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Iwasawa effects in multilayer optics
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There are many two-by-two matrices in layer optics. It is shown that they can be formulated in terms of a
three-parameter group whose algebraic property is the same as the group of Lorentz transformations in a space
with two spacelike and one timelike dimensions, or 8y&2) group which is a standard theoretical tool in
optics. Among the interesting mathematical properties of this group, the Iwasawa decomposition drastically
simplifies the matrix algebra under certain conditions, and leads to a concise expressionSonatréx for
transmitted and reflected waves. It is shown that the Iwasawa effect can be observed in multilayer optics, and
a sample calculation of th® matrix is given.
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[. INTRODUCTION leads to a matrix with one vanishing off-diagonal element.
In a series of recent papdik,2], Han, Kim, and Noz have This leads to a substantial simplification in mathematics and
formulated polarization optics in terms of the two-by-two eventually leads to a more transparent comparison of theory
and four-by-four representations of the six-parameter Lorwith experiments. This decomposition has been discussed in
entz group. They noted that the Lorentz group properties caf€ literature in connection with polarization opt[&10]. In
be found in optical materials. Indeed, there are many twothis paper we study applications of this mathematical device
by-two matrices in layer optick3—5]. In this paper, we re- in layer optics.
organize them within the framework of the Lorentz group. ~There are papers in the literature on applications of the
We then derive a mathematical relation that can be testeborentz group in layer optic$2,11], but these papers are
experimentally. If a light wave hits a flat surface, a part ofconcerned with polarization optics. In this paper we are deal-
this wave becomes reflected and the remaining part becom&g With reflections and transmissions of optical waves. We
transmitted. show that layers with alternate indexes of refraction can ex-
If there are multilayers, this process repeats itself at eachibit an Iwasawa effect and provide a calculation of the
boundary. There has been a systematic approach to this protiansmission and reflection coefficients. It is remarkable that
lem based on the two-by-tw®&matrix formalism[3-5]. This ~ the Lorentz group can play as the fundamental scientific lan-
S matrix consists of boundary and phase-shift matrices. Thguage even in the physics of reflections and transmissions.
phase-shift matrices are complex and Swatrix is in gen- In Sec. Il we formulate the problem in terms of the
eral complex. Smatrix method widely used in optid8]. In Sec. Il this
However, in this paper we first show these complex ma-Smatrix formalism is translated into the mathematical
trices can be systematically transformed into a set of redramework of theSp(2) group consisting of two-by-two uni-
unimodular(with determinant= 1) matrices with three inde- modular matrices with real elements. We demonstrate that
pendent parameters. Then we can use the well-establishégere is a subset of these matrices with one vanishing nondi-
mathematical procedure for them. This procedure is calle@gonal element. It is shown possible to produce this set of
theSp(2) group whose algebraic property is the same as thahatrices from multiplications of the matrices in the original
of the SU(1,1) group which occupies a prominent place inSet. This is called the Iwasawa decomposition. In Sec. IV we
Optics from Squeezed states of ||d|&:| However, the most transform the mathematical formalism of the Iwasawa de-
pleasant aspect of tH&p(2) group is that its algebras consist composition into the real world, and calculate the reflection
only of two-by-two matrices with real elements. When ap_and transmission coefficients which can be measured in op-
plied to a two-dimensional plane, they produce rotations andics laboratories.
squeeze transformatiofig]. Even though the present paper is based on some group-
It is known that these simple matrices produce some nontheoretical theorems, we used the algebra of two-by-two ma-
trivial mathematical results, namely Wigner rotations andftrices throughout the paper while avoiding the formal math-
Iwasawa decompositior8]. The Wigner rotation means a €matical language. In the Appendix we explain what we do
rotation resulting from a multiplication of three squeeze ma-n terms of group theory.
trices, and the Iwasawa decomposition means that a product
of squeeze and rotation matrices, under certain conditions, Il. EORMULATION OF THE PROBLEM
Let us start with thesmatrix formalism of the layer op-
*Electronic address: elena@physics.georgetown.edu tics. We start with a plane wave traveling in a given direc-
TElectronic address: yskim@physics.umd.edu tion. If the wave is incident on a plane boundary of a me-
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dium with a different index of refraction, the problem can be
formulated in terms of two-by-two matric€3,5]. If we write \ /
the column vectors 0

