between pointsPm8 and
Pm ; Qm is the angle that the line (Pm8 Pm) makes with the

unit normaleWm to the line (xm
minxm

max); l is the wavelength;
@xm

min ,xm
max# is themth zone;d1m is the Kronecker symbol;

and the top and bottom signs are used forx.0 andx,0,
respectively. It should be noted that absorption of the wav
determined by the imaginary part of the propagation cons
k5vn1 /c of Eq. ~1!. The total fieldE8(P8,t) at the pointP8
is found by summing the contributions from theM zones of
the virtual source

E8~P8,t !5 (
m5u2M u

M

Em8 ~P8,t !, ~5!

whereM is the number of zones~beams! that contribute the
energy into the fieldE8(P8,t). The numberM depends on
the direction of propagation and the divergence angle of
beamsEm8 (P8,t). These two parameters are determined
the valueg and the transverse dimensionsdm(l,a,z) of the
beamsEm8 (P8,t). For the tapered and plane-parallel guide
an analysis of Eq.~5! shows that the arbitrary waveE0(P,t)
propagates down the guides as the superposition of
‘‘transient’’ modesEm8 (P8,t) that diffract in the off-axis di-
rection and interfere with each other. This result is mo
general in comparison to the predictions of the conventio
theory of waveguides~solving a boundary condition problem
for the plane-parallel guides!. According to the conventiona
theory, a wave arriving to the guide entrance and satisfy
the wave equation and the boundary conditions propag
through the optical conduit as a superposition of the stea
state fields~eigenmodes!. In our consideration even an eigen
mode of the plane-parallel guide propagates through
guide as the superposition of the transient modes.

The new method can be extended to the waveguide h
ing a gradient-refraction index. In this case the usual
proach based on the representation of the graded index
dium by the steplike refraction index multiguide structu
should be used. For the transmitted~leaky! wave proceeding
into the second medium the Fresnel field reflectivityRj and
the phase changeDf j should be replaced by the transmi
sion coefficientTj and the respective phase change@15#. Our
method can be extended also to the guides of other sha
The simplest case~the plane-parallel guide! is described by
Eqs.~1!–~5! with the taper angleg50. To find the features
of rectangular guides one should simply use the method
both thex andy coordinates. The method can be easily e
tended also for the polygonal guides. In the case of
curved shapes~circular, elliptical, coaxial, or arbitrary-shap
guides! finding of the equivalent source is an interesti
mathematical problem. In principle, it can be solved as
problem of polygonal guides with the number of sidesN
→`. It should be mentioned that the correspondence
tween free-space modes and waveguide modes is also
basis of the nonorthogonal mode formalism derived in R
@16# to describe excess quantum noise in unstable resona
In the formalism the waveguide is essentially a lens guid

An analysis of Eqs.~1!–~5! shows that the guided wave
having an arbitrary duration, field distribution, degree of c
3-2



n
al
a

pl
o
en
th
ng
in
th

in
io
n
it

iv
W

in
rd
av
th
t

th

e
s

a
. A
cu

e
-

n-

.

n

ari-
ble.
cor-
the

de

-

-
n

ated
-

n-

onal
rves

-

ters

FIELDS OF OPTICAL WAVEGUIDES AS WAVES IN . . . PHYSICAL REVIEW E64 026603
herence, and direction of propagation at the guide entra
can be generated in free space by the appropriate equiv
source. The guided waves can be produced in free sp
provided an appropriate launch pattern containing multi
virtual sources can be constructed. In opposition to the c
ventional theory of waveguides, the field at the guide
trance can satisfy neither the guide wave equation nor
boundary conditions. That gives possibility to consideri
not only the mode-matched waves, but also the fields hav
more complicated spatial and temporal properties at
guide entrance. This approach is illustrated in the follow
section using several particular fields, such as the diffract
free, self-imaging, ultrashort, solitonlike, partially cohere
waves and laser fractals. The fields are compared, where
possible~mode-matched fields!, to those obtained by solving
a boundary condition problem.