N

E{")
E(”)

One cycle

g(H)
, (Ef_)) (1) 1
2

for the incident, with superscript+), and reflected, with 2
superscrip{—), for the waves in the first and second media,

respectively, then they are connected by the two-by-8vo 1
matrix, 9

g(H) g(H)
( 1 )Z(Sll S:I.Z( 2 ) (2)

E(li) S S E(zi) i \

Of course the elements of the abo®ematrix depend on \
reflection and transmission coefficien. 0
Le_t us consider a I_|ght-wave |_nC|dent on a flat surface, FIG. 1. Multilayer system. A light wave is incident on the first
th(e+r)1 _'t . dgcomposed Into transmltteq and reﬂectesd Waves. Houndary, with transmitted and reflected waves. The transmitted
E{") is the incident wave, the transmitted waveEls”, with  \yaye goes through the first medium and hits the second medium

EG . g5 ()= () again with reflected and transmitted waves. The transmitted wave
2 TRl o 1 =hEy o 3 goes through the second medium and hits the first medium. This
cycle continues\ times.

Thus, theS matrix takes the fornj3]

() 1k ot [ EC) where the subscripta and b are for the initial and final
( ! ):( 12 12 12)( 2 ) (4)  surfaces, respectively. The above expression tells there is a

EC)) Aoty 1t /) 0 phase difference of & between the waves. This phase dif-

o . ference depends on the index of refraction, wavelength, and
If the wave comes from the second medium in the oppositg,o angle of incidencEs].

direction, the same matrix can be used for In this paper we consider a multilayer system, consisting

0 14 ot E() of two .med.ia with different indexes of re_fraction as is illus-
( ):( 2 12 12)( 2 ) (5) trated in Fig. 1. Then, the system consists of many bound-
aries and phase-shift matrices. After multiplication of all
) ] ] o those matrices, the result will be one two-by-two matrix that
Since the magnitude of the reflection coefficient is smallefye introduced as thg matrix in Eq.(2). We are interested in
than one, and sindg,+r%,=1, we can write the above ma- this paper when this matrix takes special forms that can be

E{Y ro/ty; 1ty J\ESY

trix as readily tested experimentally.
) If the wave hits the first medium from the air, as is illus-
coshy sinhy (6 trated in Fig. 1, we write the matrix as
sinhn coshy/’ ,
coshn  sinh\
with sinh\  cosh\ |~ ©
rip=tanhz, t;,=1/coshny. (7)  within the first medium, the phase-shift matrix becomes

Since this describes both the reflection and transmission at e i 0
the boundary, we shall call this matrix the “boundary ma- ( 0 e“f’)' (10

trix” [12]. The reflection and transmission coefficients are, of
course, derivable from Maxwell's equations with boundary\yihan the wave hits the surface of the second medium, the
conditions. The mathematics of this form is well known. It corresponding matrix is

can perform Lorentz boosts when applied to the longitudinal
and timelike coordinates. Recently, it has been observed that coshy sinhy

it performs squeeze transformations when applied to the two- ( ) . (11
dimensional space of andy [7].

. Next, if the wave travels within a given medium from one \yjthin the second medium, we write the phase-shift matrix
inner-surface to the other surfal, as

ECY\ (e7'? 0\ [ESY e it 0
EC) :( 0 eia) ) ) 8 ( 0 eig)' (12
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Then, when the wave hits the first medium from the second 1 (1 i
Ci=—| . . 20
( coshy —sinhy 13 ! \/§(| 1 (20
. 1
—sinh h
Sy COSiy ThenC,;WC; ! leads to
But if the thickness of the first medium is zero, and the wave _ ) )
exists to the air, then the system goes through the boundary [ €0S¢ —sin¢| coshy sinhz|cos¢ —sing
matrix sing cos¢ |\ sinhy coshp/\siné cosé |’
: (21)
coshn  —sinhA
—sinhn  coshn |- A9 15 this way, we have converteéd of Eq. (19 into a real
matrix, but it is not simple enough.
The net result is Let us take another conjugate with
coshh  sinhA\[a pB\[ coshh  —sinh\ 1/1 1
sinhx  cosh\/\y &)\ —sinhA  coshn |’ C2:E -1 1/ (22)
(15
with Then the conjugat€,C,;WC; 'C,* becomes
a B\ (e'% 0)[coshy sinhyp|le™'¢ 0 cos¢ —sing|(e” 0 |/cos§ —sin¢
_ ke . . N . (23
y & 0 €?¢/\sinhy coshy/| 0 €¢ sing cos¢ |\ 0 e 7/{sin§é cosé
><( coshy —Sinhﬁ> 16 The combined effect o€,C; is
—sinhy  coshy |- 1/ et g
If the wave goes througNl cycles of this pair of layers, CZC@FE( il e—iw/4)' (24)
the S matrix becomes
coshh sinhA\{a B\N/ coshn  —sinhA with
sinhx coshA/|y &/ \—sinhx  coshn | L1 e-im4  _gimla
17 c =E e imlh  giml4 (25
Thus, the problem reduces to looking into unusual properties
of the core matrix After multiplication, the matrix of Eq(23) will take the
form
a B N
R (18) A B