III. PARTICULAR FIELDS

Let us consider the optical guiding and the respect
free-space propagation of the several particular fields.
first demonstrate that the TEM eigenmodesc i(x,z,t) of the
plane-parallel guide (a5b,g50) having the total-reflection
walls can exist and propagate without diffractive broaden
not only in the optical guide but also in free space. Acco
ing to the conventional theory of waveguides, the wave h
ing the mode-matched profile and the plane wave front at
guide entrance propagates down the optical conduit as
waveguide eigenmode. In our consideration, it means
E0(x,z50,t50)5c i(x), Rm51 andDfm5pm. For such
conditions Eqs.~1!–~5! give

E8~x8,t !5
1

Ail/2
E

2(2M11)a

(2M11)a exp@ i ~kr~x8,x!2vt !#

r ~x8,x!
c i~x!dx.

~6!

The virtual source producing the waveguide eigenmode
the free space is particularly simple:E(x,z50)5c i(x) for
xP@2(2M11)a,(2M11)a# andM5dm/2a21. It should
be noted that the beamsEm8 (P8,t) with m.M do not deliver
the energy to the guided field in the regionx8P@2a,a#.
Therefore, the fieldE(x,z50)5c i(x) can be extended to
the full regionxP@2`,`#. The interference and diffraction
of this field produces the ‘‘diffraction-free’’ beam in the fre
space. Moreover, it can be easily demonstrated that the
perposition of the eigenmodesc i(x,z,t) andc j (x,z,t) is the
longitudinally periodic field with the beat lengthZ0
52p(ki2kj )

21. That means that the respective virtu
source produces the self-imaging field in the free space
an example, Fig. 2 shows the intensity distributions cal
lated for the eigenmode TE0, the ‘‘transient modes’’
Em8 (x8,t), and the superposition of the transient mod
E8(P8,t)5(m5u2M u

M Em8 (P8,t). We notice that the distribu
tions of the eigenmode TE0 and the superpositionE8(P8,t)
are indistinguishable in the ‘‘core’’ region. Figure 3 demo
strates the intensity distributions of the eigenmodes TE1 and
TE2 and the superposition TE11TE2 calculated using Eqs
~1!–~6! for the different distancesz from the virtual source.
The respective distributions obtained using the conventio
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theory of waveguides are presented in Fig. 3 for the comp
son. One can see that the distributions are indistinguisha
The above presented results demonstrate the unexpected
respondence between the waveguide eigenmodes and

FIG. 2. The normalized intensity distributions of the eigenmo
TE0, the transient modesEm8 (x8,t), and the superposition of the
transient modes E8(P8,t)5(m5u23u

3 Em8 (P8,t). Curves
A, B, C, D, E, F, andG are, respectively, the normalized in
tensities of the transient modes havingm523, 22,
21, 0, 1, 2, and 3. CurvesH and I are, respectively, the normal
ized intensities of the TE0 eigenmode and the superpositio
E8(P8,t) in the core regionxP@2a,a#). The intensity distribu-
tions of the transient modes and their superposition were calcul
for the distancez51 m from the virtual source using the param
etersl5500 nm and 2a5500 mm.

FIG. 3. The normalized intensity distributions of the eige
modes TE1 and TE2 and their superposition TE11TE2 calculated
using Eqs.~1!–~6! for the different distancesz from the virtual
source. The respective distributions obtained using the conventi
theory of waveguides are presented for the comparison. Cu
A, B, and C show, respectively, the fields TE1 , TE3, and TE1

1TE3 at the guide entrance. CurvesA andB demonstrate, respec
tively, the fields TE1 and TE3 computed for z
520,21, . . . ,600 cm. CurveC shows the field TE11TE3 calcu-
lated for z566.6 cm1pZ0, where p51,2, . . . ,10 and Z0

533.3 cm. The distributions were calculated using the parame
l5500 nm and 2a5500 mm.
3-3
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S. V. KUKHLEVSKY, G. NYITRAY, AND V. L. KANTSYREV PHYSICAL REVIEW E 64 026603
diffraction-free@1–8# and self-imaging@11–14# fields of free
space. It is clear now that the diffraction-free Bessel-ty
beam@1–8# is the free-space equivalent of the eigenmode
the cylindrical waveguide.