We realize that the numerical computation of this expression
is rather trivial these days, but we are still interested in thayhereA, B, C, andD are real numbers. B andC vanish,
mathematical form which takes an exceptionally simplethis matrix will becomes diagonal, and the problem will be-
form. It is still an interesting problem to produce mathemat-come too simple. If, on the other hand, only one of these two
ics that enable us to perform calculations without using comelements become zero, we will achieve a substantial math-
puters. In Sec. Il we shall consider mathematical simplifi-ematical simplification and will be encouraged to look for
cation coming from one vanishing off-diagonal element.  physical circumstances that will lead to this simplification.
Let us summarize. We started in this section with the ma-
IIl. MATHEMATICAL INSTRUMENT trix representationV given in Eq.(19). This form can be
transformed into th& matrix of Eq.(23) through the conju-

The core matrix of Eq(18) contains the chain of the gate transformation

matrices
V=CWC?, (27

e v 0
w-|

coshy sinhyp\ (e ¢ 0
0 €

0 g'¢

) o

sinhn coshy whereC is given in Eq.(24). Conversely, we can recover the

W representation by
The Lorentz group allows us to simplify this expression un-

der certain conditions. w=Cc-vC. (29

For this purpose we transform the above expression into a
more convenient form by taking the conjugate of each of thé=or calculational purposes, th¢ representation is much
matrices with easier because we are dealing with real numbers. On the
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other hand, theN representation is of the form for th& IV. POSSIBLE EXPERIMENTS
matrix we intend to compute. It is gratifying to see that they
are equivalent.

Let us go back to Eq23) and consider the case where the
angles¢ and ¢ satisfy the following constraints:

The question then is whether it is possible to construct
optical layers that will perform this or similar calculation. In
order to make contacts with the real world, let us extend the
algebra to the form

¢+E=20, P—E=m12, (29
1 0\[fe"” O
thus 2sinhy 1/ 0 e?)’ S
¢=0+ml4, &=0—ml4. (30) )
which becomes
Then in terms off, we can reduce the matrix of ER3) to
the form ( e 7 0 )
s . (38
2e 7sinh K
(coshn)cog26) sinhn—(coshn)sin(Za)) € “sinhy e
sinhn+ (coshz)sin(26) (coshzn)cog26) . The square of this matrix is
31
0 e’ 0\? e 27 0
Thus the matrix takes a surprisingly simple form if the pa- 2e 7sinhy 7 = 2(e 27+ 1)sinhy €27]
rametersg and » satisfy the constraint (39)
sinhz=(cosh)sin(26). (32 If we repeat this process,
Then the matrix becomes
e’ 0\N eN7 0
1 0 (33) (Ze"’sinhn e”) :(Zb(sinhn) e‘N”)’ (40
2sinhy 1)°

. . with
This aspect of the Lorentz group is known as the lwasawa
decompositior{8], and has been discussed in the optics lit-
erature[9,10].

The matrices of the form is not so strange in optics. In
para-axial lens optics, the translation and lens matrices are
written as

1 u
0 1

respectively. These matrices have the following interesting
mathematical propert}2]:

N—1
b=e N7, e 2k-L7, (42)
k=1

which can be simplified to

10
and ( ) (34 e
u 1 p— &SN, (42)
sinhy

Then we can write Eq40) as

1 u\(l u, _ 1 u;tu, 35 o7 01N o7 0
0 1/\0 1 0 1 ) = ) . (43
2e 7sinhy €7 2e 7sin(N7) V7
and
If we take into account the boundary between the air and the
1 01 0 1 0 first medium,
= (36)
up 1j/\u; 1 upt+u, 1
(eA 0 e N7 0\/fe* 0
We note that the multiplication is commutative, and the pa- N e N7y A
rameter becomes additive. These matrices convert multipli- 0 e 2e”7sinl(Ny) e 0 e
cation into addition, as logarithmic functions do. e N7 0
Throughout this section we used the algebra of two-by- = ( 26227 sinf(N ) eN”)' (44

two matrices, while avoiding formal group-theoretical lan-
guages. In the Appendix, we give a group-theoretical inter-
pretation of what we are doing in this paper. Thus, the original matrix of Eq.2) becomes
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cosiNy)+ie (7"2Nsinh(N7)  —(1+ie” (7*?2M)sinh(N7)

—(1-ie”"2))sinh(Ny)  coshiNzn)—ie (""Msinh(N7) |’ “9

From theS-matrix formalism, the reflection and transmission V. CONCLUDING REMARKS

fficients ar .
coetlicients are In this paper we borrowed the concept of lwasawa de-

L) composition from well-known theorems in group theory. On
a 1 P IS In group theory
= _E“) :S_n’ the other hand, group theory appears in this paper in the form
a of two-by-two matrices with three independent parameters.
EM) 1 The lwasawa decomposition makes the algebra of two-by-
= % == (46)  two matrices even simpler. It is interesting to note that there
Ea S21 still is room for mathematical simplifications in the algebra
of two-by-two matrices and that this procedure can be tested
Thus, they become in optics laboratories.
(1—ie”(7*2M)sinh(N %)
- o (7t 2N ai :
cosh{N7) +ie™(7*?Vsinh(N ) APPENDIX: FURTHER MATHEMATICAL DETAILS
T— —1 4 In Sec. lll, which contains the mathematical instrument
- (1—ie~(7*2))sinh(N 7) ' (47) for this paper, we restricted ourselves to the algebra of two-

by-two matrices and avoided as much as possible group-

The above expression depends only the number of laydheoretical languages. In order to explain where those alge-
cyclesN and the parametey, which was defined in terms of braic tricks came from, we give in this appendix a group-
the reflection and transmission coefficients in Eg). It is  theoretical interpretation of what we did in this paper.
important also that the above simple form is possible only if The groupSL(2,c) consists of two-by-two unimodular
the phase-shift parameteds and ¢ should satisfy the rela- matrices whose elements are complex. There are therefore

tions given in Egs(30) and (32). In summary, they should Six independent parameters, and thus six generators of the
satisfy Lie algebra. This group is locally isomorphic to the six-

parameter Lorentz group o0(3,1) applicable to the
cog2¢)=—cog2¢) and tanhp=cog2&). (49 Minkowskian space of three spacelike directions and one
timelike direction.
In setting up the experiment, we note that all three param- Like the Lorentz group, the&sL(2,c) has a number of
eters », & and ¢ depend on the incident angle and theinteresting subgroups. The subgroup most familiar to us is
frequency of the light wave. The parametgris derivable  SU(2) which is locally isomorphic to the three-dimensional
from the reflection and transmission coefficients which de+otation group. In addition, this group contains three sub-
pend on both the angle and frequency. The angular parangroups that are locally isomorphic to the gro®§2,1) ap-
eters¢ and ¢ depend on the optical path and the index ofplicable to the Minkowskian space of two spacelike and one
refraction which depend on the incident angle and the fretimelike dimensions.
qguency, respectively. One of the subgroups &L(2,c) is SL(2,r) consisting of

Now all three quantities in Eq48) are functions of the matrices with real elements. This subgroup is also called the
incident angle and the frequency. If we consider a threeSp(2) group which we used in this paper in order to carry
dimensional space with the incident angle and frequency agut the Iwasawa decomposition. Another interesting sub-
the x andy axes, respectively, all three quantities, c@y(2 group is the one we used for computing Benatrix, which
cos(2p), and tanhy, will be represented by two-dimensional starts with the boundary matrix of E5) and the phase-shift
surfaces. If we choose cosf2and cos(2), the intersection matrix of Eq.(8). This group is calledSU(1,1). The present
will be a line. This line will pass through the third surface for paper exploits the isomorphism betwegp2) and SU(1,1).
tanh#. The point at which the line passes through the surfacdVhile the physical world is describable in terms®i)(1,1),
corresponds to the values of the incident angle and frequenaye carry out the Iwasawa decomposition in tBe(2) re-
which will satisfy the two conditions given in E¢48). gime.