Let us now consider the optical guiding and the respec
free-space propagation of the field, which at the guide
trance has more complicated temporal properties. We
study an ultrashort light pulse, a wide-frequency-bandwi
field. The input pulseE0(x,z50,t) at the guide entrance ca
be presented in the form of the Fourier integral

E0~P,t !5E
2`

`

E0~P,v!exp~2 ivt !dv. ~7!

Using Eqs. ~1!–~5! for the input harmonic field
E0(P,v)exp(2ivt) and substituting the result into Eq.~7!,
we get the field distribution of the pulse inside the guide.
simple analysis of the equations yields a new prediction,
ultrashort wave propagates through the guide as the supe
sition of many pulses that diffract in the off-axis directio
and interfere with each other. An example of the compu
simulation of the evolution of the 10-fs pulse inside t
plane-parallel hollow waveguide of the thickness 2a52b
5500 mm and the lengthzL510 cm is shown in Figs. 4

FIG. 4. ~a! The normalized intensity distributions calculated f
the input pulse, the transient modesEm8 (x8,t), and the superposition
of the transient modesE8(P8,t)5(m5u212u

12 Em8 (P8,t). The input
pulse matches the eigenmode TE0. ~b! Curves
A, B, C, D, E, F, andG are, respectively, the normalized in
tensities of the transient modes havingm523, 22,
21, 0, 1, 2, and 3. CurvesH and I are, respectively, the norma
ized intensities of the TE0 eigenmode and the superpositio
E8(P8,t) of the transient modes in the core regionxP@2a,a#. The
intensity distributions of the transient modes and their superpos
were calculated for the distancez50.8 m from the virtual source
CurvesA, B, C, D, E, F, G, H, andI show the intensities a
the timet50 fs.
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and 5. At the guide entrance the Gaussian-shaped p
matches the profile of the TE0 or TE3 eigenmodes and ha
the plane wave front,

E0~x,z50,t !5E0~x!exp@22 ln~2!~ t/t0!2#

3exp$ i @kz2v0t1fo~x!#%, ~8!

where t0510 fs, l052pc/v05500 nm, and f0(x)
5const. Figure 4 shows the intensity distributions calcula
for the input pulse, the ‘‘transient modes’’Em8 (x8,t) and the
superposition of the transient modesE8(P8,t)
5(m5u2M u

M Em8 (P8,t). The input pulse matches the eige
mode TE0, E0(x)5TE0(x). One can see that the distribu
tions of the input pulse and the superpositionE8(P8,t) are
indistinguishable. Figure 5 shows the intensity distributio
of the pulse havingE0(x)5TE3(x) calculated using Eqs
~1!–~7! for the different distances from the virtual sourc
The respective distributions obtained using the conventio
theory of waveguides are shown for the comparison.
notice that the distributions are indistinguishable. Thus
usual result of the modal dispersion theory is recovered;
spatial profile of the wave is undistorted along its path
propagation provided the input pulse is mode matched. T
means that an ultrashort pulse can exist and propagate w
out diffractive broadening not only in the optical guide b
also in free space. It is interesting to consider also a solit
like wave, the field that broadens neither transversely
longitudinally. In order to derive the features of such a fie
we recast the previous result for a short wave propagatin
the dispersive guide@n15n1(v)#. The pulse at the guide
entrance is given byE0(x,z50,t)5E0(x)E0(t). Using Eqs.
~1!–~5! for the input field that matches the eigenmode pro
E0(x)5c i(x) and neglecting the unimportant proportiona
ity factor we get the fieldE8(P8,t8) at the pointP8(x8) of
the regionx8P@2a,a#,