While it is possible to set up this experiment, it will re-  Indeed, the conjugate transformation from Ep) to Eq.
quire computer work to determine a point where the threg21) is from SU(1,1) toSp(2), while the transition from Eq.
planes coincide at one point. It does not take too much ad21) to Eq.(23) is within theSp(2) group. Thus, the transi-
ditional work to compute th& matrix without the lwasawa tion from Eq.(19) to Eq.(23) is a conjugate transformation
effects if the number of layers is not large. The computer carfirom the SU(1,1) subgroup to the subgrouSp(2) of
handle the problem easily i is about 10, 100, or even SL(2).

1000. It would indeed be interesting how this lwasawa effect Next, the mathematical instrument given in Sec. Il is the
stands out from the computer calculation. decomposition of theSp(2) andSU(1,1) matrices. Unlike
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the traditional approach to group theory which starts fromematical theorem was totally overlooked. For instance, in
the generators of the Lie algebra, we used in this paper aparticle theory, Wigner’s little groups dictate the internal
approach similar to what Goldstein did for the three-space-time symmetries of massive and massless particles that
dimensional rotation group in terms of the Euler an§le3.  are locally isomorphic t®(3) andE(2), respectively[14].
There are three generators for the rotation group, but Goldfhe little group is the maximal subgroup of the Lorentz
stein starts with rotations around thendx directions. Ro- group whose transformations do not change the four-

tations around thg axis and the most general form f(_)r the momentum of a given partickL5]. The E(2)-like subgroup
rotation matrix can be cons.tructed from repeaped applicationg). massless particles is locally isomorphic to the subgroup
of those two starting matrices. Let us call this type of ap-of SL(2,c), which can be started from one of the matrices in

proach the “Euler construction.” : :
. . . EQq.(34) and the diagonal matrix of Eq10). Thus there was
There are th“ree baf'c adyantz;ges of this approach. F'rsfgh underlying lwasawa decomposition while the the
the number of “starter” matrices is less than the number o

generators. For example, we need only two starters for thg . ) X
three-parameter rotation group. In our case, we started Witmatr]rlces[16], b“tfthﬁ authrc])rs d'df ”;’t know this. One of those
two matrices for the three-parameter groBp(2) and also ~ 2Uthors is one of the authors of the present paper.

for SU(1,1). Second, each starter matrix takes a simple form N Optics, there are many two-by-two matrices with one
and has its own physical interpretation. vanishing off-diagonal element. It was generally known that

The third advantage can be stated in the following Way_this has something to do with the Iwasawa effect, but Simon
Repeated applications of the starter matrices will lead to #1d Mukunda[9] and Hanet al. [10] started treating the
very complicated expression. However, the complicated exlwasawa decomposition as the main issue in their papers on
pression can be decomposed into the minimum number dtolarized light.
starter matrices. For example, this number is three for the In para-axial lens optics, the matrices of the form given in
three-dimensional rotation group. This number is also thre&q. (34) are the starterfl7], and repeated applications of
for SU(2) andSp(2). Wecall this the Euler decomposition. those two starters will lead to the most general form of
The present paper is based on both the Euler constructioBp(2) matrices. It had been a challenging problem since
and the Euler decomposition. 1985[17] to write the most general two-by-two matrix in

Among the several useful Euler decompositions, thdens optics in terms of the minimum number of those starter
Iwasawa decomposition plays the central role in this papematrices. This problem has been solved recefi], and
In Sec. Ill we explained what the decomposition does to thehe central issue in the problem was the lwasawa decompo-
two-by-two matrices oS5p(2), but it hasbeen an interesting  sition.
subject since Iwasawa'’s first publication on this subj&gt In laser physics, there are many matrices of the form
It is beyond the scope of this paper to present a historicagjiven in Eq.(34) with complex parameterfsl9,20. Indeed,
review of the subject. However, we would like to point out the lwasawa decomposition appears to have a bright future in
that there are areas of physics where this important mattoptics.
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