n

FIG. 5. The normalized intensity distributions of the pulse ha
ing E0(x)5TE3(x) calculated using Eqs.~1!–~7! for the different
distancesz50,5,10 cm from the virtual source. The respective d
tributions obtained using the conventional theory of waveguides
shown for comparison.
3-4
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FIELDS OF OPTICAL WAVEGUIDES AS WAVES IN . . . PHYSICAL REVIEW E64 026603
E8~P8,t8!5c i~x8!E
2`

`

@vn1~v!#1/2E0~v!exp~2 ivt8!dv,

~9!

whereE0(w) is the Fourier transform of the fieldE0(t8). In
the case ofvn1(v)5const the pulse is a solitonlike field
which broadens neither transversely nor longitudinally. Th
a solitonlike pulse propagating inside the dispersive gu
without distortion can be produced by the virtual source
the ‘‘free’’ space.

We now consider the optical guiding and the respect
free-space propagation of the partially coherent wave. At
guide entrance, the incoherent or partially coherent w
E0(x,z50,t) can be described in terms of the mutual coh
ence functionG00(Pi ,Pj ;t) ~for example, see@17#!,

G00~Pi ,Pj ;t!5^E0~Pi ,t1t!E0* ~Pj ,t !& t , ~10!

where the pointsPi ,PjP@2a,a#. Using Eqs.~1!–~5! and the
mutual intensity functionJ00(Pi ,Pj )5G00(Pi ,Pj ;0), we get
the mutual intensityJ(P8 i ,P8 j ) inside the guide

J~P8 i ,P8 j !5 (
m5u2M u

M

(
n5u2M u

M E
xm

min

xm
maxE

xm
min

xm
max

Jmn~Pm
i ,Pn

j !

3exp@2n1c21v~r i2r j !#

3
x~Q8 i !

r il

x~Q8 j !

r jl
dxidxj , ~11!

with

Jmn~Pi ,Pj !5^E0~Pm
i ,t !E0* ~Pn

j ,t !& t , ~12!

where x(Q)511cosQ; the points Pm
i ,Pm

j P@xm
min ,xm

max#
can be found using Eqs.~2!–~4!. Using the function
J(P8 i ,P8 j ), one can easily find the complex coherence fac
m(P8 i ,P8 j ), the mutual coherence functionG(P8 i ,P8 j ), and
the intensity distributionI (P8)5J(P8 i ,P8 j ;P8 i→P8 j ) of
the guided wave@17#. In order to better understand the tran
formation of the guided waves into the free-space fields,
have numerically examined the guided fields having differ
degree of the spatial coherency. We considered the inten
distribution of the guided fields that at the guide entrance
incoherent, partially coherent, or coherent. Such fields ca
produced by an incoherent, uniform-intensity, quasimo
chramatic linear source placed at the different distances f
the guide entrance@17#. The input fields can be described b
the mutual intensity

J00~xi ,xj !5E
2h

h E
2h

h

J~xi9 ,xj9!exp@2n0c21v~r i92r j9!#

3
x~Q9 i !

r i9l

x~Q9 j !

r j9l
dxi9dxj9 , ~13!

with
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J~xi9 ,xj9!5AI ~xi9!I ~xj9!F2
sin~2pA~Dx9!2/l!

~2pA~Dx9!2/l!
G . ~14!

We computed the intensity distribution at the exit of t
straight guide having the thickness 2a52b5700 mm and
the lengthzL510 cm. The input radiation is produced b
the linear source having the lengthh5125 mm and l
5500 nm. Figure 6 shows the normalized intensity for t
partially coherent fieldsB andC. The distributions produced
by the coherentA and incoherentD input fields are shown
for the comparison. At the guide entrance the partially c
herent fields, strictly speaking, are not the mode-matc
waves. Therefore it is difficult to compare directly the calc
lations with that of the eigenmode theory. Nevertheless,
notice that the usual result of the theory of partially coher
fields is recovered, the spatial profile of the guided wa
broadens with decreasing the coherence degree.

Finally, we consider the relation between the guid
waves and the laser fractal fields. Let us consider the for
tion of light fields in the laser resonator, which consists o
plane-parallel waveguide, two concave mirrors, and an a
ture ~Fig. 7!. The aperture consists of the walls of the gui

FIG. 6. Normalized intensity distributions of the partially cohe
ent field at the guide exit computed using Eqs.~10!–~14!. The pa-
rameters of the light at the guide entrance:A, umu51; B, umu
50.85; C, umu50.75; andD, umu50.

FIG. 7. Formation of the laser fractal~Cantor dust! in the wave-
guide resonator: 1, guide boundary; 2, mirrors, and 3, obstacle.
triadic Cantor discontinuum~line fractal!: 4, C0; 5, C1; 6, C2; 7,
C3; 8, C4; and 9,C5.
3-5
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S. V. KUKHLEVSKY, G. NYITRAY, AND V. L. KANTSYREV PHYSICAL REVIEW E 64 026603
and a light obstacle placed on the laser axis at the gu
entrance. The obstacle length is given byuxu52a/q, whereq
is a natural number. The transverse dimension of the ‘‘st
like’’ input field E is equal to the guide thickness 2a. The
obstacle cuts the 2a/q part of this field creating the fieldE0.
Guiding of the fieldE0 can be presented as propagation
the fieldsEm8 generated by the respective fieldsEm of the
virtual source@Eqs. ~1!–~5!#. After reflection from the mir-
ror, the M-times reduced image of the fieldE8
5(2um21u

m21 Em8 arrives to the guide exit. In the limit of sma
diffraction effect@Em8 'Em , see Eq.~1!#, the round-trip pro-
cess can be presented as the mathematical procedure of
struction of the line fractals by the tremas@18#. In the case of
2a51, q53, m5(21,0,1), andM53, the intersection of
the setsCm is the triadic Cantor dustC5ùmCm , the fractal
with Hausdorf’s dimension D5 log 2/log 3. Here, C0
5E, C15E0, andC2 is the reduced image of the fieldE8
5E218 1E081E18 ~see Fig. 5!. In order to find the setCk one
should simply repeat the round-trip procedure for the in
‘‘field’’ Ck21. The result means that the laser fractal~triadic
Cantor dust! can be generated in the free space by the wa
guide resonator. The laser fractals were recently observe
the experiments@9,10#. The studies have shown that a frac
pattern can only appear if the two mirrors form a so-cal
unstable configuration. In our case such a configuration
formed by the two mirrors and the virtual source of t
waveguide.
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IV. CONCLUSION

In conclusion, it is shown using the scalar diffractio
theory and the method of images that the arbitrary field c
fined by the optical waveguide can be generated in free sp
by the appropriate light source. The guided field can be p
duced in free space provided an appropriate launch pat
containing multiple virtual sources can be constructed.
opposition to the conventional theory of waveguides,
field at the guide entrance can satisfy neither the guide w
equation nor the boundary conditions. That gives possibi
to considering not only the mode-matched waves, but a
the fields having more complicated spatial and tempo
properties at the guide entrance. The correspondence
tween the guided and free-space waves was illustrated u
several particular fields, such as the diffraction-free, s
imaging, ultrashort, solitonlike, partially coherent waves a
laser fractals. The fields were compared, where it was p
sible ~mode-matched fields!, to those obtained by solving
boundary condition problem. It is expected that our meth
can be extended to the electron and neutron waves~for the
diffraction-free beams the problem was discussed in R
@1#!.
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